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Pictures from cubeViz2 (by Marcin Jan Grzybowski)

Figure: “Twisting” Hopf fibration (generator of π3S2)



Pictures from cubeViz2 (by Marcin Jan Grzybowski)

Figure: “Twisting” Hopf fibration again



Disclaimer

▶ All results in cubicaltt implementation of CCHM cubical
type theory (Cohen, Coquand, Huber, Mörtberg 2015 [3][4],
Coquand, Huber, Mörtberg 2018 [5]) unless otherwise noted
(Cohen, Coquand, Huber, Mörtberg 2015 [3], Coquand,
Huber, Mörtberg 2018 [5])

▶ No suspensions, joins, pushouts, colimits. . .
▶ e.g. Sn is the point and n-loop HIT
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Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl


refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)
▶ second half of [1]: n = ±2 (using cohomology, Gysin

sequence)

▶ “computing Brunerie’s number”
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Preview: The Brunerie number is 2

Computing “a” Brunerie number:

▶ in cubicaltt:

> :n n

NORMEVAL: pos (suc (suc zero))

Time: 0m0.017s

▶ and in Kovacs’ cctt:

Normal form of brunerie:

pos (suc (suc zero))

Normalized in 0.102955318s
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Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ :

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)
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Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3
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The Brunerie number is 2

▶ Brunerie’s recipe: define an isomorphism π3S2 → Z, plug in
the Whitehead product [i2, i2] : π3S2.



Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])

“(α, β)− extensions” are equivalent to trivializations of Whitehead
products

▶ “Cubical (α, β)-extensions” for α : ΩnA, β : ΩmA

▶ Top cell of S2 × S2 in cubical type theory:

λ i j a b. (surf i j, surf a b)

▶ Its type:

[i j a b] A [ ∂[i j] → (base , surf a b)

| ∂[a b] → (surf i j, base) ]

▶ So we consider “cubical (α, β)-extensions”:

[i j a b] A [ ∂[i j] → β a b

| ∂[a b] → α i j ]
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Whitehead products

Figure: [α, β] : Ω3A (from Grzybowski’s cubeViz2)



Whitehead products

▶ So, for α, β : Ω2A,

▶ we have [α, β] : Ω3A

▶ and (α, β)-extension ≃ ([α, β] =Ω3A refl)
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π3S2 ∼= Z

▶ James construction ΩS2 ≃ JS1

data JS1 : Type where

base : JS1
loops : Πx :JS1 Ω(JS1, x)

▶ Rijke, Cavallo

▶ recursion principle: recJS1 : A → (Πx :AΩ(A, x)) → JS1 → A



π3S2 ∼= Z

▶ James construction ΩS2 ≃ JS1

data JS1 : Type where

base : JS1
loops : Πx :JS1 Ω(JS1, x)

▶ Rijke, Cavallo

▶ recursion principle: recJS1 : A → (Πx :AΩ(A, x)) → JS1 → A



π3S2 ∼= Z

▶ James construction ΩS2 ≃ JS1

data JS1 : Type where

base : JS1
loops : Πx :JS1 Ω(JS1, x)

▶ Rijke, Cavallo

▶ recursion principle: recJS1 : A → (Πx :AΩ(A, x)) → JS1 → A



π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A



π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A



π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A



π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A



π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2

▶ You can compute that(
Πx :S1×∥S2∥2Ω

(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)
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The Brunerie number is even

Πp:Ω2A [p, p] =Ω3A ηp · ηp
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Syllepses are trivializations of Whitehead products

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)



Syllepses are trivializations of Whitehead products



Syllepses are trivializations of Whitehead products



Syllepses are trivializations of Whitehead products

Figure: Syllepses



Syllepses are trivializations of Whitehead products

Figure: a funny tube



Syllepses are trivializations of Whitehead products

Figure: funny syllepses



Syllepses are trivializations of Whitehead products

Figure: trivializations of the Whitehead product!



π4S3 ≇ 1

Idea:

π4S3 → π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
→ π2(S2/2) → bool

This is not what I actually did, but it’s easier to explain. At least
one very ugly thing does work in cubicaltt. . .

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : (surf , surf)-extension

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : EH(surf , surf) = EH(surf , surf)⊺
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π4S3 ≇ 1

▶ Crux: π3J2S2 → π2
(
S1 × ∥S2/2∥2

)

▶ Want: ΩJ2S2 →
(
S1 × ∥S2/2∥2

)
▶ Want: J2S2

•→
(
U ,S1 × ∥S2/2∥2

)
▶ Want: α : Ω2(U ,S1 × ∥S2/2∥2) with a syllepsis

EH(α, α) = EH(α, α)⊺
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π4S3 ≇ 1

▶ 2+2 conjecture:

▶ Given a, b : Πx :AΩ(A, x), define α, β : Ω2(U ,A) by
α := global(a), β := global(b).

▶ Then, syllepses EH(α, β) = EH(β, α)⊺ are equivalent to
Πx :Aapda(b(x)) = apdb(a(x))

⊺.

▶ Maybe we can prove it using Baker’s insight?
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π4S3 ≇ 1

▶ If the “syllepsis in the universe” conjecture holds, we should
be able to use it to construct the α : Ω2(U , S1 × ∥S2/2∥2)
with a syllepsis EH(α, α) = EH(α, α)⊺

▶ The resulting map π4S3 → bool should then compute
nontrivially, at least in cubicaltt. . .
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Etc

▶ JS1 as a “holographic” model of ΩS2:
▶ link diagrams
▶ J3S1: Reidemeister III
▶ J4S1: Zamolodchikov tetrahedron equation?
▶ generalized Pontryagin’s theorem w/ “regular dual

stratifications” per Christopher Dorn 2023, “An Invitation to
Geometric Higher Categories” (???)

▶ Adams-Hilton construction (see Carlsson, Milgram 1995)
▶ for ΩJ2S2: J3S1 but we can change the signs of crossings
▶ Computational univalence allows computing the boundary of

the Adams-Hilton cells, in theory???

Thanks!
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