$\pi_{4} \mathbb{S}^{3} \not \neq 1$ and another Brunerie number in CCHM

Tom Jack
pi3js2@proton.me

May 25, 2023

Thanks

Thanks:

Thanks

Thanks:

- organizers

Thanks

Thanks:

- organizers
- all who worked on HoTT

Thanks

Thanks:

- organizers
- all who worked on HoTT
- implementors!

Thanks

Thanks:

- organizers
- all who worked on HoTT
- implementors!
- Axel Ljungström for discussions and feedback

Thanks

Thanks:

- organizers
- all who worked on HoTT
- implementors!
- Axel Ljungström for discussions and feedback
- Raymond Baker for discussions

Thanks

Thanks:

- organizers
- all who worked on HoTT
- implementors!
- Axel Ljungström for discussions and feedback
- Raymond Baker for discussions
- Marcin Jan Grzybowski for ongoing work on visualizations https://github.com/marcinjangrzybowski/cubeViz2

Pictures from cubeViz2 (by Marcin Jan Grzybowski)

Figure: "Twisting" Hopf fibration (generator of $\pi_{3} \mathbb{S}^{2}$)

Pictures from cubeViz2 (by Marcin Jan Grzybowski)

Figure: "Twisting" Hopf fibration again

Disclaimer

- All results in cubicaltt implementation of CCHM cubical type theory (Cohen, Coquand, Huber, Mörtberg 2015 [3][4], Coquand, Huber, Mörtberg 2018 [5]) unless otherwise noted (Cohen, Coquand, Huber, Mörtberg 2015 [3], Coquand, Huber, Mörtberg 2018 [5])

Disclaimer

- All results in cubicaltt implementation of CCHM cubical type theory (Cohen, Coquand, Huber, Mörtberg 2015 [3][4], Coquand, Huber, Mörtberg 2018 [5]) unless otherwise noted (Cohen, Coquand, Huber, Mörtberg 2015 [3], Coquand, Huber, Mörtberg 2018 [5])
- No suspensions, joins, pushouts, colimits...
- e.g. \mathbb{S}^{n} is the point and n-loop HIT

Context: Brunerie's number

- Brunerie's 2016 PhD thesis [1]

Context: Brunerie's number

- Brunerie's 2016 PhD thesis [1]
- Fourth homotopy group of the 3-sphere: $\pi_{4} \mathbb{S}^{3}$

Context: Brunerie's number

- Brunerie's 2016 PhD thesis [1]
- Fourth homotopy group of the 3-sphere: $\pi_{4} \mathbb{S}^{3}$

Context: Brunerie's number

- Brunerie's 2016 PhD thesis [1]
- Fourth homotopy group of the 3-sphere: $\pi_{4} \mathbb{S}^{3}$

- first half of $[1]: \Sigma_{n: \mathbb{Z}}\left(\pi_{4} \mathbb{S}^{3} \cong \mathbb{Z} / n \mathbb{Z}\right)$

Context: Brunerie's number

- Brunerie's 2016 PhD thesis [1]
- Fourth homotopy group of the 3-sphere: $\pi_{4} \mathbb{S}^{3}$
- first half of [1]: $\Sigma_{n: \mathbb{Z}}\left(\pi_{4} \mathbb{S}^{3} \cong \mathbb{Z} / n \mathbb{Z}\right)$
- second half of [1]: $n= \pm 2$ (using cohomology, Gysin sequence)

Context: Brunerie's number

- Brunerie's 2016 PhD thesis [1]
- Fourth homotopy group of the 3-sphere: $\pi_{4} \mathbb{S}^{3}$
- first half of [1]: $\Sigma_{n: \mathbb{Z}}\left(\pi_{4} \mathbb{S}^{3} \cong \mathbb{Z} / n \mathbb{Z}\right)$
- second half of [1]: $n= \pm 2$ (using cohomology, Gysin sequence)
- "computing Brunerie's number"

Preview

Three new proofs (in CCHM):

Preview

Three new proofs (in CCHM):

- The Brunerie number is 2

Preview

Three new proofs (in CCHM):

- The Brunerie number is 2
- The Brunerie number is even

Preview

Three new proofs (in CCHM):

- The Brunerie number is 2
- The Brunerie number is even
- The Brunerie number is not 1

Preview

Three new proofs (in CCHM):

- The A Brunerie number is 2
- The A Brunerie number is even
- The A Brunerie number is not 1

Preview: The Brunerie number is 2

Preview: The Brunerie number is 2

Computing "a" Brunerie number:

Preview: The Brunerie number is 2

Computing "a" Brunerie number:

- in cubicaltt:
$>: n n$
NORMEVAL: pos (suc (suc zero))
Time: 0m0.017s

Preview: The Brunerie number is 2

Computing "a" Brunerie number:

- in cubicaltt:
$>: n \mathrm{n}$
NORMEVAL: pos (suc (suc zero))
Time: 0m0.017s
- and in Kovacs' cctt:

Normal form of brunerie:
pos (suc (suc zero))

Normalized in 0.102955318s

Preview: The Brunerie number is even

Preview: The Brunerie number is even

- "The Brunerie number is even"

$$
\Pi_{p: \Omega^{2} A}[p, p]=\Omega_{\Omega^{3} A} \eta_{p} \cdot \eta_{p}
$$

("geometric" proof in CCHM)

Preview: The Brunerie number is even

- "The Brunerie number is even"

$$
\Pi_{p: \Omega^{2} A}[p, p]=\Omega_{\Omega^{3} A} \eta_{p} \cdot \eta_{p}
$$

("geometric" proof in CCHM)

- "Syllepsis is triviality of Whitehead products":

Preview: The Brunerie number is even

- "The Brunerie number is even"

$$
\Pi_{p: \Omega^{2} A}[p, p]=\Omega^{3} A \eta_{p} \cdot \eta_{p}
$$

("geometric" proof in CCHM)

- "Syllepses are trivializations of Whitehead products":

$$
\Pi_{p, q: \Omega^{2} A}\left(\mathrm{EH}(p, q)=\mathrm{EH}(q, p)^{\top}\right) \simeq\left([p, q]==_{\Omega^{3} A} \text { refl }\right)
$$

(similar "geometric" proof)

Preview: The Brunerie number is even

- "The Brunerie number is even"

$$
\Pi_{p: \Omega^{2} A}[p, p]=\Omega^{3} A \eta_{p} \cdot \eta_{p}
$$

("geometric" proof in CCHM)

- "Syllepses are trivializations of Whitehead products":

$$
\Pi_{p, q: \Omega^{2} A}\left(\mathrm{EH}(p, q)=\mathrm{EH}(q, p)^{\top}\right) \simeq\left([p, q]={ }_{\Omega^{3} A} \text { refl }\right)
$$

(similar "geometric" proof)

- short proof of syllepsis and "the generator of $\pi_{4} \mathbb{S}^{3}$ has order 2"

Preview: The Brunerie number is even

- "The Brunerie number is even"

$$
\Pi_{p: \Omega^{2} A}[p, p]=\Omega_{\Omega^{3} A} \eta_{p} \cdot \eta_{p}
$$

("geometric" proof in CCHM)

- "Syllepses are trivializations of Whitehead products":

$$
\Pi_{p, q: \Omega^{2} A}\left(\mathrm{EH}(p, q)=\mathrm{EH}(q, p)^{\top}\right) \simeq\left([p, q]={ }_{\Omega^{3} A} \text { refl }\right)
$$

(similar "geometric" proof)

- short proof of syllepsis and "the generator of $\pi_{4} \mathbb{S}^{3}$ has order 2 "
- another proof of $\pi_{4} \mathbb{S}^{3} \cong \mathbb{Z} / 2 \mathbb{Z}$? (as suggested by Snyder, Ljungström)

Preview: The Brunerie number is not 1

- but we need to prove $\pi_{4} \mathbb{S}^{3}$ is nontrivial...

Preview: The Brunerie number is not 1

- but we need to prove $\pi_{4} \mathbb{S}^{3}$ is nontrivial...
- Ljungström proved in book HoTT that $\pi_{4} \mathbb{S}^{3} \leq \mathbb{Z} / 2 \mathbb{Z}$ using only Freudenthal and Eckmann-Hilton, and asked for a "standalone" proof of $\pi_{4} \mathbb{S}^{3} \nsupseteq 1$

Preview: The Brunerie number is not 1

- but we need to prove $\pi_{4} \mathbb{S}^{3}$ is nontrivial...
- Ljungström proved in book HoTT that $\pi_{4} \mathbb{S}^{3} \leq \mathbb{Z} / 2 \mathbb{Z}$ using only Freudenthal and Eckmann-Hilton, and asked for a "standalone" proof of $\pi_{4} \mathbb{S}^{3} \not \not 11$
- "Direct" computational proof of $\pi_{4} \mathbb{S}^{3} \not \not \equiv 1$

Preview: The Brunerie number is not 1

- but we need to prove $\pi_{4} \mathbb{S}^{3}$ is nontrivial...
- Ljungström proved in book HoTT that $\pi_{4} \mathbb{S}^{3} \leq \mathbb{Z} / 2 \mathbb{Z}$ using only Freudenthal and Eckmann-Hilton, and asked for a "standalone" proof of $\pi_{4} \mathbb{S}^{3} \not \neq 1$
- "Direct" computational proof of $\pi_{4} \mathbb{S}^{3} \not \not \equiv 1$
compute $\Omega^{4} \mathbb{S}^{3}: \Omega^{4} \mathbb{S}^{3}->$ bool $=\ldots$

Preview: The Brunerie number is not 1

- but we need to prove $\pi_{4} \mathbb{S}^{3}$ is nontrivial...
- Ljungström proved in book HoTT that $\pi_{4} \mathbb{S}^{3} \leq \mathbb{Z} / 2 \mathbb{Z}$ using only Freudenthal and Eckmann-Hilton, and asked for a "standalone" proof of $\pi_{4} \mathbb{S}^{3} \not \neq 1$
- "Direct" computational proof of $\pi_{4} \mathbb{S}^{3} \not \not \equiv 1$
compute $\Omega^{4} \mathbb{S}^{3}: \Omega^{4} \mathbb{S}^{3}->$ bool $=\ldots$
genPi4s3 : $\Omega^{4} \mathbb{S}^{3}=\ldots$

Preview: The Brunerie number is not 1

- but we need to prove $\pi_{4} \mathbb{S}^{3}$ is nontrivial...
- Ljungström proved in book HoTT that $\pi_{4} \mathbb{S}^{3} \leq \mathbb{Z} / 2 \mathbb{Z}$ using only Freudenthal and Eckmann-Hilton, and asked for a "standalone" proof of $\pi_{4} \mathbb{S}^{3} \not \neq 1$
- "Direct" computational proof of $\pi_{4} \mathbb{S}^{3} \not \equiv 1$
compute $\Omega^{4} \mathbb{S}^{3}: \Omega^{4} \mathbb{S}^{3} \rightarrow$ bool $=\ldots$
genPi4s3 : $\Omega^{4} \mathbb{S}^{3}=\ldots$
conclusion
: Path $\Omega^{4} \mathbb{S}^{3}$ genPi4s3 refl ->
Path bool true false
$=$ cong compute $\Omega^{4} \mathbb{S}^{3}$

Pontryagin's Theorem

- Pontryagin, 1938 [8]

Pontryagin's Theorem

- Pontryagin, 1938 [8]
- First proof of $\pi_{4} \mathbb{S}^{3} \cong \mathbb{Z} / 2 \mathbb{Z}$!

The Brunerie number is 2

- Brunerie's recipe: define an isomorphism $\pi_{3} \mathbb{S}^{2} \rightarrow \mathbb{Z}$, plug in the Whitehead product $\left[i_{2}, i_{2}\right]: \pi_{3} \mathbb{S}^{2}$.

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])
" (α, β)-extensions" are equivalent to trivializations of Whitehead products

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2]) " (α, β) - extensions" are equivalent to trivializations of Whitehead products

- "Cubical (α, β)-extensions" for $\alpha: \Omega^{n} A, \beta: \Omega^{m} A$

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])
" (α, β) - extensions" are equivalent to trivializations of Whitehead products

- "Cubical (α, β)-extensions" for $\alpha: \Omega^{n} A, \beta: \Omega^{m} A$
- Top cell of $\mathbb{S}^{2} \times \mathbb{S}^{2}$ in cubical type theory:

$$
\lambda i j a b .(s u r f i j, ~ s u r f a b)
$$

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2]) " (α, β) - extensions" are equivalent to trivializations of Whitehead products

- "Cubical (α, β)-extensions" for $\alpha: \Omega^{n} A, \beta: \Omega^{m} A$
- Top cell of $\mathbb{S}^{2} \times \mathbb{S}^{2}$ in cubical type theory:

$$
\lambda \text { i } j \text { a b. (surf i j, surf a b) }
$$

- Its type:

$$
\begin{aligned}
& \text { [i j a b] A [} \partial[i \operatorname{j}] \rightarrow \text { (base, surf a b) } \\
& \text { | } \partial[\mathrm{a} \text { b] } \rightarrow \text { (surf i } j \text {, base)] }
\end{aligned}
$$

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2]) " (α, β) - extensions" are equivalent to trivializations of Whitehead products

- "Cubical (α, β)-extensions" for $\alpha: \Omega^{n} A, \beta: \Omega^{m} A$
- Top cell of $\mathbb{S}^{2} \times \mathbb{S}^{2}$ in cubical type theory:

$$
\lambda \text { i ja b. (surf i j, surf ab) }
$$

- Its type:

$$
\begin{aligned}
& \text { [i j a b] A [} \partial[i \operatorname{j}] \rightarrow \text { (base, surf a b) } \\
& \text { | } \partial[\mathrm{a} \text { b] } \rightarrow \text { (surf i j, base)] }
\end{aligned}
$$

- So we consider "cubical (α, β)-extensions":

$$
\begin{aligned}
& \text { [i j a b] A [} \partial[i \operatorname{j}] \rightarrow \beta \text { a b } \\
& \text { | } \partial[\mathrm{a} \text { b] } \rightarrow \alpha \text { i j] }
\end{aligned}
$$

Whitehead products

Figure: $[\alpha, \beta]: \Omega^{3} A$ (from Grzybowski's cubeViz2)

Whitehead products

- So, for $\alpha, \beta: \Omega^{2} A$,

Whitehead products

- So, for $\alpha, \beta: \Omega^{2} A$,
- we have $[\alpha, \beta]: \Omega^{3} A$

Whitehead products

- So, for $\alpha, \beta: \Omega^{2} A$,
- we have $[\alpha, \beta]: \Omega^{3} A$
- and (α, β)-extension $\simeq\left([\alpha, \beta]=\Omega_{\Omega^{3} A}\right.$ refl $)$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- James construction $\Omega \mathbb{S}^{2} \simeq \mathbb{S}^{1}$
data $J^{1}{ }^{1}$: Type where
base : JS ${ }^{1}$
loops : $\Pi_{x: J \mathbb{S}^{1}} \Omega\left(\mathbb{S}^{1}, x\right)$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- James construction $\Omega \mathbb{S}^{2} \simeq \mathbb{S}^{1}$
data $J^{1}{ }^{1}$: Type where
base : JS ${ }^{1}$
loops : $\Pi_{x: J \mathbb{S}^{1}} \Omega\left(\mathbb{S}^{1}, x\right)$
- Rijke, Cavallo

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- James construction $\Omega \mathbb{S}^{2} \simeq \mathbb{S}^{1}$
data $J^{1}{ }^{1}$: Type where

$$
\begin{aligned}
& \text { base }: \mathbb{S}^{1} \\
& \text { loops }: \Pi_{x: J \mathbb{S}^{1}} \Omega\left(\mathbb{S}^{1}, x\right)
\end{aligned}
$$

- Rijke, Cavallo
- recursion principle: $\operatorname{rec} \mathbb{S}^{1}: A \rightarrow\left(\Pi_{x: A} \Omega(A, x)\right) \rightarrow J \mathbb{S}^{1} \rightarrow A$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Local-global looping (Kraus, Sattler 2015 [6]) aka "the key maneuver [for $\pi_{n} \mathbb{S}^{n}$]" (Licata, Brunerie 2013 [7])

$$
\text { global : }\left(\Pi_{x: A} \Omega(A, x)\right) \simeq \Omega^{2}(\mathcal{U}, A)
$$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Local-global looping (Kraus, Sattler 2015 [6]) aka "the key maneuver [for $\pi_{n} \mathbb{S}^{n}$]" (Licata, Brunerie 2013 [7])

$$
\text { global : }\left(\Pi_{x: A} \Omega(A, x)\right) \simeq \Omega^{2}(\mathcal{U}, A)
$$

- so, given $h: \Pi_{x: A} \Omega(A, x)$, global(h) induces a fibration $\mathbb{S}^{2} \xrightarrow{\bullet}(U, A)$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Local-global looping (Kraus, Sattler 2015 [6]) aka "the key maneuver [for $\pi_{n} \mathbb{S}^{n}$]" (Licata, Brunerie 2013 [7])

$$
\text { global : }\left(\Pi_{x: A} \Omega(A, x)\right) \simeq \Omega^{2}(\mathcal{U}, A)
$$

- so, given $h: \Pi_{x: A} \Omega(A, x)$, global (h) induces a fibration $\mathbb{S}^{2} \xrightarrow{\bullet}(U, A)$
- transport over this fibration gives a map $\Omega \mathbb{S}^{2} \rightarrow A \rightarrow A$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Local-global looping (Kraus, Sattler 2015 [6]) aka "the key maneuver [for $\pi_{n} \mathbb{S}^{n}$]" (Licata, Brunerie 2013 [7])

$$
\text { global : }\left(\Pi_{x: A} \Omega(A, x)\right) \simeq \Omega^{2}(\mathcal{U}, A)
$$

- so, given $h: \Pi_{x: A} \Omega(A, x)$, global (h) induces a fibration $\mathbb{S}^{2} \xrightarrow{\bullet}(U, A)$
- transport over this fibration gives a map $\Omega \mathbb{S}^{2} \rightarrow A \rightarrow A$
$-\operatorname{rec} \Omega \mathbb{S}^{2}: A \rightarrow\left(\Pi_{x: A} \Omega(A, x)\right) \rightarrow \Omega \mathbb{S}^{2} \rightarrow A$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that

$$
\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)
$$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that
$\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that
$\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)
- Then rec $\Omega \mathbb{S}^{2}(($ base, \mid base $\mid), h): \Omega \mathbb{S}^{2} \rightarrow \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that
$\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)
- Then rec $\Omega \mathbb{S}^{2}(($ base, \mid base $\mid), h): \Omega \mathbb{S}^{2} \rightarrow \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- Take the second projection: $\Omega \mathbb{S}^{2} \rightarrow\left\|\mathbb{S}^{2}\right\|_{2}$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that
$\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)
- Then rec $\Omega \mathbb{S}^{2}(($ base, \mid base $\mid), h): \Omega \mathbb{S}^{2} \rightarrow \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- Take the second projection: $\Omega \mathbb{S}^{2} \rightarrow\left\|\mathbb{S}^{2}\right\|_{2}$
- Take $\pi_{2}: \pi_{3} \mathbb{S}^{2} \rightarrow \pi_{2} \mathbb{S}^{2}$

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that
$\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)
- Then rec $\Omega \mathbb{S}^{2}(($ base, \mid base $\mid), h): \Omega \mathbb{S}^{2} \rightarrow \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- Take the second projection: $\Omega \mathbb{S}^{2} \rightarrow\left\|\mathbb{S}^{2}\right\|_{2}$
- Take $\pi_{2}: \pi_{3} \mathbb{S}^{2} \rightarrow \pi_{2} \mathbb{S}^{2}$
- Finish with $\pi_{2} \mathbb{S}^{2} \rightarrow \mathbb{Z}$ similar to Licata, Brunerie 2013 [7]

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that $\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)
- Then rec $\Omega \mathbb{S}^{2}(($ base, \mid base $\mid), h): \Omega \mathbb{S}^{2} \rightarrow \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- Take the second projection: $\Omega \mathbb{S}^{2} \rightarrow\left\|\mathbb{S}^{2}\right\|_{2}$
- Take $\pi_{2}: \pi_{3} \mathbb{S}^{2} \rightarrow \pi_{2} \mathbb{S}^{2}$
- Finish with $\pi_{2} \mathbb{S}^{2} \rightarrow \mathbb{Z}$ similar to Licata, Brunerie 2013 [7]
- This is an isomorphism

$\pi_{3} \mathbb{S}^{2} \cong \mathbb{Z}$

- Now, let $A:=\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- You can compute that $\left(\Pi_{x: \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}} \Omega\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}, x\right)\right) \simeq\left(\mathbb{Z} \times \mathbb{S}^{1} \times \mathbb{Z}\right)$
- Define h as the preimage of (1, base, 1) (or directly define h making the obvious choices)
- Then rec $\Omega \mathbb{S}^{2}(($ base, \mid base $\mid), h): \Omega \mathbb{S}^{2} \rightarrow \mathbb{S}^{1} \times\left\|\mathbb{S}^{2}\right\|_{2}$
- Take the second projection: $\Omega \mathbb{S}^{2} \rightarrow\left\|\mathbb{S}^{2}\right\|_{2}$
- Take $\pi_{2}: \pi_{3} \mathbb{S}^{2} \rightarrow \pi_{2} \mathbb{S}^{2}$
- Finish with $\pi_{2} \mathbb{S}^{2} \rightarrow \mathbb{Z}$ similar to Licata, Brunerie 2013 [7]
- This is an isomorphism
- Plug in the Whitehead product [surf, surf], it computes to 2 (in cubicaltt or cctt)

The Brunerie number is even

$$
\Pi_{p: \Omega^{2} A}[p, p]=\Omega_{\Omega^{3} A} \eta_{p} \cdot \eta_{p}
$$

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

Syllepses are trivializations of Whitehead products

$$
\Pi_{p, q: \Omega^{2} A}\left(\mathrm{EH}(p, q)=\mathrm{EH}(q, p)^{\top}\right) \simeq\left([p, q]=\Omega_{\Omega^{3} A} \text { refl }\right)
$$

Syllepses are trivializations of Whitehead products

Syllepses are trivializations of Whitehead products

Syllepses are trivializations of Whitehead products

Figure: Syllepses

Syllepses are trivializations of Whitehead products

Figure: a funny tube

Syllepses are trivializations of Whitehead products

Figure: funny syllepses

Syllepses are trivializations of Whitehead products

Figure: trivializations of the Whitehead product!
$\pi_{4} \mathbb{S}^{3} \not \neq 1$

Idea:

$$
\pi_{4} \mathbb{S}^{3} \rightarrow \pi_{3} \mathrm{~J}_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right) \rightarrow \pi_{2}\left(\mathbb{S}^{2} / 2\right) \rightarrow \text { bool }
$$

Idea:

$$
\pi_{4} \mathbb{S}^{3} \rightarrow \pi_{3} \mathrm{~J}_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right) \rightarrow \pi_{2}\left(\mathbb{S}^{2} / 2\right) \rightarrow \text { bool }
$$

This is not what I actually did, but it's easier to explain. At least one very ugly thing does work in cubicaltt...
$\pi_{4} \mathbb{S}^{3} \not \neq 1$

Idea:

$$
\pi_{4} \mathbb{S}^{3} \rightarrow \pi_{3} \mathrm{~J}_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right) \rightarrow \pi_{2}\left(\mathbb{S}^{2} / 2\right) \rightarrow \text { bool }
$$

This is not what I actually did, but it's easier to explain. At least one very ugly thing does work in cubicaltt...
data $J_{2} \mathbb{S}^{2}$: Type where
base : $\mathrm{J}_{2} \mathbb{S}^{2}$
surf : $\Omega^{2}\left(J_{2} \mathbb{S}^{2}\right.$, base)
syll : (surf, surf)-extension
$\pi_{4} \mathbb{S}^{3} \not \neq 1$

Idea:

$$
\pi_{4} \mathbb{S}^{3} \rightarrow \pi_{3} \mathrm{~J}_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right) \rightarrow \pi_{2}\left(\mathbb{S}^{2} / 2\right) \rightarrow \text { bool }
$$

This is not what I actually did, but it's easier to explain. At least one very ugly thing does work in cubicaltt...
data $J_{2} \mathbb{S}^{2}$: Type where
base : $\mathrm{J}_{2} \mathbb{S}^{2}$
surf : $\Omega^{2}\left(J_{2} \mathbb{S}^{2}\right.$, base)
syll : (surf, surf)-extension
data $\mathrm{J}_{2} \mathbb{S}^{2}$: Type where
base : $\mathrm{J}_{2} \mathbb{S}^{2}$
surf : $\Omega^{2}\left(J_{2} \mathbb{S}^{2}\right.$, base)
syll : EH(surf, surf) = EH(surf, surf) ${ }^{\top}$
$\pi_{4} \mathbb{S}^{3} \not \equiv 1$

- Crux: $\pi_{3} J_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
$\pi_{4} \mathbb{S}^{3} \not \equiv 1$
- Crux: $\pi_{3} J_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
- Want: $\Omega J_{2} \mathbb{S}^{2} \rightarrow\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
$\pi_{4} \mathbb{S}^{3} \nsubseteq 1$
- Crux: $\pi_{3} J_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
- Want: $\Omega J_{2} \mathbb{S}^{2} \rightarrow\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
- Want: $\mathrm{J}_{2} \mathbb{S}^{2} \dot{\rightarrow}\left(\mathcal{U}, \mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$

$\pi_{4} \mathbb{S}^{3} \not \equiv 1$

- Crux: $\pi_{3} J_{2} \mathbb{S}^{2} \rightarrow \pi_{2}\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
- Want: $\Omega J_{2} \mathbb{S}^{2} \rightarrow\left(\mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
- Want: $J_{2} \mathbb{S}^{2} \rightarrow\left(\mathcal{U}, \mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$
- Want: $\alpha: \Omega^{2}\left(\mathcal{U}, \mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$ with a syllepsis $\mathrm{EH}(\alpha, \alpha)=\mathrm{EH}(\alpha, \alpha)^{\top}$
$\pi_{4} \mathbb{S}^{3} \not \equiv 1$
- $2+2$ conjecture:

$\pi_{4} \mathbb{S}^{3} \not \equiv 1$

- "Syllepsis in the universe" conjecture:
- "Syllepsis in the universe" conjecture:
- Given $a, b: \Pi_{x: A} \Omega(A, x)$, define $\alpha, \beta: \Omega^{2}(\mathcal{U}, A)$ by $\alpha:=\operatorname{global}(a), \beta:=\operatorname{global}(b)$.
- "Syllepsis in the universe" conjecture:
- Given $a, b: \Pi_{x: A} \Omega(A, x)$, define $\alpha, \beta: \Omega^{2}(\mathcal{U}, A)$ by $\alpha:=\operatorname{global}(a), \beta:=\operatorname{global}(b)$.
- Then, syllepses $\mathrm{EH}(\alpha, \beta)=\mathrm{EH}(\beta, \alpha)^{\top}$ are equivalent to $\Pi_{x: A \operatorname{apd}_{a}}(b(x))=\operatorname{apd}_{b}(a(x))^{\top}$.
- "Syllepsis in the universe" conjecture:
- Given $a, b: \Pi_{x: A} \Omega(A, x)$, define $\alpha, \beta: \Omega^{2}(\mathcal{U}, A)$ by $\alpha:=\operatorname{global}(a), \beta:=\operatorname{global}(b)$.
- Then, syllepses $\mathrm{EH}(\alpha, \beta)=\mathrm{EH}(\beta, \alpha)^{\top}$ are equivalent to $\Pi_{x: A \operatorname{apd}_{a}}(b(x))=\operatorname{apd}_{b}(a(x))^{\top}$.
- Maybe we can prove it using Baker's insight?
- If the "syllepsis in the universe" conjecture holds, we should be able to use it to construct the $\alpha: \Omega^{2}\left(\mathcal{U}, \mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$ with a syllepsis $\mathrm{EH}(\alpha, \alpha)=\mathrm{EH}(\alpha, \alpha)^{\top}$
- If the "syllepsis in the universe" conjecture holds, we should be able to use it to construct the $\alpha: \Omega^{2}\left(\mathcal{U}, \mathbb{S}^{1} \times\left\|\mathbb{S}^{2} / 2\right\|_{2}\right)$ with a syllepsis $\mathrm{EH}(\alpha, \alpha)=\mathrm{EH}(\alpha, \alpha)^{\top}$
- The resulting map $\pi_{4} \mathbb{S}^{3} \rightarrow$ bool should then compute nontrivially, at least in cubicaltt...

Etc

- $J \mathbb{S}^{1}$ as a "holographic" model of $\Omega \mathbb{S}^{2}$:
- link diagrams
- $\mathrm{J}_{3} \mathbb{S}^{1}$: Reidemeister III
- $J_{4} \mathbb{S}^{1}$: Zamolodchikov tetrahedron equation?
- generalized Pontryagin's theorem w/ "regular dual stratifications" per Christopher Dorn 2023, "An Invitation to Geometric Higher Categories" (???)
- Adams-Hilton construction (see Carlsson, Milgram 1995)
- for $\Omega J_{2} \mathbb{S}^{2}: J_{3} \mathbb{S}^{1}$ but we can change the signs of crossings
- Computational univalence allows computing the boundary of the Adams-Hilton cells, in theory???

Thanks!

References I

目 Guillaume Brunerie．
On the homotopy groups of spheres in homotopy type theory． PhD dissertation，Université Nice Sophia Antipolis， 2016. https：／／arxiv．org／abs／1606．05916．
围 Ulrik Buchholtz，J Daniel Christensen，Jarl G Taxerås Flaten， and Egbert Rijke．
Central h－spaces and banded types． arXiv preprint arXiv：2301．02636， 2023.
囯 Cyril Cohen，Thierry Coquand，Simon Huber，and Anders Mörtberg．
Cubical type theory：A constructive interpretation of the univalence axiom．
In Tarmo Uustalu，editor，21st International Conference on Types for Proofs and Programs，TYPES 2015，May 18－21，

References II

2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 5:1-5:34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
Eyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.
cubicaltt: Experimental implementation of Cubical Type Theory.
https://github.com/mortberg/cubicaltt, 2015.
围 Thierry Coquand, Simon Huber, and Anders Mörtberg.
On higher inductive types in cubical type theory.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 255-264, 2018.
國 Nicolai Kraus and Christian Sattler.
Higher homotopies in a hierarchy of univalent universes.
ACM Transactions on Computational Logic (TOCL),
16(2):1-12, 2015.

References III

围 Daniel R Licata and Guillaume Brunerie.
$\pi \mathrm{n}(\mathrm{s} \mathrm{n})$ in homotopy type theory.
In Certified Programs and Proofs: Third International
Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings 3, pages 1-16. Springer, 2013.
E Lev Pontryagin.
Classification of continuous maps of a complex into a sphere, Communication I.
Doklady Akademii Nauk SSSR, 19(3):147-149, 1938.

