
π4S3 ≇ 1 and another Brunerie number in CCHM

Tom Jack
pi3js2@proton.me

May 25, 2023

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Thanks

Thanks:

▶ organizers

▶ all who worked on HoTT

▶ implementors!

▶ Axel Ljungström for discussions and feedback

▶ Raymond Baker for discussions

▶ Marcin Jan Grzybowski for ongoing work on visualizations
https://github.com/marcinjangrzybowski/cubeViz2

https://github.com/marcinjangrzybowski/cubeViz2

Pictures from cubeViz2 (by Marcin Jan Grzybowski)

Figure: “Twisting” Hopf fibration (generator of π3S2)

Pictures from cubeViz2 (by Marcin Jan Grzybowski)

Figure: “Twisting” Hopf fibration again

Disclaimer

▶ All results in cubicaltt implementation of CCHM cubical
type theory (Cohen, Coquand, Huber, Mörtberg 2015 [3][4],
Coquand, Huber, Mörtberg 2018 [5]) unless otherwise noted
(Cohen, Coquand, Huber, Mörtberg 2015 [3], Coquand,
Huber, Mörtberg 2018 [5])

▶ No suspensions, joins, pushouts, colimits. . .
▶ e.g. Sn is the point and n-loop HIT

Disclaimer

▶ All results in cubicaltt implementation of CCHM cubical
type theory (Cohen, Coquand, Huber, Mörtberg 2015 [3][4],
Coquand, Huber, Mörtberg 2018 [5]) unless otherwise noted
(Cohen, Coquand, Huber, Mörtberg 2015 [3], Coquand,
Huber, Mörtberg 2018 [5])

▶ No suspensions, joins, pushouts, colimits. . .
▶ e.g. Sn is the point and n-loop HIT

Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl

refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)
▶ second half of [1]: n = ±2 (using cohomology, Gysin

sequence)

▶ “computing Brunerie’s number”

Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl

refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)
▶ second half of [1]: n = ±2 (using cohomology, Gysin

sequence)

▶ “computing Brunerie’s number”

Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl

refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)
▶ second half of [1]: n = ±2 (using cohomology, Gysin

sequence)

▶ “computing Brunerie’s number”

Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl

refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)

▶ second half of [1]: n = ±2 (using cohomology, Gysin
sequence)

▶ “computing Brunerie’s number”

Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl

refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)
▶ second half of [1]: n = ±2 (using cohomology, Gysin

sequence)

▶ “computing Brunerie’s number”

Context: Brunerie’s number

▶ Brunerie’s 2016 PhD thesis [1]

▶ Fourth homotopy group of the 3-sphere: π4S3

π4S3 ≡ ∥Ω4S3∥0 ≡

∥∥∥∥∥∥∥∥∥∥∥∥
refl =refl=refl=

(base=S3 base)
refl

refl

refl

∥∥∥∥∥∥∥∥∥∥∥∥
0

▶ first half of [1]: Σn:Z
(
π4S3 ∼= Z/nZ

)
▶ second half of [1]: n = ±2 (using cohomology, Gysin

sequence)

▶ “computing Brunerie’s number”

Preview

Three new proofs (in CCHM):

▶ Brunerie number is 2

▶ Brunerie number is even

▶ Brunerie number is not 1

Preview

Three new proofs (in CCHM):

▶ The Brunerie number is 2

▶ Brunerie number is even

▶ Brunerie number is not 1

Preview

Three new proofs (in CCHM):

▶ The Brunerie number is 2

▶ The Brunerie number is even

▶ Brunerie number is not 1

Preview

Three new proofs (in CCHM):

▶ The Brunerie number is 2

▶ The Brunerie number is even

▶ The Brunerie number is not 1

Preview

Three new proofs (in CCHM):

▶ The A Brunerie number is 2

▶ The A Brunerie number is even

▶ The A Brunerie number is not 1

Preview: The Brunerie number is 2

Computing “a” Brunerie number:

▶ in cubicaltt:

> :n n

NORMEVAL: pos (suc (suc zero))

Time: 0m0.017s

▶ and in Kovacs’ cctt:

Normal form of brunerie:

pos (suc (suc zero))

Normalized in 0.102955318s

Preview: The Brunerie number is 2

Computing “a” Brunerie number:

▶ in cubicaltt:

> :n n

NORMEVAL: pos (suc (suc zero))

Time: 0m0.017s

▶ and in Kovacs’ cctt:

Normal form of brunerie:

pos (suc (suc zero))

Normalized in 0.102955318s

Preview: The Brunerie number is 2

Computing “a” Brunerie number:

▶ in cubicaltt:

> :n n

NORMEVAL: pos (suc (suc zero))

Time: 0m0.017s

▶ and in Kovacs’ cctt:

Normal form of brunerie:

pos (suc (suc zero))

Normalized in 0.102955318s

Preview: The Brunerie number is 2

Computing “a” Brunerie number:

▶ in cubicaltt:

> :n n

NORMEVAL: pos (suc (suc zero))

Time: 0m0.017s

▶ and in Kovacs’ cctt:

Normal form of brunerie:

pos (suc (suc zero))

Normalized in 0.102955318s

Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ :

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)

Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ :

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)

Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ “Syllepsis is triviality of Whitehead products”:

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)

Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ “Syllepses are trivializations of Whitehead products”:

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)

Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ “Syllepses are trivializations of Whitehead products”:

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)

Preview: The Brunerie number is even

▶ “The Brunerie number is even”

Πp:Ω2A [p, p] =Ω3A ηp · ηp

(“geometric” proof in CCHM)

▶ “Syllepses are trivializations of Whitehead products”:

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

(similar “geometric” proof)

▶ short proof of syllepsis and “the generator of π4S3 has order
2”

▶ another proof of π4S3 ∼= Z/2Z? (as suggested by Snyder,
Ljungström)

Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3

Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3

Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3

Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3

Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3

Preview: The Brunerie number is not 1

▶ but we need to prove π4S3 is nontrivial. . .

▶ Ljungström proved in book HoTT that π4S3 ≤ Z/2Z using
only Freudenthal and Eckmann-Hilton, and asked for a
“standalone” proof of π4S3 ≇ 1

▶ “Direct” computational proof of π4S3 ≇ 1

computeΩ4S3 : Ω4S3 -> bool = ...

genPi4s3 : Ω4S3 = ...

conclusion

: Path Ω4S3 genPi4s3 refl ->

Path bool true false

= cong computeΩ4S3

Pontryagin’s Theorem

▶ Pontryagin, 1938 [8]

▶ First proof of π4S3 ∼= Z/2Z!

Pontryagin’s Theorem

▶ Pontryagin, 1938 [8]

▶ First proof of π4S3 ∼= Z/2Z!

The Brunerie number is 2

▶ Brunerie’s recipe: define an isomorphism π3S2 → Z, plug in
the Whitehead product [i2, i2] : π3S2.

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])

“(α, β)− extensions” are equivalent to trivializations of Whitehead
products

▶ “Cubical (α, β)-extensions” for α : ΩnA, β : ΩmA

▶ Top cell of S2 × S2 in cubical type theory:

λ i j a b. (surf i j, surf a b)

▶ Its type:

[i j a b] A [∂[i j] → (base , surf a b)

| ∂[a b] → (surf i j, base)]

▶ So we consider “cubical (α, β)-extensions”:

[i j a b] A [∂[i j] → β a b

| ∂[a b] → α i j]

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])

“(α, β)− extensions” are equivalent to trivializations of Whitehead
products

▶ “Cubical (α, β)-extensions” for α : ΩnA, β : ΩmA

▶ Top cell of S2 × S2 in cubical type theory:

λ i j a b. (surf i j, surf a b)

▶ Its type:

[i j a b] A [∂[i j] → (base , surf a b)

| ∂[a b] → (surf i j, base)]

▶ So we consider “cubical (α, β)-extensions”:

[i j a b] A [∂[i j] → β a b

| ∂[a b] → α i j]

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])

“(α, β)− extensions” are equivalent to trivializations of Whitehead
products

▶ “Cubical (α, β)-extensions” for α : ΩnA, β : ΩmA

▶ Top cell of S2 × S2 in cubical type theory:

λ i j a b. (surf i j, surf a b)

▶ Its type:

[i j a b] A [∂[i j] → (base , surf a b)

| ∂[a b] → (surf i j, base)]

▶ So we consider “cubical (α, β)-extensions”:

[i j a b] A [∂[i j] → β a b

| ∂[a b] → α i j]

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])

“(α, β)− extensions” are equivalent to trivializations of Whitehead
products

▶ “Cubical (α, β)-extensions” for α : ΩnA, β : ΩmA

▶ Top cell of S2 × S2 in cubical type theory:

λ i j a b. (surf i j, surf a b)

▶ Its type:

[i j a b] A [∂[i j] → (base , surf a b)

| ∂[a b] → (surf i j, base)]

▶ So we consider “cubical (α, β)-extensions”:

[i j a b] A [∂[i j] → β a b

| ∂[a b] → α i j]

Whitehead products

Theorem (Buchholtz, Christensen, Flaten, Rijke 2023 [2])

“(α, β)− extensions” are equivalent to trivializations of Whitehead
products

▶ “Cubical (α, β)-extensions” for α : ΩnA, β : ΩmA

▶ Top cell of S2 × S2 in cubical type theory:

λ i j a b. (surf i j, surf a b)

▶ Its type:

[i j a b] A [∂[i j] → (base , surf a b)

| ∂[a b] → (surf i j, base)]

▶ So we consider “cubical (α, β)-extensions”:

[i j a b] A [∂[i j] → β a b

| ∂[a b] → α i j]

Whitehead products

Figure: [α, β] : Ω3A (from Grzybowski’s cubeViz2)

Whitehead products

▶ So, for α, β : Ω2A,

▶ we have [α, β] : Ω3A

▶ and (α, β)-extension ≃ ([α, β] =Ω3A refl)

Whitehead products

▶ So, for α, β : Ω2A,

▶ we have [α, β] : Ω3A

▶ and (α, β)-extension ≃ ([α, β] =Ω3A refl)

Whitehead products

▶ So, for α, β : Ω2A,

▶ we have [α, β] : Ω3A

▶ and (α, β)-extension ≃ ([α, β] =Ω3A refl)

π3S2 ∼= Z

▶ James construction ΩS2 ≃ JS1

data JS1 : Type where

base : JS1
loops : Πx :JS1 Ω(JS1, x)

▶ Rijke, Cavallo

▶ recursion principle: recJS1 : A → (Πx :AΩ(A, x)) → JS1 → A

π3S2 ∼= Z

▶ James construction ΩS2 ≃ JS1

data JS1 : Type where

base : JS1
loops : Πx :JS1 Ω(JS1, x)

▶ Rijke, Cavallo

▶ recursion principle: recJS1 : A → (Πx :AΩ(A, x)) → JS1 → A

π3S2 ∼= Z

▶ James construction ΩS2 ≃ JS1

data JS1 : Type where

base : JS1
loops : Πx :JS1 Ω(JS1, x)

▶ Rijke, Cavallo

▶ recursion principle: recJS1 : A → (Πx :AΩ(A, x)) → JS1 → A

π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A

π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A

π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A

π3S2 ∼= Z

▶ Local-global looping (Kraus, Sattler 2015 [6]) aka “the key
maneuver [for πnSn]” (Licata, Brunerie 2013 [7])

global : (Πx :AΩ(A, x)) ≃ Ω2(U ,A)

▶ so, given h : Πx :AΩ(A, x), global(h) induces a fibration

S2 •→ (U,A)

▶ transport over this fibration gives a map ΩS2 → A → A

▶ recΩS2 : A → (Πx :AΩ(A, x)) → ΩS2 → A

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2

▶ You can compute that(
Πx :S1×∥S2∥2Ω

(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2

▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2

▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

π3S2 ∼= Z

▶ Now, let A := S1 × ∥S2∥2
▶ You can compute that(

Πx :S1×∥S2∥2Ω
(
S1 × ∥S2∥2, x

))
≃ (Z× S1 × Z)

▶ Define h as the preimage of (1, base, 1) (or directly define h
making the obvious choices)

▶ Then recΩS2((base, |base|), h) : ΩS2 → S1 × ∥S2∥2
▶ Take the second projection: ΩS2 → ∥S2∥2
▶ Take π2: π3S2 → π2S2

▶ Finish with π2S2 → Z similar to Licata, Brunerie 2013 [7]

▶ This is an isomorphism

▶ Plug in the Whitehead product [surf, surf], it computes to 2
(in cubicaltt or cctt)

The Brunerie number is even

Πp:Ω2A [p, p] =Ω3A ηp · ηp

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

The Brunerie number is even

Syllepses are trivializations of Whitehead products

Πp,q:Ω2A (EH(p, q) = EH(q, p)⊺) ≃ ([p, q] =Ω3A refl)

Syllepses are trivializations of Whitehead products

Syllepses are trivializations of Whitehead products

Syllepses are trivializations of Whitehead products

Figure: Syllepses

Syllepses are trivializations of Whitehead products

Figure: a funny tube

Syllepses are trivializations of Whitehead products

Figure: funny syllepses

Syllepses are trivializations of Whitehead products

Figure: trivializations of the Whitehead product!

π4S3 ≇ 1

Idea:

π4S3 → π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
→ π2(S2/2) → bool

This is not what I actually did, but it’s easier to explain. At least
one very ugly thing does work in cubicaltt. . .

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : (surf , surf)-extension

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : EH(surf , surf) = EH(surf , surf)⊺

π4S3 ≇ 1

Idea:

π4S3 → π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
→ π2(S2/2) → bool

This is not what I actually did, but it’s easier to explain. At least
one very ugly thing does work in cubicaltt. . .

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : (surf , surf)-extension

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : EH(surf , surf) = EH(surf , surf)⊺

π4S3 ≇ 1

Idea:

π4S3 → π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
→ π2(S2/2) → bool

This is not what I actually did, but it’s easier to explain. At least
one very ugly thing does work in cubicaltt. . .

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : (surf , surf)-extension

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : EH(surf , surf) = EH(surf , surf)⊺

π4S3 ≇ 1

Idea:

π4S3 → π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
→ π2(S2/2) → bool

This is not what I actually did, but it’s easier to explain. At least
one very ugly thing does work in cubicaltt. . .

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : (surf , surf)-extension

data J2S2 : Type where

base : J2S2
surf : Ω2(J2S2, base)

syll : EH(surf , surf) = EH(surf , surf)⊺

π4S3 ≇ 1

▶ Crux: π3J2S2 → π2
(
S1 × ∥S2/2∥2

)

▶ Want: ΩJ2S2 →
(
S1 × ∥S2/2∥2

)
▶ Want: J2S2

•→
(
U ,S1 × ∥S2/2∥2

)
▶ Want: α : Ω2(U ,S1 × ∥S2/2∥2) with a syllepsis

EH(α, α) = EH(α, α)⊺

π4S3 ≇ 1

▶ Crux: π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
▶ Want: ΩJ2S2 →

(
S1 × ∥S2/2∥2

)

▶ Want: J2S2
•→
(
U ,S1 × ∥S2/2∥2

)
▶ Want: α : Ω2(U ,S1 × ∥S2/2∥2) with a syllepsis

EH(α, α) = EH(α, α)⊺

π4S3 ≇ 1

▶ Crux: π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
▶ Want: ΩJ2S2 →

(
S1 × ∥S2/2∥2

)
▶ Want: J2S2

•→
(
U ,S1 × ∥S2/2∥2

)

▶ Want: α : Ω2(U ,S1 × ∥S2/2∥2) with a syllepsis
EH(α, α) = EH(α, α)⊺

π4S3 ≇ 1

▶ Crux: π3J2S2 → π2
(
S1 × ∥S2/2∥2

)
▶ Want: ΩJ2S2 →

(
S1 × ∥S2/2∥2

)
▶ Want: J2S2

•→
(
U ,S1 × ∥S2/2∥2

)
▶ Want: α : Ω2(U ,S1 × ∥S2/2∥2) with a syllepsis

EH(α, α) = EH(α, α)⊺

π4S3 ≇ 1

▶ 2+2 conjecture:

▶ Given a, b : Πx :AΩ(A, x), define α, β : Ω2(U ,A) by
α := global(a), β := global(b).

▶ Then, syllepses EH(α, β) = EH(β, α)⊺ are equivalent to
Πx :Aapda(b(x)) = apdb(a(x))

⊺.

▶ Maybe we can prove it using Baker’s insight?

π4S3 ≇ 1

▶ “Syllepsis in the universe” conjecture:

▶ Given a, b : Πx :AΩ(A, x), define α, β : Ω2(U ,A) by
α := global(a), β := global(b).

▶ Then, syllepses EH(α, β) = EH(β, α)⊺ are equivalent to
Πx :Aapda(b(x)) = apdb(a(x))

⊺.

▶ Maybe we can prove it using Baker’s insight?

π4S3 ≇ 1

▶ “Syllepsis in the universe” conjecture:

▶ Given a, b : Πx :AΩ(A, x), define α, β : Ω2(U ,A) by
α := global(a), β := global(b).

▶ Then, syllepses EH(α, β) = EH(β, α)⊺ are equivalent to
Πx :Aapda(b(x)) = apdb(a(x))

⊺.

▶ Maybe we can prove it using Baker’s insight?

π4S3 ≇ 1

▶ “Syllepsis in the universe” conjecture:

▶ Given a, b : Πx :AΩ(A, x), define α, β : Ω2(U ,A) by
α := global(a), β := global(b).

▶ Then, syllepses EH(α, β) = EH(β, α)⊺ are equivalent to
Πx :Aapda(b(x)) = apdb(a(x))

⊺.

▶ Maybe we can prove it using Baker’s insight?

π4S3 ≇ 1

▶ “Syllepsis in the universe” conjecture:

▶ Given a, b : Πx :AΩ(A, x), define α, β : Ω2(U ,A) by
α := global(a), β := global(b).

▶ Then, syllepses EH(α, β) = EH(β, α)⊺ are equivalent to
Πx :Aapda(b(x)) = apdb(a(x))

⊺.

▶ Maybe we can prove it using Baker’s insight?

π4S3 ≇ 1

▶ If the “syllepsis in the universe” conjecture holds, we should
be able to use it to construct the α : Ω2(U , S1 × ∥S2/2∥2)
with a syllepsis EH(α, α) = EH(α, α)⊺

▶ The resulting map π4S3 → bool should then compute
nontrivially, at least in cubicaltt. . .

π4S3 ≇ 1

▶ If the “syllepsis in the universe” conjecture holds, we should
be able to use it to construct the α : Ω2(U , S1 × ∥S2/2∥2)
with a syllepsis EH(α, α) = EH(α, α)⊺

▶ The resulting map π4S3 → bool should then compute
nontrivially, at least in cubicaltt. . .

Etc

▶ JS1 as a “holographic” model of ΩS2:
▶ link diagrams
▶ J3S1: Reidemeister III
▶ J4S1: Zamolodchikov tetrahedron equation?
▶ generalized Pontryagin’s theorem w/ “regular dual

stratifications” per Christopher Dorn 2023, “An Invitation to
Geometric Higher Categories” (???)

▶ Adams-Hilton construction (see Carlsson, Milgram 1995)
▶ for ΩJ2S2: J3S1 but we can change the signs of crossings
▶ Computational univalence allows computing the boundary of

the Adams-Hilton cells, in theory???

Thanks!

References I

Guillaume Brunerie.
On the homotopy groups of spheres in homotopy type theory.
PhD dissertation, Université Nice Sophia Antipolis, 2016.
https://arxiv.org/abs/1606.05916.

Ulrik Buchholtz, J Daniel Christensen, Jarl G Taxer̊as Flaten,
and Egbert Rijke.
Central h-spaces and banded types.
arXiv preprint arXiv:2301.02636, 2023.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders
Mörtberg.
Cubical type theory: A constructive interpretation of the
univalence axiom.
In Tarmo Uustalu, editor, 21st International Conference on
Types for Proofs and Programs, TYPES 2015, May 18-21,

https://arxiv.org/abs/1606.05916

References II

2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 5:1–5:34.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders
Mörtberg.
cubicaltt: Experimental implementation of Cubical Type
Theory.
https://github.com/mortberg/cubicaltt, 2015.

Thierry Coquand, Simon Huber, and Anders Mörtberg.
On higher inductive types in cubical type theory.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 255–264, 2018.

Nicolai Kraus and Christian Sattler.
Higher homotopies in a hierarchy of univalent universes.
ACM Transactions on Computational Logic (TOCL),
16(2):1–12, 2015.

https://github.com/mortberg/cubicaltt

References III

Daniel R Licata and Guillaume Brunerie.
π n (s n) in homotopy type theory.
In Certified Programs and Proofs: Third International
Conference, CPP 2013, Melbourne, VIC, Australia, December
11-13, 2013, Proceedings 3, pages 1–16. Springer, 2013.

Lev Pontryagin.
Classification of continuous maps of a complex into a sphere,
Communication I.
Doklady Akademii Nauk SSSR, 19(3):147–149, 1938.

