
Efficient Evaluation for Cubical Type Theories

András Kovács1

j.w.w. Evan Cavallo, Tom Jack, Anders Mörtberg

1Eötvös Loránd University

24 May 2023, 2nd Conference on Homotopy Type Theory



Overview

Efficiency issues in CTTs.

Previous approaches: optimizing cubical type formers / computation rules,
definitions within CTTs.

New in current work:

• Normalization-by-evaluation restructured on a basic level.

• Optimizing the case without fibrant free variables (“closed”).

WIP. We have a standalone implementation of a Cartesian CTT, plus:

• Large speedups in small benchmarks.
• Three Brunerie number definitions, all compute instantly.

• One of these is defined but can’t be computed in Agda.
• Another can be computed in cubicaltt but not in redtt.

Many more definitions to go!



Overview

Efficiency issues in CTTs.

Previous approaches: optimizing cubical type formers / computation rules,
definitions within CTTs.

New in current work:

• Normalization-by-evaluation restructured on a basic level.

• Optimizing the case without fibrant free variables (“closed”).

WIP. We have a standalone implementation of a Cartesian CTT, plus:

• Large speedups in small benchmarks.
• Three Brunerie number definitions, all compute instantly.

• One of these is defined but can’t be computed in Agda.
• Another can be computed in cubicaltt but not in redtt.

Many more definitions to go!



Overview

Efficiency issues in CTTs.

Previous approaches: optimizing cubical type formers / computation rules,
definitions within CTTs.

New in current work:

• Normalization-by-evaluation restructured on a basic level.

• Optimizing the case without fibrant free variables (“closed”).

WIP. We have a standalone implementation of a Cartesian CTT, plus:

• Large speedups in small benchmarks.
• Three Brunerie number definitions, all compute instantly.

• One of these is defined but can’t be computed in Agda.
• Another can be computed in cubicaltt but not in redtt.

Many more definitions to go!



Overview

Efficiency issues in CTTs.

Previous approaches: optimizing cubical type formers / computation rules,
definitions within CTTs.

New in current work:

• Normalization-by-evaluation restructured on a basic level.

• Optimizing the case without fibrant free variables (“closed”).

WIP. We have a standalone implementation of a Cartesian CTT, plus:

• Large speedups in small benchmarks.

• Three Brunerie number definitions, all compute instantly.
• One of these is defined but can’t be computed in Agda.
• Another can be computed in cubicaltt but not in redtt.

Many more definitions to go!



Overview

Efficiency issues in CTTs.

Previous approaches: optimizing cubical type formers / computation rules,
definitions within CTTs.

New in current work:

• Normalization-by-evaluation restructured on a basic level.

• Optimizing the case without fibrant free variables (“closed”).

WIP. We have a standalone implementation of a Cartesian CTT, plus:

• Large speedups in small benchmarks.
• Three Brunerie number definitions, all compute instantly.

• One of these is defined but can’t be computed in Agda.
• Another can be computed in cubicaltt but not in redtt.

Many more definitions to go!



Overview

Efficiency issues in CTTs.

Previous approaches: optimizing cubical type formers / computation rules,
definitions within CTTs.

New in current work:

• Normalization-by-evaluation restructured on a basic level.

• Optimizing the case without fibrant free variables (“closed”).

WIP. We have a standalone implementation of a Cartesian CTT, plus:

• Large speedups in small benchmarks.
• Three Brunerie number definitions, all compute instantly.

• One of these is defined but can’t be computed in Agda.
• Another can be computed in cubicaltt but not in redtt.

Many more definitions to go!



Outline

1 Normalization-by-evaluation for MLTT

2 NbE for CTT

3 Implementation & benchmarks

4 Conclusions



Outline

1 Normalization-by-evaluation for MLTT

2 NbE for CTT

3 Implementation & benchmarks

4 Conclusions



Substitution in MLTT

• The equational theory of MLTT refers to substitution.

• Intuitive definition: recursive replacement of variables with terms.

• Most implementations don’t use this.

(λ x y . big) t u ≡ ((λ y . big)[x 7→ t]) u ≡ big[x 7→ t][y 7→ u]

Solution
• Separate syntax (program code) from semantic values (runtime

objects).

• The syntax only supports evaluation into values.

• Values support efficient β-reduction, without using recursive
substitution.



Substitution in MLTT

• The equational theory of MLTT refers to substitution.

• Intuitive definition: recursive replacement of variables with terms.

• Most implementations don’t use this.

(λ x y . big) t u ≡ ((λ y . big)[x 7→ t]) u ≡ big[x 7→ t][y 7→ u]

Solution
• Separate syntax (program code) from semantic values (runtime

objects).

• The syntax only supports evaluation into values.

• Values support efficient β-reduction, without using recursive
substitution.



Substitution in MLTT

• The equational theory of MLTT refers to substitution.

• Intuitive definition: recursive replacement of variables with terms.

• Most implementations don’t use this.

(λ x y . big) t u ≡ ((λ y . big)[x 7→ t]) u ≡ big[x 7→ t][y 7→ u]

Solution
• Separate syntax (program code) from semantic values (runtime

objects).

• The syntax only supports evaluation into values.

• Values support efficient β-reduction, without using recursive
substitution.



Substitution in MLTT

• The equational theory of MLTT refers to substitution.

• Intuitive definition: recursive replacement of variables with terms.

• Most implementations don’t use this.

(λ x y . big) t u ≡ ((λ y . big)[x 7→ t]) u ≡ big[x 7→ t][y 7→ u]

Solution
• Separate syntax (program code) from semantic values (runtime

objects).

• The syntax only supports evaluation into values.

• Values support efficient β-reduction, without using recursive
substitution.



The separation of program code and runtime values is used in most
programming languages.

Normalization-by-evaluation extends it with

• Support for free variables in values (open evaluation).

• Mapping values back to syntax (“quotation”).

I focus on a practical flavor of NbE which has several differences to the
nicest formal NbE.



The separation of program code and runtime values is used in most
programming languages.

Normalization-by-evaluation extends it with

• Support for free variables in values (open evaluation).

• Mapping values back to syntax (“quotation”).

I focus on a practical flavor of NbE which has several differences to the
nicest formal NbE.



The separation of program code and runtime values is used in most
programming languages.

Normalization-by-evaluation extends it with

• Support for free variables in values (open evaluation).

• Mapping values back to syntax (“quotation”).

I focus on a practical flavor of NbE which has several differences to the
nicest formal NbE.



Informal NbE (1)

We omit types of things for brevity.

Syntax & values

Γ, ∆ : Con σ, δ : Env Γ∆

t, u : TmΓ v : Val Γ

σ, δ : Sub Γ∆

Operations

eval : Env Γ∆ → Tm∆ → Val Γ

quote : Val Γ → TmΓ

conv : Val Γ → Val Γ → Bool

Val Γ has the same structure as TmΓ, except each binder is replaced with
a closure. A closure stores a variable name x , an environment σ : Env Γ∆
and a t : Tm (∆, x).



Informal NbE (2)

eval : Env Γ∆ → Tm∆ → Val Γ

evalσ x :≡ σ x

evalσ (λ x . t) :≡ λVal (x , σ, t)

evalσ (t u) :≡ case evalσ t of

λVal (x , δ, t) → eval (δ, x 7→ evalσ u) t

v → v (evalσ u)

quote : Val Γ → TmΓ

quote x :≡ x

quote (λVal (x , δ, t)) :≡ λ x ′. quote (eval (δ, x 7→ x ′) t)

where x ′ is fresh in Γ

quote (t u) :≡ (quote t) (quote u)



Outline

1 Normalization-by-evaluation for MLTT

2 NbE for CTT

3 Implementation & benchmarks

4 Conclusions



Cubical NbE

In the following we consider Cartesian a CTT with coe, hcom, HITs and
Glue.

Terms are in triple contexts.

• t, u : Tm (Ψ;α; Γ)

• Ψ is a context of interval variables.

• α is a cofibration.

• Γ contains fibrant variables.

In analogy to MLTT NbE, cubical NbE should take a “semantic
interpretation” of the context as input.

• An interval substitution σ : SubIΨ0Ψ1.

• A cofibration implication f : α0 ⇒ α1[σ].

• A value environment δ : Env Γ0 (Γ1[σ, f ]).



Cubical NbE

In the following we consider Cartesian a CTT with coe, hcom, HITs and
Glue.

Terms are in triple contexts.

• t, u : Tm (Ψ;α; Γ)

• Ψ is a context of interval variables.

• α is a cofibration.

• Γ contains fibrant variables.

In analogy to MLTT NbE, cubical NbE should take a “semantic
interpretation” of the context as input.

• An interval substitution σ : SubIΨ0Ψ1.

• A cofibration implication f : α0 ⇒ α1[σ].

• A value environment δ : Env Γ0 (Γ1[σ, f ]).



Cubical NbE

In the following we consider Cartesian a CTT with coe, hcom, HITs and
Glue.

Terms are in triple contexts.

• t, u : Tm (Ψ;α; Γ)

• Ψ is a context of interval variables.

• α is a cofibration.

• Γ contains fibrant variables.

In analogy to MLTT NbE, cubical NbE should take a “semantic
interpretation” of the context as input.

• An interval substitution σ : SubIΨ0Ψ1.

• A cofibration implication f : α0 ⇒ α1[σ].

• A value environment δ : Env Γ0 (Γ1[σ, f ]).



Cubical NbE

eval :∀Ψ0 α0 Γ0Ψ1 α1 Γ1

(σ : SubIΨ0Ψ1)

(f : α0 ⇒ α1[σ])

(δ : Env Γ0 (Γ1[σ, f ])

→ Tm(Ψ1;α1; Γ1) → Val (Ψ0;α0; Γ0)

6 out of 10 inputs are computationally relevant in implementation:

• Ψ0 marks the next fresh interval variable.

• α0 is used for “forcing” (see later).

• Γ0 is passed to detect when there are no fibrant free variables.

• σ, δ and t are evidently required.



Cubical NbE

eval :∀Ψ0 α0 Γ0Ψ1 α1 Γ1

(σ : SubIΨ0Ψ1)

(f : α0 ⇒ α1[σ])

(δ : Env Γ0 (Γ1[σ, f ])

→ Tm(Ψ1;α1; Γ1) → Val (Ψ0;α0; Γ0)

6 out of 10 inputs are computationally relevant in implementation:

• Ψ0 marks the next fresh interval variable.

• α0 is used for “forcing” (see later).

• Γ0 is passed to detect when there are no fibrant free variables.

• σ, δ and t are evidently required.



Cubical NbE

eval :∀Ψ0 α0 Γ0Ψ1 α1 Γ1

(σ : SubIΨ0Ψ1)

(f : α0 ⇒ α1[σ])

(δ : Env Γ0 (Γ1[σ, f ])

→ Tm(Ψ1;α1; Γ1) → Val (Ψ0;α0; Γ0)

6 out of 10 inputs are computationally relevant in implementation:

• Ψ0 marks the next fresh interval variable.

• α0 is used for “forcing” (see later).

• Γ0 is passed to detect when there are no fibrant free variables.

• σ, δ and t are evidently required.



Cubical NbE

eval :∀Ψ0 α0 Γ0Ψ1 α1 Γ1

(σ : SubIΨ0Ψ1)

(f : α0 ⇒ α1[σ])

(δ : Env Γ0 (Γ1[σ, f ])

→ Tm(Ψ1;α1; Γ1) → Val (Ψ0;α0; Γ0)

6 out of 10 inputs are computationally relevant in implementation:

• Ψ0 marks the next fresh interval variable.

• α0 is used for “forcing” (see later).

• Γ0 is passed to detect when there are no fibrant free variables.

• σ, δ and t are evidently required.



Cubical NbE

eval :∀Ψ0 α0 Γ0Ψ1 α1 Γ1

(σ : SubIΨ0Ψ1)

(f : α0 ⇒ α1[σ])

(δ : Env Γ0 (Γ1[σ, f ])

→ Tm(Ψ1;α1; Γ1) → Val (Ψ0;α0; Γ0)

6 out of 10 inputs are computationally relevant in implementation:

• Ψ0 marks the next fresh interval variable.

• α0 is used for “forcing” (see later).

• Γ0 is passed to detect when there are no fibrant free variables.

• σ, δ and t are evidently required.



Trouble with interval substitution

MLTT NbE: Val substitution is inefficient.

–[–] : Val∆ → Env Γ∆ → Val Γ

Evaluation creates shared structure. Recursive substitution destroys all
such sharing by creating fresh copies of values.

Example for sharing:

let x := f y in (x , x , x , x , x)

Likewise: recursive interval substitution destroys all structure sharing.

• MLTT NbE: no need for value substitution.

• CTT NbE: must support interval substitution on values.



Trouble with interval substitution

MLTT NbE: Val substitution is inefficient.

–[–] : Val∆ → Env Γ∆ → Val Γ

Evaluation creates shared structure. Recursive substitution destroys all
such sharing by creating fresh copies of values.

Example for sharing:

let x := f y in (x , x , x , x , x)

Likewise: recursive interval substitution destroys all structure sharing.

• MLTT NbE: no need for value substitution.

• CTT NbE: must support interval substitution on values.



Cubical NbE

Two extra operations.

1. Interval substitution

–[–] : Val (Ψ0;α; Γ) → (σ : SubIΨ1Ψ0) → Val (Ψ1;α[σ]; Γ[σ])

Has trivial operational cost, only stores an explicit substitution.

2. Forcing

force : Val (Ψ;α; Γ) → Val (Ψ;α; Γ)

Computes delayed substitutions sufficiently to yield a head normal value.
See also: notion of forcing in lazy evaluation.



Cubical NbE

Two extra operations.

1. Interval substitution

–[–] : Val (Ψ0;α; Γ) → (σ : SubIΨ1Ψ0) → Val (Ψ1;α[σ]; Γ[σ])

Has trivial operational cost, only stores an explicit substitution.

2. Forcing

force : Val (Ψ;α; Γ) → Val (Ψ;α; Γ)

Computes delayed substitutions sufficiently to yield a head normal value.
See also: notion of forcing in lazy evaluation.



Stability annotations

Forcing has trivial cost on canonical values, for example:

force (((x : A) → B)[σ]) ≡ ((x : A[σ]) → B[σ, x 7→ x ])

But it may have arbitrary cost on neutral values.

force ((coeNe r r
′ (i .A) t)[σ]) ≡

force (coe (r [σ]) (r ′[σ])(i .A[σ]) (t[σ]))

Neutrals are not necessarily stable under substitution!

Angiuli & Sterling1: let’s annotate neutrals with stability information.

Our implementation:

• Neutrals are annotated with blocking sets of interval variables.

• Only an approximation of precise predicates!

• We can quickly see if a substitution has no action on a neutral.

1Normalization for Cubical Type Theory, LICS 2021



Stability annotations

Forcing has trivial cost on canonical values, for example:

force (((x : A) → B)[σ]) ≡ ((x : A[σ]) → B[σ, x 7→ x ])

But it may have arbitrary cost on neutral values.

force ((coeNe r r
′ (i .A) t)[σ]) ≡

force (coe (r [σ]) (r ′[σ])(i .A[σ]) (t[σ]))

Neutrals are not necessarily stable under substitution!

Angiuli & Sterling1: let’s annotate neutrals with stability information.

Our implementation:

• Neutrals are annotated with blocking sets of interval variables.

• Only an approximation of precise predicates!

• We can quickly see if a substitution has no action on a neutral.

1Normalization for Cubical Type Theory, LICS 2021



Stability annotations

Forcing has trivial cost on canonical values, for example:

force (((x : A) → B)[σ]) ≡ ((x : A[σ]) → B[σ, x 7→ x ])

But it may have arbitrary cost on neutral values.

force ((coeNe r r
′ (i .A) t)[σ]) ≡

force (coe (r [σ]) (r ′[σ])(i .A[σ]) (t[σ]))

Neutrals are not necessarily stable under substitution!

Angiuli & Sterling1: let’s annotate neutrals with stability information.

Our implementation:

• Neutrals are annotated with blocking sets of interval variables.

• Only an approximation of precise predicates!

• We can quickly see if a substitution has no action on a neutral.

1Normalization for Cubical Type Theory, LICS 2021



Stability annotations

Forcing has trivial cost on canonical values, for example:

force (((x : A) → B)[σ]) ≡ ((x : A[σ]) → B[σ, x 7→ x ])

But it may have arbitrary cost on neutral values.

force ((coeNe r r
′ (i .A) t)[σ]) ≡

force (coe (r [σ]) (r ′[σ])(i .A[σ]) (t[σ]))

Neutrals are not necessarily stable under substitution!

Angiuli & Sterling1: let’s annotate neutrals with stability information.

Our implementation:

• Neutrals are annotated with blocking sets of interval variables.

• Only an approximation of precise predicates!

• We can quickly see if a substitution has no action on a neutral.

1Normalization for Cubical Type Theory, LICS 2021



Stability annotations

Forcing has trivial cost on canonical values, for example:

force (((x : A) → B)[σ]) ≡ ((x : A[σ]) → B[σ, x 7→ x ])

But it may have arbitrary cost on neutral values.

force ((coeNe r r
′ (i .A) t)[σ]) ≡

force (coe (r [σ]) (r ′[σ])(i .A[σ]) (t[σ]))

Neutrals are not necessarily stable under substitution!

Angiuli & Sterling1: let’s annotate neutrals with stability information.

Our implementation:

• Neutrals are annotated with blocking sets of interval variables.

• Only an approximation of precise predicates!

• We can quickly see if a substitution has no action on a neutral.

1Normalization for Cubical Type Theory, LICS 2021



Forcing w.r.t. cofibrations

Forcing doesn’t just compute substitutions, but cofibration weakening as
well.

let x := coe i j (k.A) y in

hcom0 1 [i = j 7→ x ] z

x is first evaluated under some cofibration α, but then mentioned under
α ∧ i = j .

Cofibration weakening is implicit. Any value can be “outdated” w.r.t. the
current cofibration.

Contrast MLTT NbE: weakening of values has no cost!
(if we use a suitable variable representation in values, e.g. De Bruijn levels)



Forcing w.r.t. cofibrations

Forcing doesn’t just compute substitutions, but cofibration weakening as
well.

let x := coe i j (k.A) y in

hcom0 1 [i = j 7→ x ] z

x is first evaluated under some cofibration α, but then mentioned under
α ∧ i = j .

Cofibration weakening is implicit. Any value can be “outdated” w.r.t. the
current cofibration.

Contrast MLTT NbE: weakening of values has no cost!
(if we use a suitable variable representation in values, e.g. De Bruijn levels)



Forcing w.r.t. cofibrations

Forcing doesn’t just compute substitutions, but cofibration weakening as
well.

let x := coe i j (k.A) y in

hcom0 1 [i = j 7→ x ] z

x is first evaluated under some cofibration α, but then mentioned under
α ∧ i = j .

Cofibration weakening is implicit. Any value can be “outdated” w.r.t. the
current cofibration.

Contrast MLTT NbE: weakening of values has no cost!
(if we use a suitable variable representation in values, e.g. De Bruijn levels)



Closures vs. binders

We can’t represent all interval binders with closures!

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

Closures are “extensional”, we can’t efficiently inspect their bodies.

• coe, hcom: we need to peek under interval binders, so we use explicit
weakenings as semantic binders.

• Other cases (e.g. dependent paths, path abstractions): we use
closures.



Closures vs. binders

We can’t represent all interval binders with closures!

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

Closures are “extensional”, we can’t efficiently inspect their bodies.

• coe, hcom: we need to peek under interval binders, so we use explicit
weakenings as semantic binders.

• Other cases (e.g. dependent paths, path abstractions): we use
closures.



Closures vs. binders

We can’t represent all interval binders with closures!

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

Closures are “extensional”, we can’t efficiently inspect their bodies.

• coe, hcom: we need to peek under interval binders, so we use explicit
weakenings as semantic binders.

• Other cases (e.g. dependent paths, path abstractions): we use
closures.



Closures vs. binders

We can’t represent all interval binders with closures!

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

Closures are “extensional”, we can’t efficiently inspect their bodies.

• coe, hcom: we need to peek under interval binders, so we use explicit
weakenings as semantic binders.

• Other cases (e.g. dependent paths, path abstractions): we use
closures.



Defunctionalization (1)

We actually need many different kinds of closures. Again consider:

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

The λ x . abstraction has to act on semantic values.

Previously: a closure (x , σ, t) can be applied to some value u by
computing eval (σ, x 7→ u) t.

We add a new closure, storing (r , r ′, A, B, f ), which can be applied to
some value x by computing coe r r ′ (i .B) (f (coe r ′ r (i .A) x)).

The semantic type of closures is the sum type of all such closures. The
generic application function is a big case split on them.

Defunctionalization: representing higher-order functions with first-order
data and a first-order generic application.



Defunctionalization (1)

We actually need many different kinds of closures. Again consider:

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

The λ x . abstraction has to act on semantic values.

Previously: a closure (x , σ, t) can be applied to some value u by
computing eval (σ, x 7→ u) t.

We add a new closure, storing (r , r ′, A, B, f ), which can be applied to
some value x by computing coe r r ′ (i .B) (f (coe r ′ r (i .A) x)).

The semantic type of closures is the sum type of all such closures. The
generic application function is a big case split on them.

Defunctionalization: representing higher-order functions with first-order
data and a first-order generic application.



Defunctionalization (1)

We actually need many different kinds of closures. Again consider:

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

The λ x . abstraction has to act on semantic values.

Previously: a closure (x , σ, t) can be applied to some value u by
computing eval (σ, x 7→ u) t.

We add a new closure, storing (r , r ′, A, B, f ), which can be applied to
some value x by computing coe r r ′ (i .B) (f (coe r ′ r (i .A) x)).

The semantic type of closures is the sum type of all such closures. The
generic application function is a big case split on them.

Defunctionalization: representing higher-order functions with first-order
data and a first-order generic application.



Defunctionalization (1)

We actually need many different kinds of closures. Again consider:

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

The λ x . abstraction has to act on semantic values.

Previously: a closure (x , σ, t) can be applied to some value u by
computing eval (σ, x 7→ u) t.

We add a new closure, storing (r , r ′, A, B, f ), which can be applied to
some value x by computing coe r r ′ (i .B) (f (coe r ′ r (i .A) x)).

The semantic type of closures is the sum type of all such closures. The
generic application function is a big case split on them.

Defunctionalization: representing higher-order functions with first-order
data and a first-order generic application.



Defunctionalization (1)

We actually need many different kinds of closures. Again consider:

coe r r ′ (i .A → B) f ≡ λ x . coe r r ′ (i .B) (f (coe r ′ r (i .A) x))

The λ x . abstraction has to act on semantic values.

Previously: a closure (x , σ, t) can be applied to some value u by
computing eval (σ, x 7→ u) t.

We add a new closure, storing (r , r ′, A, B, f ), which can be applied to
some value x by computing coe r r ′ (i .B) (f (coe r ′ r (i .A) x)).

The semantic type of closures is the sum type of all such closures. The
generic application function is a big case split on them.

Defunctionalization: representing higher-order functions with first-order
data and a first-order generic application.



Defunctionalization (2)

Interval substitution has action on closures:

(evalcl(x , δ, t))[σ] ≡ evalcl(x , δ[σ], t)

(coeFuncl(r , r
′, A, B, f ))[σ] ≡ coeFuncl(r [σ], r

′[σ], A[σ], B[σ], f [σ])

Fun fact: we have 37 different closures in the implementation. It’s a bit
tedious!

Ideally, we’d just write higher-order binders in semantics, and
automatically generate for each one:

1 The closure data definition.

2 The generic application definition.

3 The definition of the action of substitution.

Seems like a major challenge. In the long term we’d want some logical
framework for implementing (C)TT evaluation.



Defunctionalization (2)

Interval substitution has action on closures:

(evalcl(x , δ, t))[σ] ≡ evalcl(x , δ[σ], t)

(coeFuncl(r , r
′, A, B, f ))[σ] ≡ coeFuncl(r [σ], r

′[σ], A[σ], B[σ], f [σ])

Fun fact: we have 37 different closures in the implementation. It’s a bit
tedious!

Ideally, we’d just write higher-order binders in semantics, and
automatically generate for each one:

1 The closure data definition.

2 The generic application definition.

3 The definition of the action of substitution.

Seems like a major challenge. In the long term we’d want some logical
framework for implementing (C)TT evaluation.



Defunctionalization (2)

Interval substitution has action on closures:

(evalcl(x , δ, t))[σ] ≡ evalcl(x , δ[σ], t)

(coeFuncl(r , r
′, A, B, f ))[σ] ≡ coeFuncl(r [σ], r

′[σ], A[σ], B[σ], f [σ])

Fun fact: we have 37 different closures in the implementation. It’s a bit
tedious!

Ideally, we’d just write higher-order binders in semantics, and
automatically generate for each one:

1 The closure data definition.

2 The generic application definition.

3 The definition of the action of substitution.

Seems like a major challenge. In the long term we’d want some logical
framework for implementing (C)TT evaluation.



Defunctionalization (2)

Interval substitution has action on closures:

(evalcl(x , δ, t))[σ] ≡ evalcl(x , δ[σ], t)

(coeFuncl(r , r
′, A, B, f ))[σ] ≡ coeFuncl(r [σ], r

′[σ], A[σ], B[σ], f [σ])

Fun fact: we have 37 different closures in the implementation. It’s a bit
tedious!

Ideally, we’d just write higher-order binders in semantics, and
automatically generate for each one:

1 The closure data definition.

2 The generic application definition.

3 The definition of the action of substitution.

Seems like a major challenge. In the long term we’d want some logical
framework for implementing (C)TT evaluation.



Reaping some benefits

Assumption: bounded interval scopes. When discussing costs &
complexities in the following, we assume that interval contexts are small
and bounded during evaluation.

1 There is exactly one computation rule in our CTT which performs
arbitrary interval substitution: coercion over Glue.

2 All other substitutions are weakenings.

3 Neutrals are stable under weakening & forcing by weakening has
trivial cost.

If we don’t coerce along Glue, interval substitution only has linear runtime
overhead.



Reaping some benefits

Assumption: bounded interval scopes. When discussing costs &
complexities in the following, we assume that interval contexts are small
and bounded during evaluation.

1 There is exactly one computation rule in our CTT which performs
arbitrary interval substitution: coercion over Glue.

2 All other substitutions are weakenings.

3 Neutrals are stable under weakening & forcing by weakening has
trivial cost.

If we don’t coerce along Glue, interval substitution only has linear runtime
overhead.



Reaping some benefits

Assumption: bounded interval scopes. When discussing costs &
complexities in the following, we assume that interval contexts are small
and bounded during evaluation.

1 There is exactly one computation rule in our CTT which performs
arbitrary interval substitution: coercion over Glue.

2 All other substitutions are weakenings.

3 Neutrals are stable under weakening & forcing by weakening has
trivial cost.

If we don’t coerce along Glue, interval substitution only has linear runtime
overhead.



Reaping some benefits

Assumption: bounded interval scopes. When discussing costs &
complexities in the following, we assume that interval contexts are small
and bounded during evaluation.

1 There is exactly one computation rule in our CTT which performs
arbitrary interval substitution: coercion over Glue.

2 All other substitutions are weakenings.

3 Neutrals are stable under weakening & forcing by weakening has
trivial cost.

If we don’t coerce along Glue, interval substitution only has linear runtime
overhead.



Reaping some benefits

Assumption: bounded interval scopes. When discussing costs &
complexities in the following, we assume that interval contexts are small
and bounded during evaluation.

1 There is exactly one computation rule in our CTT which performs
arbitrary interval substitution: coercion over Glue.

2 All other substitutions are weakenings.

3 Neutrals are stable under weakening & forcing by weakening has
trivial cost.

If we don’t coerce along Glue, interval substitution only has linear runtime
overhead.



Exploiting CTT canonicity (1)

Back to MLTT for a bit:

• Consider closed evaluation of if−then−else.

• The Bool scrutinee is true or false, so we have to evaluate just one of
the branches.

• In open evaluation: if the scrutinee is neutral, we may have to
evaluate both branches.

In CTT:

• hcom is kind of a branching structure.

• There are computation rules in closed evaluation which evaluate all
components (“branches”) of a system!

• This is bad.



Exploiting CTT canonicity (1)

Back to MLTT for a bit:

• Consider closed evaluation of if−then−else.

• The Bool scrutinee is true or false, so we have to evaluate just one of
the branches.

• In open evaluation: if the scrutinee is neutral, we may have to
evaluate both branches.

In CTT:

• hcom is kind of a branching structure.

• There are computation rules in closed evaluation which evaluate all
components (“branches”) of a system!

• This is bad.



Exploiting CTT canonicity (1)

Back to MLTT for a bit:

• Consider closed evaluation of if−then−else.

• The Bool scrutinee is true or false, so we have to evaluate just one of
the branches.

• In open evaluation: if the scrutinee is neutral, we may have to
evaluate both branches.

In CTT:

• hcom is kind of a branching structure.

• There are computation rules in closed evaluation which evaluate all
components (“branches”) of a system!

• This is bad.



Exploiting CTT canonicity (1)

Back to MLTT for a bit:

• Consider closed evaluation of if−then−else.

• The Bool scrutinee is true or false, so we have to evaluate just one of
the branches.

• In open evaluation: if the scrutinee is neutral, we may have to
evaluate both branches.

In CTT:

• hcom is kind of a branching structure.

• There are computation rules in closed evaluation which evaluate all
components (“branches”) of a system!

• This is bad.



Exploiting CTT canonicity (2)

The offending rules are precisely the hcom rules for strict inductive types.

hcom r r ′ [α 7→ i . suc t] (suc b) ≡ suc (hcom r r ′ [α 7→ i . t] b)

If there are no fibrant free variables, if we have:

hcom r r ′ [α 7→ i . t] (suc b) : N

Then canonicity implies that t ≡ suc t ′ for some t ′.

So we can use this rule instead2:

hcom r r ′ [α 7→ i . t] (suc b) ≡ suc (hcom r r ′ [α 7→ i . pred t] b)

pred is a metatheoretic function which unwraps a suc.

2Used in Simon Huber: Cubical Interpretations of Type Theory, sec. 7.2



Exploiting CTT canonicity (2)

The offending rules are precisely the hcom rules for strict inductive types.

hcom r r ′ [α 7→ i . suc t] (suc b) ≡ suc (hcom r r ′ [α 7→ i . t] b)

If there are no fibrant free variables, if we have:

hcom r r ′ [α 7→ i . t] (suc b) : N

Then canonicity implies that t ≡ suc t ′ for some t ′.

So we can use this rule instead2:

hcom r r ′ [α 7→ i . t] (suc b) ≡ suc (hcom r r ′ [α 7→ i . pred t] b)

pred is a metatheoretic function which unwraps a suc.

2Used in Simon Huber: Cubical Interpretations of Type Theory, sec. 7.2



Exploiting CTT canonicity (2)

The offending rules are precisely the hcom rules for strict inductive types.

hcom r r ′ [α 7→ i . suc t] (suc b) ≡ suc (hcom r r ′ [α 7→ i . t] b)

If there are no fibrant free variables, if we have:

hcom r r ′ [α 7→ i . t] (suc b) : N

Then canonicity implies that t ≡ suc t ′ for some t ′.

So we can use this rule instead2:

hcom r r ′ [α 7→ i . t] (suc b) ≡ suc (hcom r r ′ [α 7→ i . pred t] b)

pred is a metatheoretic function which unwraps a suc.

2Used in Simon Huber: Cubical Interpretations of Type Theory, sec. 7.2



Exploiting CTT canonicity (3)

The pred rule can be generalized for arbitrary strict inductive types.

In a purely cubical context (no fibrant variables), no computation rule
evaluates all components of a system.



Exploiting CTT canonicity (3)

The pred rule can be generalized for arbitrary strict inductive types.

In a purely cubical context (no fibrant variables), no computation rule
evaluates all components of a system.



Outline

1 Normalization-by-evaluation for MLTT

2 NbE for CTT

3 Implementation & benchmarks

4 Conclusions



Implementation

• https://github.com/AndrasKovacs/cctt

• It’s called cctt because it’s a Cartesian CTT.

• ∼5000 lines of Haskell.

• Features: path types, line types, bidirectional type inference, strict
inductive types, parameterized HITs.

• Design is a mixture of AFH, ABCFHL and cubicaltt.
• Systems and ghcom from AFH.
• Glue type from ABCFHL.
• HIT implementation from cubicaltt.

• No universe checking (type-in-type), no termination checking.

• At least 100 times faster type checking than Agda.

https://github.com/AndrasKovacs/cctt


Transporting along Bool negation

Convert Bool negation to a path, compose it with itself N times, transport
true over it. Times in seconds.

N Agda cctt Ratio

100 0.29 0.00041 707

250 0.97 0.00095 1021

500 3.36 0.0019 1768

750 7.07 0.0030 2356

1000 12.57 0.0047 2674

106 N/A 5.65 N/A



Computing winding numbers

Take an integer, convert it to a path in base =S1 base, then convert back.
Times in seconds.

N Agda cctt Ratio

100 0.34 0.0005 680

250 1.89 0.0012 1575

500 5.643 0.0023 2453

750 10.37 0.0043 2411

1000 18.52 0.0059 3138

106 N/A 7.98 N/A



Brunerie and the issue with hcom-s (1)

We tried the new Brunerie number definition by Ljungström and
Mörtberg3.

Problem: we did not have ghcom at that point. We had two extra empty
hcom-s for each coercion along univalence.

This caused a mismatch with cubical Agda, the following did not
typecheck:

3Formalizing π4(S3) ∼= Z/2Z and Computing a Brunerie Number in Cubical Agda



Brunerie and the issue with hcom-s (2)

Fortunately, I was able to manually insert 18 or 36 Glue types at several
places to make it well-typed. One such place:

• The number computes to -2 in ∼50 seconds.

• Computes 60 million hcom-s in total.

• Just before the last g10 step, we have the set truncation of -2
wrapped in half million empty hcom-s.

“Who needs ghcom if we can easily compute a few million empty hcom-s?”



Brunerie and the issue with hcom-s (2)

Fortunately, I was able to manually insert 18 or 36 Glue types at several
places to make it well-typed. One such place:

• The number computes to -2 in ∼50 seconds.

• Computes 60 million hcom-s in total.

• Just before the last g10 step, we have the set truncation of -2
wrapped in half million empty hcom-s.

“Who needs ghcom if we can easily compute a few million empty hcom-s?”



Brunerie and the issue with hcom-s (2)

Fortunately, I was able to manually insert 18 or 36 Glue types at several
places to make it well-typed. One such place:

• The number computes to -2 in ∼50 seconds.

• Computes 60 million hcom-s in total.

• Just before the last g10 step, we have the set truncation of -2
wrapped in half million empty hcom-s.

“Who needs ghcom if we can easily compute a few million empty hcom-s?”



More Brunerie numbers

With the addition of ghcom:

• The Agda-computable Brunerie number definition runs in 0.5 ms,
computing a mere 700 hcom-s (∼1 million times speedup!).

• An Agda-incomputable variant of the definition runs in 20 ms.
Without ghcom it did not compute.

• Tom Jack’s Brunerie number computes in 0.2 seconds.
• It does not compute in redtt.
• It gets stuck in Agda (an apparent bug!).
• It computes instantly in cubicaltt.

To do:

• Two more variants from Anders & Axel’s paper (β1 and β2).

• The infamous older cubicaltt definitions.



More Brunerie numbers

With the addition of ghcom:

• The Agda-computable Brunerie number definition runs in 0.5 ms,
computing a mere 700 hcom-s (∼1 million times speedup!).

• An Agda-incomputable variant of the definition runs in 20 ms.
Without ghcom it did not compute.

• Tom Jack’s Brunerie number computes in 0.2 seconds.
• It does not compute in redtt.
• It gets stuck in Agda (an apparent bug!).
• It computes instantly in cubicaltt.

To do:

• Two more variants from Anders & Axel’s paper (β1 and β2).

• The infamous older cubicaltt definitions.



More Brunerie numbers

With the addition of ghcom:

• The Agda-computable Brunerie number definition runs in 0.5 ms,
computing a mere 700 hcom-s (∼1 million times speedup!).

• An Agda-incomputable variant of the definition runs in 20 ms.
Without ghcom it did not compute.

• Tom Jack’s Brunerie number computes in 0.2 seconds.
• It does not compute in redtt.
• It gets stuck in Agda (an apparent bug!).
• It computes instantly in cubicaltt.

To do:

• Two more variants from Anders & Axel’s paper (β1 and β2).

• The infamous older cubicaltt definitions.



More Brunerie numbers

With the addition of ghcom:

• The Agda-computable Brunerie number definition runs in 0.5 ms,
computing a mere 700 hcom-s (∼1 million times speedup!).

• An Agda-incomputable variant of the definition runs in 20 ms.
Without ghcom it did not compute.

• Tom Jack’s Brunerie number computes in 0.2 seconds.
• It does not compute in redtt.
• It gets stuck in Agda (an apparent bug!).
• It computes instantly in cubicaltt.

To do:

• Two more variants from Anders & Axel’s paper (β1 and β2).

• The infamous older cubicaltt definitions.



Speedup from De Morgan intervals?

Tom Jack has a π3(S2) generator definition:
• Computes instantly in cubicaltt (De Morgan CTT).

• Computes in 3 minutes in cctt, in 96 million hcom-s.
(Fun fact: without ghcom, it computes in 20 minutes, in 9.5 billion
hcom-s.)

The difference appears to be the usage of interval connections.

Could we add some connections to Cartesian CTT?

Or: implement a De Morgan CTT with our basic optimizations.



Speedup from De Morgan intervals?

Tom Jack has a π3(S2) generator definition:
• Computes instantly in cubicaltt (De Morgan CTT).

• Computes in 3 minutes in cctt, in 96 million hcom-s.
(Fun fact: without ghcom, it computes in 20 minutes, in 9.5 billion
hcom-s.)

The difference appears to be the usage of interval connections.

Could we add some connections to Cartesian CTT?

Or: implement a De Morgan CTT with our basic optimizations.



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Scope size issues

How should we associate iterated path composition, e.g. p � q � r?

Depending on the definition, one version will be linear time and the other
will be usually quadratic.

The quadratic version iterates the nesting of systems, introducing
unbounded interval scopes!

No pathological scopes so far in examples. Computing the Brunerie
numbers needs at most 15 interval variables.

Tom’s π3(S2) generator needs 110 variables.

Should we improve scope asymptotics, or just tell users to not blow up
scopes?



Outline

1 Normalization-by-evaluation for MLTT

2 NbE for CTT

3 Implementation & benchmarks

4 Conclusions



Conclusions & future work

We need more definitions!

We need more tracing, statistics, and better ways to isolate certain
optimizations.

Multiple asymptotic “bombs”, ideally we want to defuse all of them.

Unclear what computational cost is essential in Brunerie number
definitions. So far everything runs instantly in some system.

Can we add this to Agda? Yes. Some things are harder. We’d need a
complete rewrite of the Agda Abstract Machine.



Conclusions & future work

We need more definitions!

We need more tracing, statistics, and better ways to isolate certain
optimizations.

Multiple asymptotic “bombs”, ideally we want to defuse all of them.

Unclear what computational cost is essential in Brunerie number
definitions. So far everything runs instantly in some system.

Can we add this to Agda? Yes. Some things are harder. We’d need a
complete rewrite of the Agda Abstract Machine.



Conclusions & future work

We need more definitions!

We need more tracing, statistics, and better ways to isolate certain
optimizations.

Multiple asymptotic “bombs”, ideally we want to defuse all of them.

Unclear what computational cost is essential in Brunerie number
definitions. So far everything runs instantly in some system.

Can we add this to Agda? Yes. Some things are harder. We’d need a
complete rewrite of the Agda Abstract Machine.



Conclusions & future work

We need more definitions!

We need more tracing, statistics, and better ways to isolate certain
optimizations.

Multiple asymptotic “bombs”, ideally we want to defuse all of them.

Unclear what computational cost is essential in Brunerie number
definitions. So far everything runs instantly in some system.

Can we add this to Agda? Yes. Some things are harder. We’d need a
complete rewrite of the Agda Abstract Machine.



Conclusions & future work

We need more definitions!

We need more tracing, statistics, and better ways to isolate certain
optimizations.

Multiple asymptotic “bombs”, ideally we want to defuse all of them.

Unclear what computational cost is essential in Brunerie number
definitions. So far everything runs instantly in some system.

Can we add this to Agda? Yes. Some things are harder. We’d need a
complete rewrite of the Agda Abstract Machine.


	Normalization-by-evaluation for MLTT
	NbE for CTT
	Implementation & benchmarks
	Conclusions

