Hilton-Milnor's theorem in ∞ -topoi.

2nd International conference on HoTT Carnegie Mellon University

Samuel Lavenir

EPFL

May 25, 2023

	•		Ξ.	$\mathcal{D}\mathcal{Q}\mathcal{O}$
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023		1/23

Hilton-Milnor's theorem

- First proved by P. Hilton (1955) when $X_i = S^{k_i}$.
- Generalized by J. Milnor (1956) to suspension spaces.

Theorem (HM)

Let X_1, \dots, X_n be pointed <u>connected</u> spaces. There is a natural homotopy equivalence

$$\Omega\Sigma(X_1\vee\cdots\vee X_n)\simeq\prod_{w\in \text{Lie}_n}^{\prime}\Omega\Sigma w(X_1,\cdots,X_n).$$

• \prod' denotes a *weak* product.

```
2 Lie<sub>n</sub> is a choice of \mathbb{Z}-basis for the free Lie ring Lie(x_1, \dots, x_n).
```


Motivations and objectives

Goals of this project:

- Formulate and prove the theorem in ∞ -categories other than S.
- Prove the theorem synthetically (without using any specific model of (∞, 1)-categories).

There has been a lot of work along similar lines !

- Delooping machine, May's recognition theorem (Lurie)
- Blackers-Massey theorem (Anel-Biedermann-Finster-Joyal)
- James' splitting and EHP sequence (Devalapurkar-Haine)

Samuel Lavenir (EPFL)

. . .

Hilton-Milnor's theorem in ∞ -topoi.

May 25, 2023 3/23

E

590

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Plan of the talk

- Motivational interlude
- ② Homotopy theory in ∞-categories
- Hilton-Milnor's theorem, further directions

		(ㅁ) (쿱) (클) (클)	Ē	うくで
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023		4/23

Interlude: homotopy operations

Definition

A homotopy operation of type $(n_1, \dots, n_r; m)$ is an assignment

$$\pi_{n_1}(X) \times \cdots \times \pi_{n_1}(X) \longrightarrow \pi_m(X)$$

which is *natural* in the pointed space X.

They are the analogues of Steenrod operations on cohomology ! By Yoneda, these correspond to homotopy classes

 $S^m \longrightarrow S^{n_1} \vee \cdots \vee S^{n_r}$

ie. to elements in $\pi_m(S^{n_1} \vee \cdots \vee S^{n_r})$.

	٩	미 › 《畵 › 《코 › 《코 ›	E
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	5/23

Interlude: homotopy operations (HM) tells us that

$$\pi_m(S^{n_1} \vee \cdots \vee S^{n_r}) \cong \bigoplus_{j=i}^{\infty} \pi_m(S^{k_j})$$

for some sequence $j \mapsto k_j$. In fact $k_j = 1 + \sum_i n_i \ell_i(w_j)$.

The bijection goes as follows :

$$(\beta_j)_{j\geq 1} \longmapsto \sum_{j=1}^{\infty} w_j(i_1,\cdots,i_r) \circ \beta_j$$

where $i_i: S^{n_i} \longrightarrow S^{n_1} \vee \cdots \vee S^{n_r}$.

Remark

To apply a word w to the tuple (i_1, \dots, i_n) , we use the Whitehead bracket

$$[-,-]$$
: $\pi_{k+1}(X)\otimes\pi_{\ell+1}(X)\longrightarrow\pi_{k+\ell+1}(X).$

Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023	6/23

Interlude: homotopy operations

Note that each $\alpha \in \pi_m(S^k)$ gives rise to a (unary) operation of type (k; m)

$$\pi_k(X) \longrightarrow \pi_m(X)$$

 $\beta \longmapsto \beta \circ \alpha.$

Consequence of HM : these unary operations generate them *all* under addition and the Whitehead bracket !

		< □ ▶	▲□ ▶ ▲ 国 ▶ ▲ 国 ▶	₹.	$\mathcal{O}\mathcal{Q}$
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.		May 25, 2023		7/23

Interlude (continued)

Another exciting consequence of (HM):

For simplicity, take $\Sigma = S^n \vee S^n$ and consider

$$\pi_m(S^n) \times \pi_n(\Sigma) \longrightarrow \pi_m(\Sigma)$$
$$(\alpha, \beta) \longmapsto \beta \circ \alpha.$$

We know this assignment is linear in α . What about the other variable? Write $i_1, i_2 : S^n \longrightarrow S^n \lor S^n$ for the two inclusions.

(HM) tells us that

$$(i_1+i_2)\circ \alpha=i_1\circ \alpha+i_2\circ \alpha+\sum_{j=3}^{\infty}w_j(i_1,i_2)\circ h_{j-3}(\alpha).$$

The $h_j(\alpha)$ are higher Hopf invariants for α .

When $\alpha : S^{2r+1} \longrightarrow S^{r+1}$, one recovers the usual Hopf invariant

$$h_0(\alpha) = H(\alpha)\iota \quad \in \pi_{2r+1}(S^{2r+1}) \cong \mathbb{Z}$$

	4	· · · · · · · · · · · · · · · · · · ·	うくで
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	8/23

 $C = \infty$ -category with finite limits and colimits.

- * = a terminal object of C.
- $C_* = C_{/*} = \infty$ -category of pointed objects.

Fact: limits and colimits in C_* can be computed in C (appropriately) !

	•	> < ≣ > < ≣ >	Ξ.	うくで
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023		9/23

Now we define the elementary operations :

Suspensions and loop objects

Smash and half-smash products

	•		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	10/23

We also have spheres :

- $S^0 := * \sqcup *$
- $S^n := \Sigma^n S^0 \simeq \operatorname{colim}_{S^n} * =: S^n \otimes *.$

Proposition

- There is an adjunction $\Sigma \dashv \Omega : C_* \xleftarrow{} C_*$.
- (C_*, \wedge, S^0) is a symmetric monoidal ∞ -category.
- $\Sigma(X \land Y) \simeq \Sigma X \land Y \simeq X \land \Sigma Y$ for any $X, Y \in C_*$.

	٩		うくで
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	11/23

<u>Recall</u>: a map $f : X \longrightarrow Y$ is said to be an *effective epimorphism* if its nerve

$$\cdots \xrightarrow{\longrightarrow} X \times_Y X \times_Y X \xrightarrow{\longrightarrow} X \times_Y X \xrightarrow{f} Y$$

is a simplicial resolution of Y.

Definition

- A map is (-1)-connected if it is an effective epimorphism.
- When $n \ge 0$, we say that $f : X \longrightarrow Y$ is *n*-connected if it is an effective epimorphism and $\Delta f : X \longrightarrow X \times_Y X$ is (n 1)-connected.

A map $f : X \longrightarrow Y$ is *n*-connected if and only if its iterated diagonals $\Delta^k f$ are effective epimorphisms for all $0 \le k \le n + 1$.

A map is ∞ -connected if it is *n*-connected for every $n \ge -2$.

We can also speak of *n*-connected objects: *X* is *n*-connected if $X \rightarrow *$ is *n*-connected.

Now we assume that \mathcal{E} is an ∞ -topos.

Proposition

Let $X, Y \in \mathcal{E}_*$ with X k-connected and Y ℓ -connected.

- ΣX is (k + 1)-connected.
- ΩX is (k 1)-connected.
- $X \wedge Y$ is $(k + \ell + 1)$ -connected.
- $X^{\wedge n}$ is (n(k + 1) 1)-connected.

Proposition

Let $X \xrightarrow{g} Y \xrightarrow{f} Z$ be composable maps in \mathcal{E}_* .

- If f, g are n-connected, then so is fg.
- If g is (n-1)-connected and fg is n-connected, then f is n-connected.
- If fg is n-connected and f is (n + 1)-connected, then g is n-connected.

|--|

Homotopy theory in ∞-categories

A group object in \mathcal{E} is a simplicial object $X : \mathbf{\Delta}^{op} \longrightarrow \mathcal{E}$ such that

- $X_0 \simeq *$
- $X(\Delta^n) \xrightarrow{\sim} X(\Lambda_i^n)$ is an equivalence for all n, i.

Here when $K \in$ sSet is a simplicial set, we write

$$X(K) := \int_{[n]\in \mathbf{\Delta}} X_n^{K_n}.$$

Proposition (Splitting lemma)

Let $X \xrightarrow{i} Y \xrightarrow{s}_{p} Z$ be a fiber sequence of group objects which is split at the level of underlying pointed objects. Then the following composite is an equivalence:

$$X_1 \times Z_1 \xrightarrow{i \times s} Y_1 \times Y_1 \simeq Y_2 \xrightarrow{d_1} Y_1.$$

Samuel Lavenir (EPFL)

ton-Milnor's theorem in ∞ -topol.

May 25, 2023

14/23

Hilton-Milnor's theorem (again)

Theorem (L.)

Let \mathcal{E} be an ∞ -topos, and $X_1, \dots, X_n \in \mathcal{E}_*$ <u>connected</u> objects. There is a natural equivalence

$$\Omega\Sigma(X_1 \vee \cdots \vee X_n) \stackrel{\sim}{\longleftarrow} \prod_{w \in \text{Lie}_n} \Omega\Sigma w(X_1, \cdots, X_n).$$

Outline of the proof:

For simplicity we take n = 2 and seek to decompose $\Omega\Sigma(X \vee Y)$.

There is a split fiber sequence in \mathcal{E}_*

$$Y \rtimes \Omega X \longrightarrow X \lor Y \xrightarrow{\longleftarrow} X.$$

		◆□▶ ◆圖▶ ◆필▶ ◆필▶ ─ 필	うくで
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023	15/23

After looping, the splitting lemma yields an equivalence

 $\Omega(X \vee Y) \stackrel{\sim}{\longleftarrow} \Omega X \times \Omega(Y \rtimes \Omega X).$

When *X*, *Y* are suspensions, the term $Y \rtimes \Omega X$ splits further and we find

 $\Omega\Sigma(X \vee Y) \xleftarrow{\sim} \Omega\Sigma X \times \Omega\Sigma(Y \vee (Y \land \Omega\Sigma X)).$

Now we use the following result proved in (DH):

Theorem (James' splitting)

If *C* is an ∞ -category with universal pushouts, and $X \in C_*$ is a connected object, there is a natural equivalence

$$\Sigma\Omega\Sigma X \stackrel{\sim}{\longleftarrow} \bigvee_{i=1}^{\infty} \Sigma X^{\wedge i}.$$

		< □ > < @ > < E > < E > E	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023	16/23

Combining these results, we find an equivalence

$$J(X \lor Y) \stackrel{\sim}{\longleftarrow} JX \times J\left(\bigvee_{i=0}^{\infty} Y \land X^{\land i}\right)$$

where from now on we write $J = \Omega \Sigma$.

Now iterate this formula :

 $J(X \lor Y) \stackrel{\sim}{\leftarrow} JX \times JR_1 \stackrel{\sim}{\leftarrow} JX \times JY \times JR_2 \stackrel{\sim}{\leftarrow} JX \times JY \times J(X \land Y) \times JR_3 \stackrel{\sim}{\leftarrow} \cdots$

The monomials in *X*, *Y* that appear are exactly those w(X, Y) with $w \in \text{Lie}_2$!

		□ › < @ › < 분 › < 분 › 분	$\mathcal{O}\mathcal{Q}$
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	17/23

Iterating, we obtain a tower

where $R_0 = X \vee Y$ and $X_i = w_i(X, Y)$.

Now we use connectivity estimates.

The connectivity of $Jw_i(X, Y)$ and JR_i tend to ∞ with *i*.

	•		目 うく	C
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	18/2	23

The stability properties of *n*-connected maps imply that $h_{X,Y}$ is ∞ -connected. This works in *any* ∞ -topos!

Now we use the following trick :

since ${\mathcal E}$ is an $\infty\text{-topos},$ we can chose a presentation

$$\mathcal{E} \stackrel{L}{\longleftrightarrow} \mathcal{P}(\mathcal{C})$$

where *L* is a left exact left adjoint.

By tracking down the explicit construction of $h_{X,Y}$, we see that

$$Lh_{X,Y} = h_{LX,LY}.$$

But $\mathcal{P}(C)$ is hypercomplete, so $h_{LX,LY}$ is an equivalence !

		▲□▶▲圖▶▲필▶▲필▶ :	
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	19/23

Further directions

- Can we translate this proof in HoTT ? The trick doesn't work anymore, so one might have to postulate Whitehead's principle.
- When \mathcal{E} is an ∞ -topos, there is an equivalence

$$\operatorname{Grp}(\mathcal{E}) \xrightarrow[B]{\Omega} \mathcal{E}_*^{\geq 1}$$

through which $\Omega\Sigma$ becomes the *free group functor*. In this context, (HM) becomes a theorem about free groups, which suggests an extension of the notion *n*-nilpotence defined by Biedermann-Dwyer.

 Is Lie_n really just an indexing set ? How can one perform the Magnus construction in a homotopy coherent setting ?

		<ロ> <四> <四> < 四> < 回> < 回>	■ うくぐ
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023	20/23

	•	□ ▶ ▲圖 ▶ ▲ 볼 ▶ ▲ 볼 ▶	臣	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞ -topoi.	May 25, 2023		21/23

References

- Anel, Mathieu et al. (2020). "A generalized Blakers–Massey theorem". In: *Journal of Topology* 13.4, 1521–1553.
- Biedermann, Georg and William G. Dwyer (2010). "Homotopy nilpotent groups". In: *Algebr. Geom. Topol.* 10.1, pp. 33–61.
- Lurie, Jacob (2009). *Higher topos theory*. Annals of mathematics studies.
- Sanath K. Devalapurkar, Peter J. Haine (2021). "On the James and Hilton-Milnor Splittings, the metastable EHP sequence". In: *Doc. Math.* 26, pp. 1423–1464.
- Whitehead, George W. (1978). *Elements of homotopy theory*. Vol. 61. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin.

		 □ > < @ > < E > < E > E 	$\mathcal{O}\mathcal{Q}$
Samuel Lavenir (EPFL)	Hilton-Milnor's theorem in ∞-topoi.	May 25, 2023	22/23