Symmetric Monoidal Smash Products in HoTT

Axel Ljungström

HoTT 2023, Pittsburgh

Introduction

- The smash product plays a crucial role in homotopy theory
- Key property: it is (1-coherent) symmetric monoidal
- This fact is useful when doing HoTT too:
- Brunerie (2016): $\pi_{4}\left(\mathrm{~S}^{3}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$
- Van Doorn (2018): Cohomological spectral sequences
- Problem: this fact has never been fully proved in HoTT

A brief history of the smash product in HoTT

The pretty approach

- Van Doorn (2018) almost proved the theorem
- Used an argument from closed monoidal categories
- Only lacked one tiny technical lemma

A brief history of the smash product in HoTT

The pretty approach

- Van Doorn (2018) almost proved the theorem
- Used an argument from closed monoidal categories
- Only lacked one tiny technical lemma

The madman approach

- Brunerie (2018) wrote an Agda program generating Agda code for the proof
- Problem: Agda couldn't type-check all proofs without running out of memory

A brief history of the smash product in HoTT

Another approach

- Today we present a new approach
- The goal: make smash products in HoTT less scary by introducing a new heuristic
- This heuristic can be used (with some manual labour) to show the theorem at hand.
- Somewhat more involved proofs than van Doorn's but definitely shorter than Brunerie's .agda-file.

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

- a basepoint $\star_{\wedge}: A \wedge B$

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

- a basepoint $\star_{\wedge}: A \wedge B$
- for every pair $(a, b): A \times B$, a point $\langle a, b\rangle: A \wedge B$

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

- a basepoint $\star_{\wedge}: A \wedge B$
- for every pair $(a, b): A \times B$, a point $\langle a, b\rangle: A \wedge B$
- for $a: A$, a path push $a:\left\langle a, \star_{B}\right\rangle=\star \wedge$

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

- a basepoint $\star_{\wedge}: A \wedge B$
- for every pair $(a, b): A \times B$, a point $\langle a, b\rangle: A \wedge B$
- for $a: A$, a path push $a:\left\langle a, \star_{B}\right\rangle=\star \wedge$
- for $b: B$, a path $\operatorname{push}_{r} b:\left\langle\star_{A}, b\right\rangle=\star_{\wedge}$

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

- a basepoint $\star_{\wedge}: A \wedge B$
- for every pair $(a, b): A \times B$, a point $\langle a, b\rangle: A \wedge B$
- for $a: A$, a path push $a:\left\langle a, \star_{B}\right\rangle=\star \wedge$
- for $b: B$, a path push $b:\left\langle\star_{A}, b\right\rangle=\star_{\wedge}$
- a coherence push ${ }^{\mathrm{l}}$: push $_{I} \star_{A}=$ push $_{\mathrm{r}} \star_{B}$

Smash products

Definition 1

The smash product of two pointed types A and B is the HIT with:

- a basepoint $\star_{\wedge}: A \wedge B$
- for every pair $(a, b): A \times B$, a point $\langle a, b\rangle: A \wedge B$
- for $a: A$, a path push $a:\left\langle a, \star_{B}\right\rangle=\star \wedge$
- for $b: B$, a path push $b:\left\langle\star_{A}, b\right\rangle=\star_{\wedge}$

- a coherence push ${ }_{I r}$: push ${ }_{I} \star_{A}=$ push $_{r} \star_{B}$

The pentagon

Fact

The smash product is associative. We use $\alpha_{A, B, C}:(A \wedge B) \wedge C \xrightarrow{\sim} A \wedge(B \wedge C)$ to denote the associator.

The pentagon

Fact

The smash product is associative. We use $\alpha_{A, B, C}:(A \wedge B) \wedge C \xrightarrow{\sim} A \wedge(B \wedge C)$ to denote the associator.

The 'impossible' pentagon axiom for \wedge :

The pentagon

Fact

The smash product is associative. We use $\alpha_{A, B, C}:(A \wedge B) \wedge C \xrightarrow{\sim} A \wedge(B \wedge C)$ to denote the associator.

The 'impossible' pentagon axiom for \wedge :

$$
\begin{array}{ll}
\\
\begin{array}{ll}
\alpha_{A, B, C \wedge 1_{D}}((A \wedge B) \wedge C) \wedge D \\
(A \wedge(B \wedge C)) \wedge D \\
\alpha_{A, B \wedge C, D} \downarrow \\
A \wedge((B \wedge C) \wedge D) \longrightarrow
\end{array} & (A \wedge B) \wedge(C \wedge D) \\
\alpha_{A \wedge B, C, D} \\
1_{A} \wedge \alpha_{B, C, D} & A \wedge(B \wedge(C \wedge D))
\end{array}
$$

By pentagonator, I will mean the function described by either side of the pentagon.

The pentagon

- Why is it so hard to verify?
- Proving it amounts to constructing a homotopy

$$
(x:((A \wedge B) \wedge C) \wedge D) \rightarrow f x=g x
$$

for the pentagonators f and g.

Induction hell


```
pf * = { }0
pf < * , d\rangle = { }1
pf \\langle * , c \rangle, d\rangle = { }2
pf \\langle{a,b\rangle,c\rangle,d\rangle={ }3
pf \langle\langlepush| a i , c \rangle, d \rangle = { }4
pf \\langle push b b i , c \rangle, d \rangle = { }5
pf \\langle pushlti j , c \rangle, d \rangle = { }6
pf \langlepush_ * i , d \rangle = { }7
pf \langlepushi\ a , b \ i , d \rangle = { }8
pf \ pushl (push| a j) i, d \rangle = { }9
pf { pushl
```



```
pf \langle push c c i, d \rangle}={}1
pf \langle pushlt i j , d \rangle ={ }13
```

```
pf(pushl \ * , c \ i) = { }15
```

pf(pushl \ * , c \ i) = { }15
pf(pushı \ \ a , b \rangle, c \rangle i) = { }16
pf(pushı \ \ a , b \rangle, c \rangle i) = { }16
pf(pushl \ push, a j , c \ i) = { }17
pf(pushl \ push, a j , c \ i) = { }17
pf (pushl \ pushre b j , c \ i) = { }18
pf (pushl \ pushre b j , c \ i) = { }18
pf (pushl \ pushlx j k , c \ i) = { }19
pf (pushl \ pushlx j k , c \ i) = { }19
pf (pushl}(\mathrm{ pushl}* * i i) i) ={ {20
pf (pushl}(\mathrm{ pushl}* * i i) i) ={ {20
pf (pushl (pushl \ a , b \ j) i) = { }21
pf (pushl (pushl \ a , b \ j) i) = { }21
pf (pushl}(\mathrm{ (pushl (pushl a k) j) i) = { }22
pf (pushl}(\mathrm{ (pushl (pushl a k) j) i) = { }22
pf (pushl}(\mp@subsup{\mathrm{ push}}{\}{(push
pf (pushl}(\mp@subsup{\mathrm{ push}}{\}{(push
pf (pushl}(\mathrm{ (pushl (pushlr l k) j) i) = { }24
pf (pushl}(\mathrm{ (pushl (pushlr l k) j) i) = { }24
pf (pushl}(\mp@subsup{\mathrm{ push}}{r}{\prime}b j) i) = { }25
pf (pushl}(\mp@subsup{\mathrm{ push}}{r}{\prime}b j) i) = { }25
pf (pushl}(\mathrm{ pushlt k j) i) = { }26
pf (pushl}(\mathrm{ pushlt k j) i) = { }26
pf (push}\mp@subsup{\mp@code{r}}{\textrm{b}}{\textrm{b}}\mathbf{i})={ }2
pf (push}\mp@subsup{\mp@code{r}}{\textrm{b}}{\textrm{b}}\mathbf{i})={ }2
pf (push)

```
pf (push)
```


A first step

- Need: a better way to deal with equalities of functions $f: \bigwedge_{i} A_{i} \rightarrow B$

Lemma 2

To check $f=g$ for $f, g: A \wedge B \rightarrow C$, the coherence for push $_{\mathrm{Ir}}$ is automatic.

A first step

- Need: a better way to deal with equalities of functions $f: \bigwedge_{i} A_{i} \rightarrow B$

Lemma 2

To check $f=g$ for $f, g: A \wedge B \rightarrow C$, the coherence for push ${ }_{I r}$ is automatic.

We have $(f \circ q=g \circ q) \Longrightarrow(f=g)$

Induction hell


```
pf * = { }0
pf < * , d \rangle = { }1
pf \langle\langle*, c\rangle, d\rangle={ }2
pf \\langle\langlea,b\rangle,c\rangle,d\rangle={ }3
pf \langle\langlepush, a i , c \rangle, d \rangle = { }4
pf \\langle push}\mp@subsup{\mp@code{r}}{\textrm{b}}{\textrm{i}},\textrm{c},\textrm{c}\rangle,d\rangle={ }
pf \\langle pushlr i j , c\rangle, d \rangle}={}
pf \langlepush_ * i , d \rangle = { }7
pf \langlepushl\ a , b \rangle i, d \rangle = { }8
pf \langlepushl (push| a j) i, d \rangle}={}
pf { pushl
pf \ pushl
pf \langle push c i , d \rangle}={ }1
pf { pushlt i j , d \rangle ={ }13
```

```
pf (push| \(\langle\) * , c \(\rangle\) i) \(=\{ \} 15\)
```

pf (push| \langle * , c \rangle i) $=\{ \} 15$
pf $\left(\right.$ pushl $\left._{1}\langle\langle a, b\rangle, c\rangle i\right)=\{ \} 16$
pf $\left(\right.$ pushl $\left._{1}\langle\langle a, b\rangle, c\rangle i\right)=\{ \} 16$
pf (pushl \langle pushl a j , c \rangle i) $=\{ \} 17$
pf (pushl \langle pushl a j , c \rangle i) $=\{ \} 17$
pf $\left(\right.$ pushl $_{l}\left\langle\right.$ push $_{r}$ b j , c 〉i) $=\{ \} 18$
pf $\left(\right.$ pushl $_{l}\left\langle\right.$ push $_{r}$ b j , c 〉i) $=\{ \} 18$
pf (pushl $\left\langle\right.$ push $_{l x}$ j k , c 〉 i) $=\{$ \}19
pf (pushl $\left\langle\right.$ push $_{l x}$ j k , c 〉 i) $=\{$ \}19
pf (pushl$\left.\left(p u s h_{1} * i_{1}\right) i\right)=\{ \} 20$

```
pf (pushl\(\left.\left(p u s h_{1} * i_{1}\right) i\right)=\{ \} 20\)
```



```
pf (pushl\(\left(\right.\) pushl \(\left(\right.\) push \(h_{l}\) a k) j) i) \(=\{ \} 22\)
```

pf (pushl$\left(\right.$ pushl $\left(\right.$ push h_{l} a k) j) i) $=\{ \} 22$
pf (pushl${ }_{l}\left(\right.$ pushl$_{l}\left(\right.$ push $_{r}$ b k) j) i) $=\{323$
pf (pushl${ }_{l}\left(\right.$ pushl$_{l}\left(\right.$ push $_{r}$ b k) j) i) $=\{323$
pf (push| $\left(\right.$ push $_{l}\left(\right.$ push $_{l_{T}}$ l k) j) i) $=\{324$

```
pf (push| \(\left(\right.\) push \(_{l}\left(\right.\) push \(_{l_{T}}\) l k) j) i) \(=\{324\)
```



```
pf \(\left(\right.\) push \(_{\mid}\left(\right.\)push \(_{\mid x} \mathrm{k}\) j) \(\left.\mathbf{i}\right)=\{ \} 26\)
```

pf $\left(\right.$ push $_{\mid}\left(\right.$push $_{\mid x} \mathrm{k}$ j) $\left.\mathbf{i}\right)=\{ \} 26$
pf (push ${ }_{r}$ b i) $=\{$ \} 27
pf (push ${ }_{r}$ b i) $=\{$ \} 27
pf $\left(\right.$ push $_{I_{x}}$ i $\left.\mathbf{j}\right)=\{$ \}28

```
pf \(\left(\right.\) push \(_{I_{x}}\) i \(\left.\mathbf{j}\right)=\{\) \}28
```


Induction hell


```
pf * = { }0
pf < * , d \rangle = { }1
pf \langle\langle * , c\rangle, d\rangle = { }2
pf \\langle\langlea,b\rangle,c\rangle,d\rangle={ }3
pf \langle{ push; a i , c \rangle, d\rangle = { }4
pf \\langle push}\mp@subsup{\mp@code{F}}{\textrm{b}}{\textrm{i}}\mathbf{i},\textrm{c}\rangle,d\rangle={ }
pf \langlepush_ * i , d \rangle = { }7
pf \langlepushl\ a , b \rangle i, d \rangle = { }8
pf \langle pushl (pushl a j) i, d \rangle ={ }9
```



```
pf \langle push c i , d \rangle}={ }1
pf(pushl < * , c > i) = { }15
pf(push; \\langle a , b \rangle, c \rangle i) = { }16
pf(pushl \ pushl a j , c > i) = { }17
pf(pushl}\{\mp@subsup{push}{r}{\prime}\textrm{b j , c \ i) = { }18
pf (pushl}(\mathrm{ push_ * i i ) i) = { }20
pf (pushl (pushl \ a , b \ j) i) = { }21
pf (pushl}(\mathrm{ pushl}(pus\mp@subsup{h}{l}{l}\mp@code{k ) j) i) = { }22
pf (pushl}(\mathrm{ (pushl}(pus\mp@subsup{h}{r}{} b k) j) i) ={ }23
pf (pushl (push hr b j) i) = { }25
pf (push}\mp@subsup{\mp@code{F}}{\textrm{b}}{\textrm{b}}\mathbf{i})={ {2
```


Induction hell


```
pf * = { }0
pf < * , d\rangle = { }1
pf \langle\langle*, c\rangle, d\rangle={ }2
pf \\langle\langlea,b\rangle,c\rangle,d\rangle={ }3
pf \langle\langlepush, a i , c \rangle, d \rangle = { }4
pf \\langle push}\mp@subsup{\mp@code{F}}{\textrm{b}}{\textrm{i}}\mathbf{i},\textrm{c}\rangle,d\rangle={ }
pf \langlepushil * i, d \rangle = { }7
pf \langlepushi\ a , b \i, d\rangle ={ }8
pf \langlepushl (pushl a j) i, d\rangle ={ }9
```



```
pf \langle push c i , d \rangle}={ }1
pf(pushl < * , c > i) = { }15
pf(push; \\langle a , b \rangle, c \rangle i) = { }16
pf(pushl \ pushl a j , c > i) = { }17
pf(pushl \ pushre b j , c \ i) ={ }18
pf (pushl}(\mathrm{ pushl * it ) i) = { }20
pf (pushl (pushl \ a , b \ j) i) = { }21
pf (pushl}(\mathrm{ (pushl}(pus\mp@subsup{h}{l}{l}\mp@code{k k) j) i) = { }22
pf (pushl}(\mathrm{ (pushl}(\mathrm{ (push hr b k) j) i) = { }23
pf (pushl (push b b j) i) = { }25
pf(\mp@subsup{\mathrm{ push}}{r}{}\mathrm{ b i) ={ {27}
```

- Still: 22 (highly non-trivial) cases left...

Interlude: homogeneous types

Definition 3

A pointed type A is homogeneous if for every $a: A$, there is an automorphism $e_{a}: A \simeq A$ such that $e_{a} \star_{A}=a$

- All (pointed) path spaces are homogeneous.

Lemma 4 (Evan's Trick)

Let $f, g: A \rightarrow_{\star} B$ be two pointed functions with B homogeneous. If there is a homotopy $(x: A) \rightarrow f x=g x$, then $f=g$ as pointed functions.

Interlude: homogeneous types

Lemma 5 (Evans's trick 2.0)

Let $f, g: A \wedge B \rightarrow_{\star} C$ be two pointed functions with C homogeneous. If there is a homotopy

$$
((x, y): A \times B) \rightarrow f\langle x, y\rangle=g\langle x, y\rangle
$$

then $f=g$ (as pointed functions)

Proof.

Using the adjunction $\left(A \wedge B \rightarrow_{\star} C\right) \simeq A \rightarrow_{\star}\left(B \rightarrow_{\star} C\right)$.

- Dream: Apply the trick to pentagon.

Interlude: homogeneous types

Lemma 5 (Evans's trick 2.0)

Let $f, g: A \wedge B \rightarrow_{\star} C$ be two pointed functions with C homogeneous. If there is a homotopy

$$
((x, y): A \times B) \rightarrow f\langle x, y\rangle=g\langle x, y\rangle
$$

then $f=g$ (as pointed functions)

Proof.

Using the adjunction $\left(A \wedge B \rightarrow_{\star} C\right) \simeq A \rightarrow_{\star}\left(B \rightarrow_{\star} C\right)$.

- Dream: Apply the trick to pentagon.
- Nightmare: We can't (the codomain is not homogeneous).

The heuristic

- Fortunately, there is still hope: loop spaces are homogeneous. Let's 'make them appear' in the proof of the pentagon.

Definition 6

Let $f, g: A \wedge B \rightarrow_{\star} C$. A homotopy
$h:((a, b): A \times B) \rightarrow f\langle a, b\rangle=g\langle a, b\rangle$ induces two functions

- $L_{h}: A \rightarrow \Omega C$
- $R_{h}: B \rightarrow \Omega C$
- For instance, L_{h} a is defined by the composition

The heuristic

- Fortunately, there is still hope: loop spaces are homogeneous. Let's 'make them appear' in the proof of the pentagon.

Definition 6

Let $f, g: A \wedge B \rightarrow_{\star} C$. A homotopy
$h:((a, b): A \times B) \rightarrow f\langle a, b\rangle=g\langle a, b\rangle$ induces two functions

- $L_{h}: A \rightarrow \Omega C$
- $R_{h}: B \rightarrow \Omega C$
- For instance, L_{h} a is defined by the composition

The heuristic

- Fortunately, there is still hope: loop spaces are homogeneous. Let's 'make them appear' in the proof of the pentagon.

Definition 6

Let $f, g: A \wedge B \rightarrow_{\star} C$. A homotopy
$h:((a, b): A \times B) \rightarrow f\langle a, b\rangle=g\langle a, b\rangle$ induces two functions

- $L_{h}: A \rightarrow \Omega C$
- $R_{h}: B \rightarrow \Omega C$
- For instance, L_{h} a is defined by the composition

$$
\begin{gathered}
\star_{C} \xrightarrow[\star_{f}^{-1}]{\longrightarrow} f \star_{\wedge} \xrightarrow[h\left(a, \star_{B}\right)]{\mathrm{ap}_{f}\left(\text { push }_{l} a\right)^{-1}} f\left\langle a, \star_{B}\right\rangle \\
g\left\langle a, \star_{B}\right\rangle \underset{\mathrm{ap}_{g}\left(\text { push }_{l} a\right)}{\longrightarrow} g \star_{\wedge} \xrightarrow[\star_{g}]{\longleftrightarrow} \star_{C}
\end{gathered}
$$

The heuristic

- Fortunately, there is still hope: loop spaces are homogeneous. Let's 'make them appear' in the proof of the pentagon.

Definition 6

Let $f, g: A \wedge B \rightarrow_{\star} C$. A homotopy
$h:((a, b): A \times B) \rightarrow f\langle a, b\rangle=g\langle a, b\rangle$ induces two functions

- $L_{h}: A \rightarrow \Omega C$
- $R_{h}: B \rightarrow \Omega C$

Lemma 7

If $L_{h}=\operatorname{const}_{\left(L_{h} \star_{A}\right)}$ and $R_{h}=\operatorname{const}_{\left(R_{h} \star_{B}\right)}$, then $f=g$

The heuristic

- Fortunately, there is still hope: loop spaces are homogeneous. Let's 'make them appear' in the proof of the pentagon.

Definition 6

Let $f, g: A \wedge B \rightarrow_{\star} C$. A homotopy
$h:((a, b): A \times B) \rightarrow f\langle a, b\rangle=g\langle a, b\rangle$ induces two functions

- $L_{h}: A \rightarrow \Omega C$
- $R_{h}: B \rightarrow \Omega C$
- The point: applying this construction to the pentagonators $f, g:((A \wedge B) \wedge C) \wedge D \rightarrow A \wedge(B \wedge(C \wedge D))$, the function L_{h} is of type

$$
L_{h}:(A \wedge B) \wedge C \rightarrow \Omega(A \wedge(B \wedge(C \wedge D)))
$$

The heuristic

- Fortunately, there is still hope: loop spaces are homogeneous. Let's 'make them appear' in the proof of the pentagon.

Definition 6

Let $f, g: A \wedge B \rightarrow_{\star} C$. A homotopy
$h:((a, b): A \times B) \rightarrow f\langle a, b\rangle=g\langle a, b\rangle$ induces two functions

- $L_{h}: A \rightarrow \Omega C$
- $R_{h}: B \rightarrow \Omega C$
- The point: applying this construction to the pentagonators $f, g:((A \wedge B) \wedge C) \wedge D \rightarrow A \wedge(B \wedge(C \wedge D))$, the function L_{h} is of type

$$
L_{h}:(A \wedge B) \wedge C \rightarrow \Omega(A \wedge(B \wedge(C \wedge D)))
$$

Homogeneous codomain!

The heuristic

- We want to prove that L_{h} is constant. This is precisely where the explosion of complexity happens in a naive proof...
- ...but thanks to our set up: enough to show that

$$
A \times B \times C \xrightarrow{\langle-,-,-\rangle}(A \wedge B) \wedge C \xrightarrow{L_{h}} \Omega(A \wedge(B \wedge(C \wedge D)))
$$

is constant.

- Amounts to checking the actions of f and g on $\operatorname{push}_{\mid}\langle a, b, c\rangle$, but no further coherences!
- In particular: no nestled push ${ }_{1}$ and push ${ }_{r}$ constructors.
- Only 13 cases 1 case to check

The heuristic

- By iterating the argument, we may use L_{h} and R_{h} to construct equalities $f=g$ for any $f, g: \bigwedge_{i \leq n} A_{i} \rightarrow B$.
- Heuristic: We only need to construct a homotopy $h: f\left\langle x_{1}, \ldots, x_{n}\right\rangle=g\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and show that it is compatible with ap_{f} and ap_{g} on single applications of push and push.
- Number of cases: $O\left(2^{n}\right) O(2 n)$

The heuristic

- By iterating the argument, we may use L_{h} and R_{h} to construct equalities $f=g$ for any $f, g: \bigwedge_{i \leq n} A_{i} \rightarrow B$.
- Heuristic: We only need to construct a homotopy $h: f\left\langle x_{1}, \ldots, x_{n}\right\rangle=g\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and show that it is compatible with ap_{f} and ap_{g} on single applications of push and push.
- Number of cases: $O\left(2^{n}\right) O(2 n)$
- For instance: for the pentagonators, we only need to provide 7 pieces of (low-dimensional) data (instead of 29).

Lemma 6. For any two functions $f, g:((A \wedge B) \wedge C) \wedge D) \rightarrow E$, the following data gives an equality $f=g$:
(i) A homotopy $h:((a, b, c, d): A \times B \times C \times D) \rightarrow f\langle a, b, c, d\rangle=g\langle a, b, c, d\rangle$.
(ii) For every triple $(a, b, d): A \times B \times D$, a filler of the square

$$
\begin{aligned}
& f\left\langle\star_{A}, \star_{B}, \star_{C}, d\right\rangle \xrightarrow{h\left(\star_{A}, \star_{B}, \star_{C}\right)} g\left\langle\star_{A}, \star_{B}, \star_{C}, d\right\rangle \\
& \left.\left.\operatorname{ap}_{f\left(-,{ }^{*} C, d\right\rangle}\left(\operatorname{push}_{r}\left(\star_{B}\right)^{-1}\right)\right) \uparrow \quad \uparrow_{\left.\mathrm{ap}_{g\langle-, *}, d\right\rangle}\left(\operatorname{push}_{r}\left(\star_{B}\right)^{-1}\right)\right) \\
& f\left\langle\star_{\wedge}, \star_{C}, d\right\rangle \quad g\left\langle\star_{\wedge}, \star_{C}, d\right\rangle \\
& \operatorname{ap}_{f\langle-, d\rangle}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)^{-1}\right) \uparrow \quad \uparrow_{\mathrm{ap}_{g\langle-, d)}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)^{-1}\right)} \\
& f\left\langle\star_{\wedge}, d\right\rangle \quad g\langle\star \wedge, d\rangle \\
& \operatorname{ap}_{f\langle-, d\rangle}\left(\text { push }_{1}\langle a, b\rangle\right) \uparrow \quad \uparrow_{\mathrm{ap}_{g\langle-, d\rangle}\left(\operatorname{push}_{1}\langle a, b\rangle\right)} \\
& f\left\langle a, b, \star_{C}, d\right\rangle \xrightarrow[h\left(a, b, \star_{C}\right)]{ } g\left\langle a, b, \star_{C}, d\right\rangle
\end{aligned}
$$

(iii) For every pair $(c, d): C \times D$, a filler of the square

$$
\begin{aligned}
& f\left\langle\star_{A}, \star_{B}, \star_{C}, d\right\rangle \xrightarrow{h\left(\star_{A}, \star_{B}, \star_{C}, d\right)} g\left\langle\star_{A}, \star_{B}, \star_{C}\right\rangle \\
& \operatorname{ap}_{f\left\langle-, \star_{C}, d\right\rangle}\left(\operatorname{push}_{r}\left(\star_{B}\right)\right)^{-1} \uparrow \\
& f\left\langle\star_{\wedge}, \star_{C}, d\right\rangle \\
& \uparrow_{\mathrm{ap}_{g\left\langle-, \star_{C}, d\right\rangle}}\left(\text { push }_{\mathrm{r}}\left(\star_{B}\right)\right)^{-1} \\
& g\left\langle\star_{\wedge}, \star_{C}\right\rangle \\
& \operatorname{ap}_{f(-, d\rangle}\left(\text { push }_{1}\left(\star_{\wedge}\right)\right)^{-1} \uparrow \\
& f\left\langle\star_{\wedge}, d\right\rangle \\
& \operatorname{ap}_{f\langle-, d\rangle}\left(\operatorname{push}_{r}(c)\right) \uparrow \\
& f\langle\star \wedge, c, d\rangle \\
& \operatorname{ap}_{f\langle-, c, d\rangle}\left(\operatorname{push}_{r}\left(\star_{B}\right)\right) \uparrow \\
& f\left\langle\star_{A}, \star_{B}, c, d\right\rangle \xrightarrow[h\left(\star_{A}, \star_{B}, c, d\right)]{ } g\left\langle\star_{A}, \star_{B}, c, d\right\rangle
\end{aligned}
$$

(iv) For every triple $(a, c, d): A \times C \times D$, a filler of the square

$$
\begin{array}{cc}
f\left\langle\star_{A}, \star_{B}, c, d\right\rangle \xrightarrow{h\left(\star_{A}, \star_{B}, c, d\right)} g\left\langle\star_{A}, \star_{B}, c, d\right\rangle \\
\operatorname{ap}_{f\langle-, c, d\rangle}\left(\operatorname{push}_{(}\left(\star_{A}\right)\right)^{-1} \uparrow & \uparrow_{\mathrm{ap}_{g\langle-, c, d)}\left(\operatorname{push}_{1}\left(\star_{A}\right)\right)^{-1}} \\
f\left\langle\star_{\wedge}, c, d\right\rangle & g\left\langle\star_{\wedge}, c, d\right\rangle \\
\mathrm{ap}_{f\langle-, c, d\rangle}\left(\operatorname{push}_{1}(a)\right) \uparrow & \uparrow_{\mathrm{ap}_{g\langle-, c, d\rangle}\left(\operatorname{push}_{1}(a)\right)} \\
f\left\langle a, \star_{B}, c, d\right\rangle \xrightarrow{h\left(a, \star_{B}, c, d\right)} g\left\langle a, \star_{B}, c, d\right\rangle
\end{array}
$$

(v) For every triple $(b, c, d): B \times C \times D$, a filler of the square

$$
\begin{array}{cc}
f\left\langle\star_{A}, \star_{B}, c, d\right\rangle \xrightarrow{h\left(\star_{A}, \star_{B}, c, d\right)} & g\left\langle\star_{A}, \star_{B}, c, d\right\rangle \\
\operatorname{ap}_{f\langle-, c, d\rangle}\left(\operatorname{push}_{r}\left(\star_{B}\right)\right)^{-1} \uparrow & \uparrow_{\mathrm{ap}_{g\langle-, c, d\rangle}\left(\operatorname{push}_{r}\left(\star_{B}\right)\right)^{-1}} \\
f\left\langle\star_{\wedge}, c, d\right\rangle & g\left\langle\star_{\wedge}, c, d\right\rangle \\
\operatorname{ap}_{f\langle-, c, d\rangle}\left(\operatorname{push}_{r}(b) \uparrow \uparrow\right. & \uparrow_{\mathrm{ap}_{g\langle-, c, d\rangle}\left(\operatorname{push}_{r}(b)\right)} \\
f\left\langle\star_{A}, b, c, d\right\rangle \xrightarrow{h\left(\star_{A}, b, c, d\right)} g\left\langle\star_{A}, b, c, d\right\rangle
\end{array}
$$

(vi) For every triple $(a, b, c): A \times B \times C$, a filler of the square

$$
\begin{aligned}
& f\left\langle\star_{A}, \star_{B}, \star_{C} \star_{D}\right\rangle \xrightarrow{h\left(\star_{A}, \star_{B}, \star_{C} \star_{D}\right)} g\left\langle\star_{A}, \star_{B}, \star_{C} \star_{D}\right\rangle \\
& \left.\operatorname{ap}_{f\left(-, *_{C, *}\right)}\left(\operatorname{push}_{(}\left(\star_{A}\right)\right)\right)^{-1} \uparrow \quad \uparrow_{\left.\operatorname{ap}_{g\left(-, *_{C}, \star_{D}\right)}\left(\operatorname{push}_{1}\left(\star_{A}\right)\right)\right)^{-1}} \\
& f\left\langle\star_{\wedge}, \star_{C}, \star_{D}\right\rangle \quad g\left\langle\star_{\wedge}, \star_{C}, \star_{D}\right\rangle \\
& \left.\operatorname{ap}_{f\left\langle-, *_{D}\right\rangle}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)\right)\right)^{-1} \uparrow \quad \uparrow_{\left.\operatorname{ap}_{g\left\langle-, \star_{D}\right)}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)\right)\right)^{-1}} \\
& f\left\langle\star_{\wedge}, \star_{D}\right\rangle \\
& \left.\operatorname{ap}_{f}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)\right)\right)^{-1} \uparrow \\
& f\left(\star_{\wedge}\right) \\
& \operatorname{ap}_{f}\left(\operatorname{push}_{1}\langle a, b, c\rangle\right) \uparrow \quad \hat{a p}_{g}\left(\operatorname{push}_{1}(a, b, c\rangle\right) \\
& f\left\langle a, b, c, \star_{D}\right\rangle \xrightarrow[h\left(a, b, c, \star_{D}\right)]{ } g\left\langle a, b, c, \star_{D}\right\rangle
\end{aligned}
$$

(vii) For every $d: D$, a filler of the square

$$
\begin{aligned}
& f\left\langle\star_{A}, \star_{B}, \star_{C}, \star_{D}\right\rangle \xrightarrow{h\left(\star_{A}, \star_{B}, \star_{C}, \star_{D}\right)} g\left\langle\star_{A}, \star_{B}, \star_{C}, \star_{D}\right\rangle \\
& \left.\operatorname{ap}_{f\left\langle-, *_{C}, *_{D}\right\rangle}\left(\operatorname{push}_{(}\left(\star_{A}\right)\right)\right)^{-1} \uparrow \\
& f\left\langle\star_{\wedge}, \star_{C}, \star_{D}\right\rangle \\
& \left.\operatorname{ap}_{f\left\langle-, \star_{D}\right\rangle}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)\right)\right)^{-1} \uparrow \\
& f\left\langle\star_{\wedge}, \star_{D}\right\rangle \\
& \left.\operatorname{ap}_{f}\left(\text { push }_{l}\left(\star_{\wedge}\right)\right)\right)^{-1} \uparrow \\
& f\left(\star_{\wedge}\right) \\
& \operatorname{ap}_{f}\left(\operatorname{push}_{r}(d)\right) \uparrow \\
& f\left\langle\star_{\wedge}, d\right\rangle \\
& \left.\operatorname{ap}_{f\langle-, d\rangle}\left(\operatorname{push}_{1}\left(\star_{\wedge}\right)\right)\right) \uparrow \\
& f\left\langle\star_{\wedge}, \star_{C}, d\right\rangle \\
& \left.\operatorname{ap}_{f\left\langle-, \star_{C}, d\right\rangle}\left(\text { push }_{1}\left(\star_{A}\right)\right)\right) \uparrow \\
& f\left\langle\star_{A}, \star_{B}, \star_{C}, d\right\rangle \xrightarrow[h\left(\star_{A}, \star_{B}, \star_{C}, d\right)]{ } g\left\langle\star_{A}, \star_{B}, \star_{C}, d\right\rangle
\end{aligned}
$$

Reaping the fruits

Theorem 8

The smash product satisfies the pentagon identity.

Proof.

After applying of the heuristic, the remaining coherences are easily verified by hand.

Reaping the fruits

Theorem 8

The smash product satisfies the pentagon identity.

Proof.

After applying of the heuristic, the remaining coherences are easily verified by hand.

Theorem 9

The smash product is symmetric monoidal with the booleans as unit.

Summary

- There were two primary results in this talk:
(1) A new heuristic for reasoning about smash products
(2) A proof of the symmetric monoidal nature of the smash product

Summary

- There were two primary results in this talk:
(1) A new heuristic for reasoning about smash products
(2) A proof of the symmetric monoidal nature of the smash product
- Result 2 was open for a long time-nice to have it done once and for all! But...

Summary

- There were two primary results in this talk:
(1) A new heuristic for reasoning about smash products
(2) A proof of the symmetric monoidal nature of the smash product
- Result 2 was open for a long time-nice to have it done once and for all! But...
- ...result 1 is perhaps the most important:

Summary

- There were two primary results in this talk:
(1) A new heuristic for reasoning about smash products
(2) A proof of the symmetric monoidal nature of the smash product
- Result 2 was open for a long time-nice to have it done once and for all! But...
- ...result 1 is perhaps the most important:
- Smash products are no longer 'scary' in HoTT!

Summary

- There were two primary results in this talk:
(1) A new heuristic for reasoning about smash products
(2) A proof of the symmetric monoidal nature of the smash product
- Result 2 was open for a long time-nice to have it done once and for all! But...
- ...result 1 is perhaps the most important:
- Smash products are no longer 'scary' in HoTT!
- (If you know how to make it into a theorem, please tell me.)

Summary

- There were two primary results in this talk:
(1) A new heuristic for reasoning about smash products
(2) A proof of the symmetric monoidal nature of the smash product
- Result 2 was open for a long time-nice to have it done once and for all! But...
- ...result 1 is perhaps the most important:
- Smash products are no longer 'scary' in HoTT!
- (If you know how to make it into a theorem, please tell me.)

Thanks for listening!

$$
\begin{gathered}
f=g \\
h:\left\{\begin{array}{l}
\left(\left(\bar{x}, x_{n}\right):\left(\bigwedge_{i<n} A_{i}\right) \times A_{n}\right) \\
\rightarrow f\left\langle\bar{x}, x_{n}\right\rangle=g\left\langle\bar{x}, x_{n}\right\rangle
\end{array}\right. \\
\begin{array}{l}
\downarrow
\end{array}\left\{\begin{array}{l}
L_{h}\left\langle x_{1}, \ldots x_{n-1}\right\rangle=\mathrm{const} \\
R_{h} x_{n}=\text { const }
\end{array}\right. \\
h_{n}:\left\{\begin{array}{l}
\left(\left(\bar{x}, x_{n-1}\right):\left(\bigwedge_{i<n-1} A_{i}\right) \times A_{n-1}\right) \\
\rightarrow f\left\langle\bar{x}, x_{n-1}, x_{n}\right\rangle=g\left\langle\bar{x}, x_{n-1}, x_{n}\right\rangle
\end{array}\right.
\end{gathered}\left\{\begin{array}{l}
L_{h_{n}}\left\langle x_{1}, \ldots x_{n-2}\right\rangle=\mathrm{const} \\
R_{h_{n}} x_{n-1}=\text { const }
\end{array}\right\}
$$

