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Internal vs parametrised mathematics
▶ An∞-topos B supports a very rich logic⇝ can develop mathematics

internal to B.
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B-categories
Definition (B-categories and B-groupoids)

A B-category C is a complete Segal object in B, i.e. a functor C : ∆op → B
satisfying the Segal condition and univalence. A B-groupoid is a constant
simplicial object in B
⇝ B ≃ Grpd(B) ⊂ Cat(B) ⊂ Fun(∆op,B)

Proposition (B-categories are sheaves of∞-categories)

There is an equivalence of∞-categories Cat(B) ≃ Funlim(Bop,Cat∞) between
the∞-category of B-categories and the∞-categories of sheaves of
∞-categories on B.
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Categorical structure of Cat(B)
Presentability Cat(B) is presentable⇝ has all limits and colimits

Cartesian closure Have internal hom FunB(−,−)⇝ Functor B-categories
Global sections The geometric morphism const : S ⇆ B :Γ induces an

adjunction
const : Cat∞ ⇆ Cat(B) :Γ

⇝ can regard∞-categories as constant B-categories.
⇝ every B-category has an underlying∞-category of global
sections.

(∞, 2)-categorical structure Cat(B) is Cat∞-enriched via
FunB(−,−) = ΓFunB(−,−)
⇝ can be regarded as an (∞, 2)-category
⇝ has an intrinsic notion of adjunctions
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Internal limits and colimits
Definition (internal limits and colimits)
I,C B-categories⇝ limI : FunB(I,C)→ C and colimI : FunB(I,C)→ C are the right
and left adjoint of the diagonal diagI : C→ FunB(I,C).

Example: colimits indexed by∞-categories

I ∞-category⇝ colimconst(I) : FunB(const(I),C)→ C recovers
colimI : Fun(I,Γ(C))→ Γ(C) on global sections.

Example: colimits indexed by B-groupoids

A ∈ B any object⇝ colimA : FunB(A,C)→ C recovers the left adjoint
π! : C(A)→ C(1) = Γ(C) of π∗ : C(1)→ C(A) on global sections.
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Internal presheaves
The universe B has descent↭ A 7→ B/A defines a sheaf of∞-categories on B

⇝ Ω = B/− defines a B-category (the universe in B)

Presheaf B-categories Can now define PSh(C) = FunB(C
op,Ω) for every

B-category C.

Theorem (Universal property of internal presheaves)

There is a fully faithful functor C ↪→ PSh(C) (the Yoneda embedding) that
exhibits PSh(C) as the free cocompletion of C.

In particular, the universe Ω is freely generated by the point under internal
colimits.
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B-topoi
Definition (B-topos)

A B-category X is a B-topos if it arises as a left exact and accessible localisation

X PSh(C)⊢

Example (the initial B-topos)

The universe Ω is the initial B-topos: for every B-topos X, there is a unique
cocontinuous and left exact functor f∗ : Ω→ X.
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Descent
The B-category of B-categories A 7→ Cat(B/A) preserves limits

⇝ obtain the B-category CatB = Cat(B/−) of B-categories.

Internal slice functor If C has finite limits, one can define a functor

Cop C/−−−→ CatB, c 7→ C/c.

Definition (descent)
A cocomplete B-category C with finite limits has descent if C/− is continuous.

Theorem (Chacterisation of B-topoi via descent)

A B-category X is a B-topos if and only if X is presentable and has descent.
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B-topoi externally
Theorem (B-topoi are equivalent to∞-topoi over B)

The datum of a B-topos X is equivalent to that of a geometric morphism of
∞-topoi X → B.
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⇝ need only show that X ≃ X(1)/f∗(−) for every B-topos X.
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B-topoi externally
Theorem (B-topoi are equivalent to∞-topoi over B)

The datum of a B-topos X is equivalent to that of a geometric morphism of
∞-topoi X → B.

1. X B-topos, A ∈ B object⇝ X/− preserves A-indexed limits:

X(A)op Cat(B/A)

X(1)op Cat(B) Cat∞

πop
!

X/−

ΓB/A
π∗

X/− ΓB

1X(A)

π!(1X(A)) X(1)/π!(1X(A)) X(A)≃
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The datum of a B-topos X is equivalent to that of a geometric morphism of
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1) and 2) combined⇝
X(A) ≃ X(1)/f∗(A).

This can be made functorial in A, so that one obtains

X ≃ X(1)/f∗(−).
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QUESTIONS?


