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Synthetic algebraic topology

By representing spaces as higher inductive types we can
develop algebraic topology synthetically using univalence

This is well-suited for computer formalization and leads to
very compact and elegant proofs

But, as univalence is added axiomatically we cannot
generally compute with these results in proof assistants...

Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY
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Computational synthetic algebraic topology

Examples of computations that one might want to do in a formalization:

Compute with functions

𝜙 : 𝜋n(X ) → G 𝜓 : Hn(X ) → G

to e.g. compute winding numbers or prove that they are generated by particular elements

Compute with group/ring operations on 𝜋n(X ), Hn(X ), H ∗(X ), ..., to distinguish
spaces/types, e.g. S2 ∨ S1 ∨ S1 ≠ T

Characterize 𝜋n(X ), Hn(X ), H ∗(X ) by computation, e.g. the Brunerie number
𝜋4(S3) ≃ Z/𝛽Z

Prove tedious small proof steps by refl to shorten formal proofs
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The Cubical paradigm in homotopy type theory

Theorem (Bezem-Coquand-Huber, 2013)
Univalent Type Theory has a constructive model in substructural Kan cubical sets (“BCH model”).

This led to development of a variety of structural cubical set models and cubical type theories:

Theorem (Cohen-Coquand-Huber-M., 2015)
Univalent Type Theory has a constructive model in De Morgan Kan cubical sets (“CCHM model”).

In cubical type theory we have a univalence theorem with computational content:

ua : (A B : U) → (PathU A B) ≃ (A ≃ B)
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The many cubical models and type theories

Structural I operations Kan operations Diag. cofib.
BCH 0 → r , 1 → r

CCHM ✓ ∧, ∨, ¬ (DM alg.) 0 → 1
“Dedekind” ✓ ∧, ∨ (dist. lattice) 0 → 1, 1 → 0
Orton-Pitts ✓ ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

Cartesian (A, AFH, ABCFHL)1 ✓ r → s ✓

Equivariant (ACCRS)2 ✓ ®r → ®s ✓
Cavallo-Sattler ✓ ∨/∧ 0 → r , 1 → r ✓

The last two are known to be equivalent to spaces

Comparison and unification of the Kan operations: Unifying Cubical Models of Univalent Type
Theory (Cavallo-M.-Swan, CSL’20)

1Awodey, Angiuli-Favonia-Harper, Angiuli-Brunerie-Coquand-Favonia-Harper-Licata
2Awodey-Cavallo-Coquand-Riehl-Sattler
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Cubical proof assistants

These different cubical type theories satisfy good metatheoretic properties: canonicity (Huber,
AFH), normalization and decidable typechecking (Sterling-Angiuli)

There are also many cubical proof assistants: cubical, cubicaltt, yacctt, RedPRL, redtt,
cooltt, Cubical Agda...

In Cubical Agda we have explored how to do synthetic proofs computationally, in particular by
computing a Brunerie number

All results have been formalized in: https://github.com/agda/cubical/
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Synthetic homotopy theory

The nth homotopy group of a pointed type X can be defined as:3

𝜋n(X ) = ∥Sn →★ X ∥0

These groups constitute a topological invariant, making them a powerful tool for establishing
whether two given spaces are homotopy equivalent

𝜋0(X ) characterizes the connected components of X

𝜋1(X ) characterizes equivalence classes the loops in X up to homotopy

𝜋n(X ), for n > 1, characterizes of n-dimensional loops up to homotopy

3Equivalently: 𝜋n (X ) = ∥Ωn (X )∥0
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Synthetic homotopy theory

Using univalence we can prove properties of 𝜋n(X ) for concrete spaces X represented using HITs

base•

loop

S1
north•

. . .

Susp(S1)
merid x

•
south

Example: 𝜋1(S1) ≃ Z can be proved using the encode-decode method (Licata-Shulman ’13)

Many other standard results allowing us to characterize homotopy groups of spheres can be
found in the HoTT book: the Hopf fibration, Freudenthal suspension theorem, long exact
sequence of homotopy groups, connectivity of spheres, ...
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Homotopy groups of spheres synthetically

However, for many spaces, these groups tend to become increasingly esoteric and difficult to
compute for large n

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6 𝜋7 𝜋8 𝜋9 𝜋10

S1 Z 0 0 0 0 0 0 0 0 0

S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S4 0 0 0 Z Z2 Z2 Z × Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3
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The fourth homotopy group of the 3-sphere in HoTT

Guillaume Brunerie’s PhD thesis contains a synthetic proof in Book HoTT of:

Theorem (Brunerie, 2016)

The fourth homotopy group of the 3-sphere is Z/2Z, that is, 𝜋4(S3) ≃ Z/2Z

The proof is one of the most impressive pieces of synthetic homotopy theory to date and uses lots
of advanced classical machinery developed synthetically in HoTT: symmetric monoidal structure of
smash products, (integral) cohomology rings, the Mayer-Vietoris and Gysin sequences, Hopf invariant
homomorphism, Whitehead products, the iterated Hopf construction, Blakers-Massey, ...

Furthermore, the proof is fully constructive!
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The Brunerie number
The theorem can be phrased as:

there exists a number 𝛽 : Z such that 𝜋4(S3) ≃ Z/𝛽Z

Appendix B of Brunerie’s thesis contains a complete and concise definition of 𝛽 as the image of 1
under a sequence of 12 maps:4

Z Ω(S1) Ω2(S2) Ω3(S3)

Ω3(S1 ∗ S1) Ω3(S2) Ω3(S1 ∗ S1) Ω3(S3)

Ω2∥S2∥2 Ω∥Ω(S2)∥1 ∥Ω2(S2)∥0 Ω(S1) Z

Ω3𝛼 h

4Using only 1-HITs
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The Brunerie number

On page 85 Brunerie says (for n := |𝛽 |):

This result is quite remarkable in that even though it is a constructive proof, it is not at all
obvious how to actually compute this n. At the time of writing, we still haven’t managed to
extract its value from its definition. A complete and concise definition of this number n is
presented in appendix B, for the benefit of someone wanting to implement it in a prospective
proof assistant. In the rest of this thesis, we give a mathematical proof in homotopy type
theory that n = 2.

As the above cubical systems satisfy canonicity it should in principle be possible to use them to
compute the Brunerie number...

But this turned out to be a lot harder than expected!
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Computing the Brunerie number, a (probably incomplete) history

2013: Guillaume presents informal definition of the Brunerie number at an IAS seminar

December 2014: Guillaume visits Chalmers and tries to compute it with Thierry Coquand
and Simon Huber using cubical (based on BCH model)

Spring 2015: I join forces with them and spend a lot of time trying to benchmark and
optimize the Haskell implementation of cubical

2016: Guillaume finishes thesis with definition in Appendix B (based on cubical code)

Spring/summer 2017: I port the proof to cubicaltt (based on CCHM), but computation runs
out of memory (on Inria server with 64GB RAM)

June 2017: another attempt in cubicaltt with the MRC group in Snowbird (Choudhury,
Gustafson, Licata, Orton, Sterling). Optimizes the definition of the number, without luck

Late 2017: I visit Guillaume repeatedly at the IAS and simplify the definition a lot,
computation goes slightly further but still runs out of memory
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Computing the Brunerie number, a (probably incomplete) history
June 2018: Favonia tries running the cubicaltt computation on a super computer with 1TB
of ram, computation terminated after ∼ 90 hours
Summer 2018: Dagstuhl meeting where the cubical group (Sterling, Angiuli, Favonia, Licata,
Huber, Orton, Brunerie, and I) found various new optimizations to cubical evaluation
(“Dagstuhl lemma”), did not help with computation

2019: Evan Cavallo ports the definition to Cubical Agda, still running out of memory despite
more optimizations (including Cubical Agda “ghcomp” trick of Vezzosi, inspired by AFH)
2020-2021: No progress. I was convinced that the only way to make progress was to improve
closed term evaluation for cubical type theories...
2022: Breakthrough with Axel Ljungström... A variation on the Brunerie number normalizes
to −2 in just a few seconds in Cubical Agda!
2023: slightly more complex Brunerie number computes in Kovács’ cctt (which takes closed
term evaluation seriously!)
2023: Tom Jack’s new number computes to 2 in cubicaltt and cctt

...
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Formalizing 𝜋4(S3) � Z/2Z and Computing a Brunerie Number in Cubical Agda

We have a write-up: https://arxiv.org/abs/2302.00151

This was recently accepted to LICS’23 and the paper contains 3 fully formalized proofs:

1 Streamlined and complete version of Brunerie’s original proof
2 Axel’s new proof
3 A computational proof relying on normalization of the variation on 𝛽

Proofs 1 and 2 work in Book HoTT, proof 3 relies on cubical normalization
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https://arxiv.org/abs/2302.00151


Contents

Introduction 1

1 Homotopy type theory 11
1.1 Function types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Pair types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Inductive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Identity types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 The univalence axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Dependent paths and squares . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 Higher inductive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.8 The 3× 3-lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.9 The flattening lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.10 Truncatedness and truncations . . . . . . . . . . . . . . . . . . . . . . . . 40

2 First results on homotopy groups of spheres 47
2.1 Homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Homotopy groups of the circle . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Lower homotopy groups of spheres . . . . . . . . . . . . . . . . . . . . . . 57
2.5 The Hopf fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 The long exact sequence of a fibration . . . . . . . . . . . . . . . . . . . . 60

3 The James construction 67
3.1 Sequential colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 The James construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Whitehead products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Application to homotopy groups of spheres . . . . . . . . . . . . . . . . . 83

4 Smash products of spheres 87
4.1 The monoidal structure of the smash product . . . . . . . . . . . . . . . . 87
4.2 Smash product of spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Smash product and connectedness . . . . . . . . . . . . . . . . . . . . . . 98

vii

viii CONTENTS

5 Cohomology 103
5.1 The cohomology ring of a space . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 The Mayer–Vietoris sequence . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Cohomology of products of spheres . . . . . . . . . . . . . . . . . . . . . . 112
5.4 The Hopf invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 The Gysin sequence 117
6.1 The Gysin sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 The iterated Hopf construction . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 The complex projective plane . . . . . . . . . . . . . . . . . . . . . . . . . 124

Conclusion 127

A A type-theoretic definition of weak ∞-groupoids 131
A.1 Globular sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 The internal language of weak ∞-groupoids . . . . . . . . . . . . . . . . . 132
A.3 Syntactic weak ∞-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.4 The underlying weak ∞-groupoid of a type . . . . . . . . . . . . . . . . . 139

B The cardinal of π4(S3) 143

Bibliography 157

Version française 161
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Résumé substantiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A. Mörtberg Computational Synthetic Homotopy Theory May 25, 2023 18 / 41



Brunerie’s theorem: part 1 (chapters 1–3)

In the first half of the thesis (chapters 1–3) Guillaume constructs a map g : S3 → S2

g is defined as the composition of a sequence of (pointed) maps S3 → S1 ∗ S1 → S2 ∨ S2 → S2

Let e : 𝜋3(S2) ≃ Z and define 𝛽 := e( | g |0), the first main theorem is then that:

Theorem (Brunerie, Corollary 3.4.5)

We have 𝜋4(S3) ≃ Z/𝛽Z
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Brunerie’s proof: part 2 (chapters 4–6)

Symmetric monoidal structure of smash products
=⇒ The graded ring structure of the cup product

⌣: H i (X ) × H j (X ) → H i+j (X )
The Mayer-Vietoris sequence

The Gysin Sequence

The Hopf Invariant homomorphism

The Iterated Hopf Construction
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Brunerie’s proof: part 2 (chapters 4–6)
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New proof

Having finished the formalization of chapters 4–6 Axel realized that one can actually simplify the
proof a lot and completely avoid the second half of Brunerie’s thesis

The new proof is very elementary – doesn’t use any complicated theory!

Idea: trace the maps by hand using clever tricks and choices
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Sketch of new proof

Recall that 𝛽 := e( |g |0) for e : 𝜋3(S2) ≃ Z and g : S3 → S2. The goal is to show that |𝛽 | = 2

In fact, g is defined as the precomposition of a not very complicated map S1 ∗ S1 → S2 with the
somewhat complicated equivalence f : S3 ≃ S1 ∗ S1

One of Axel’s tricks in the proof is to define 𝜋∗
3 (A) := | |S1 ∗ S1 →★ A| |0 and work with it instead

so that f can be avoided
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Sketch of new proof

We can now decompose e : 𝜋3(S2) ≃ Z as:

𝜋3(S2)
e1≃ 𝜋∗

3 (S2)
e2≃ 𝜋∗

3 (S1 ∗ S1)
e3≃ 𝜋∗

3 (S3)
e4≃ Z

We can also give explicit definitions of

𝜂1 : S1 ∗ S1 → S2 𝜂2 : S1 ∗ S1 → S1 ∗ S1 𝜂3 : S1 ∗ S1 → S3

such that

e1( |g |0) = |𝜂1 |0 e2( |𝜂1 |0) = |𝜂2 |0 e3( |𝜂2 |0) = |𝜂3 |0 e4( |𝜂3 |0) = −2

The first 3 equalities are not definitional and requires some clever choices, but (surprisingly) a
variation of the last one holds by refl in Cubical Agda!
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New Brunerie numbers

𝜂1 : S1 ∗ S1→ S2
𝜂1 (inl x) = north
𝜂1 (inr y) = north
𝜂1 (push (x , y) i) = (𝜎 y · 𝜎 x) i

𝜂3 : S1 ∗ S1→ S3
𝜂3 (inl x) = north
𝜂3 (inr y) = north
𝜂3 (push (x , y) i) =
(𝜎 (x⌣1 y) −1 · 𝜎 (x⌣1 y) −1) i

𝜂2 : S1 ∗ S1→ S1 ∗ S1
𝜂2 (inl x) = inr (- x)
𝜂2 (inr y) = inr y
𝜂2 (push (x , y) i) =
(push (y - x , - x) −1 · push (y - x , y)) i

𝜂3’ : S1 ∗ S1 → S3
𝜂3’ (inl x) = north
𝜂3’ (inr y) = north
𝜂3’ (push (x , y) i) =
(𝜎 (x⌣1 y) · 𝜎 (x⌣1 y)) i

This gives a sequence of new Brunerie numbers:

𝛽1 := e4(e3(e2( |𝜂1 |0))) 𝛽2 := e4(e3( |𝜂2 |0)) 𝛽3 := e4( |𝜂3 |0) 𝛽 ′ := e4( |𝜂′3 |0)
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The three formalized proofs

We have three fully formalized synthetic proofs that 𝜋4(S3) ≃ Z/2Z:

1 Streamlined and complete proof following Guillaume’s thesis (17000 LOC + 8000 from library)
2 Axel’s new direct elementary proof which avoids part 2 of the thesis completely (600 LOC)
3 The new computational proof by normalizing 𝛽 ′ (400 LOC)

Common part to all proofs (Brunerie Chapters 1-3): 9000 LOC

The first two proofs are expressable in Book HoTT, while the third crucially relies on normalization
of terms involving univalence and HITs (so expressable in cubical systems, and maybe H.O.T.T.)
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Outline

1 Introduction: cubical methods in homotopy type theory

2 Proofs by computation in synthetic homotopy theory

3 Proofs by computation in synthetic cohomology theory

4 Computational challenges and future work

A. Mörtberg Computational Synthetic Homotopy Theory May 25, 2023 27 / 41



Synthetic cohomology theory

In HoTT we can define cohomology as:5

Hn(X ,G) = ∥X → K (G, n)∥0

In Synthetic Integral Cohomology in Cubical Agda (Brunerie-Ljungström-M., CSL’22) we equip
Hn(X ,Z) with a very concrete group structure that computes quite well

We also compute cohomology groups for many classical spaces: spheres, torus, Klein bottle, wedge
sums, real and complex projective planes

Many of these proofs are direct by analyzing function spaces, but some require more elaborate
classical techniques (Eilenberg-Steenrod axioms, Mayer-Vietoris sequence)

5Buchholtz, Brunerie, Cavallo, Favonia, Finster, Licata, Shulman, van Doorn, ...
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Side remark: relationship to homotopy groups of spheres

Integral cohomology gives a nice map 𝜋n(Sn) → Z. Note the similarity in:

𝜋n(Sn) = ∥Sn →★ S
n∥0

Hn(Sn,Z) = ∥Sn → ∥Sn∥n∥0

This is used in the new Brunerie number computation: it is quite straightforward to prove that
H 3(S3,Z) ≃ Z and the maps have better computational behavior than the ones in 𝜋3(S3) ≃ Z
obtained by iterated Freudenthal suspension theorem
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Computations in proofs of cohomology groups

Proofs by computation also pop up in synthetic cohomology theory:

Base cases when verifying the group laws for Hn(X ,Z) involve path algebra in loop spaces
over the spheres which can typically be reduced to integer computations

When showing that Hn(X ,G) or 𝜋n(X ) is generated by a particular element e we can use
that the group is equivalent to some nice group G (e.g. Z) and check that e is mapped to a
generator of G (e.g. ±1))
Various computations involving the group operations

Some of these are fast, some are slow, and some do not terminate in a reasonable amount of time
(minutes on a normal laptop)
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Cohomology benchmarks

For every equivalence 𝜙 : Hn(X ,Z) ≃ G that we have formalized, two benchmarks have been run
in Cubical Agda:

Test 1: can 𝜙 (𝜙 -1(g)) ≡ g be proved by refl for different values of g : G?

Test 2 can 𝜙 (𝜙 -1(g1) +H 𝜙 -1(g2)) ≡ g1 +G g2 be proved by refl for g1, g2 : G?

A. Mörtberg Computational Synthetic Homotopy Theory May 25, 2023 31 / 41



Cohomology benchmarks

Type A Cohomology Group G Test 1 Test 2

S1 H1 Z ✓ ✓

S2 H2 Z ✓ ✓

S3 H3 Z ✓ ✗

S4 H4 Z ✗ ✗

T 2
H1 Z × Z ✓ ✓

H2 Z ✓ ✓

S2 ∨S1 ∨S1 H1 Z × Z ✓ ✓

H2 Z ✓ ✓

K 2 H1 Z ✓ ✓

H2 Z/2Z ✗ ✗

RP2 H2 Z/2Z ✗ ✗

CP2
H2 Z ✓ ✓

H4 Z ✗ ✗
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Cup product and cohomology ring

Cohomology allows us to distinguish many spaces, but it is sometimes a bit too coarse. We can
equip cohomology groups also with a graded multiplication operations

⌣ : Hn(X ) → Hm(X ) → Hn+m(X )

This can be organized into a graded commutative ring H ∗(X )

These rings are often equivalent to quotients of multivariate polynomial rings and we computed
some of these in Computing Cohomology Rings in Cubical Agda (Lamiaux-Ljungström-M., CPP’23)

Application: S2 ∨S1 ∨S1 has the same cohomology groups as T 2, but they are not equivalent as
the cohomology rings differ
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Computing with the cohomology ring

To distinguish S2 ∨S1 ∨S1 and T 2 we define a predicate P : Type → Type:

P (A) := (x y : H 1(A)) → x ⌣ y ≡ 0h

We have the isomorphisms:

f1 : H 1(T 2) � Z × Z

f2 : H 2(T 2) � Z
g1 : H 1(S2 ∨S1 ∨S1) � Z × Z

g2 : H 2(S2 ∨S1 ∨S1) � Z

We will now disprove P (T 2) and prove P (S2 ∨S1 ∨S1), which establishes that they are not
equivalent
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Computing with the cohomology ring

To disprove P (T 2) we need x, y : H 1(T 2) such that x ⌣ y . 0h.

Let

x = f −11 (0, 1) y = f −11 (1, 0)

Now f2(x ⌣ y) ≡ 1 holds by refl and thus x ⌣ y . 0h

To prove P (S2 ∨S1 ∨S1) we let x, y : H 1(S2 ∨S1 ∨S1). We have that
g2(g−11 (g1 x) ⌣ g−11 (g1 y)) ≡ 0, again by refl (modulo truncation elimination). Thus
g−11 (g1 x) ⌣ g−11 (g1 y) ≡ x ⌣ y ≡ 0h.

So P (T 2) does not hold while P (S2 ∨S1 ∨S1) does, so these types are not equivalent
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So P (T 2) does not hold while P (S2 ∨S1 ∨S1) does, so these types are not equivalent
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Further computations with cohomology rings

For a more ambitious computation involving⌣ consider Chapter 6 of Brunerie’s PhD thesis. This
chapter is devoted to proving that the generator e : H 2(CP2) when multiplied with itself yields a
generator of H 4(CP2)

Let g : Z→ Z be the map given by composing:

Z
�−−→ H 2(CP2) 𝜆 x→x ⌣ x−−−−−−−−→ H 4(CP2) �−−→ Z

The number g(1) should reduce to ±1 for e ⌣ e to generate H 4(CP2) and by evaluating it in
Cubical Agda we should be able to reduce the whole chapter to a single computation... However,
Cubical Agda is currently stuck on computing g(1)

So this is yet another Brunerie number
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Computations with cohomology rings

In Computing Cohomology Rings in Cubical Agda we have some more examples where it would be
nice if things computed faster for characterizing H ∗(X , R) as quotients of polynomial rings

For example, to show that H ∗(K,Z) � Z[X , Y ]/(X 2,XY , 2Y , Y 2) some computations are involved
to show that the map f : Z[X , Y ] → H ∗(K,Z) is zero on the generators of (X 2,XY , 2Y , Y 2)

This gives even more examples of computations that are fast, slow, and some that don’t terminate
in a reasonable amount of time
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Computational challenges

We now have lots of computational challenges:

The new Brunerie numbers: 𝛽1, 𝛽2, and 𝛽3

The original Brunerie number 𝛽 (and various reformulations of it)

Our cohomology benchmarks

Brunerie’s g(1) number

Various cohomology ring computations

...

𝛽3 seems stuck in Cubical Agda, but computes instantly in cctt! What about the other numbers?
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Future/ongoing work

Can we make implementations of cubical type theory faster and compute more things?

Can we compute with univalence and HITs in non-cubical systems, e.g. H.O.T.T.? How does
this compare in terms of efficiency?

Can we get faster cohomology computations using synthetic cellular cohomology following
Buchholtz-Favonia? Should allow us to reduce computations to linear algebra!

Formalize more classical computational tools from algebraic topology (e.g. spectral sequences
following van Doorn PhD)

Serre finiteness theorem for homotopy groups of spheres (following Barton and Campion’s
synthetic proof). Gives that homotopy groups of spheres are finitely presented. Can we
effectively compute these presentations?
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Thank you for your attention!

Questions?
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