

Where to find more detail

What I'm interested in:

What I'm interested in: Directed

What I'm interested in: Directed TT

Higher Observational TT

What I'm interested in: Directed TT

X

Higher Observational TT?

Key Component

Key Component: HOAS with polarities

O Polarized Type Theory

Our approach to type theory: Semantics first!

Categories with Families

Defn. A category with families (CwF) is a (generalized) algebraic structure, consisting of:

- A category Con of contexts and substitutions, with a terminal object
 the empty context
- A presheaf Ty: $Con^{op} \rightarrow Set \ of \ types$
- A presheaf $\overline{\mathsf{Tm}} : (\int \mathsf{Ty})^{\mathsf{op}} \to \mathsf{Set} \ \mathsf{of} \ \mathit{terms}$
- An operation of context extension:

$$\frac{J : \mathsf{Con} \ Y : \mathsf{Ty} \ J}{J \triangleright Y : \mathsf{Con}}$$

so that $J \triangleright Y$ is a 'locally representing object' (in the sense spelled out on the next slide)

The Local Representability Condition

For any
$$I, J$$
: Con and any J : Ty Γ ,
$$\mathsf{Con}(I, J \triangleright Y) \cong \sum_{j : \mathsf{Con}(I, J)} \mathsf{Tm}(I, Y[j])$$

J. Neumann (jww T. Altenkirch)

natural in 1.

Set
The Set Model

Setoid
The Setoid Model

Grpd *The Groupoid Model*

Set
The Set Model
[Dyb95, Hof97]

Setoid
The Setoid Model
[Hof94, Alt99]

Grpd
The Groupoid Model
[HS95]

Set
The Set Model
[Dyb95, Hof97]

Setoid
The Setoid Model
[Hof94, Alt99]

Grpd
The Groupoid Model
[HS95]

Contexts are sets

- Contexts are setoids
- Contexts are groupoids

Set

The Set Model [Dyb95, Hof97]

- Contexts are **sets**
- Types in context Γ are families of **sets** over Γ

Setoid

The Setoid Model
[Hof94, Alt99]

- Contexts are **setoids**
- Types in context Γ are families of setoids over

Grpd

The Groupoid Model
[HS95]

- Contexts are **groupoids**
- Types in context Γ are families of **groupoids** over Γ

What kinds of models have the back-face structures as contexts?

CwFs

What is a polarized CwF?

A (concrete) polarized category with families is a (generalized) algebraic structure, consisting of:

Con, • , Ty, Tm as in the definition of CwF

- Con, , Ty, Tm as in the definition of CwF
- A functor (_) $^-$: Con o Con such that $(J^-)^-=J$ and $ullet^-=ullet$

- Con, , Ty, Tm as in the definition of CwF
- A functor (_) $^-$: Con o Con such that $(J^-)^-=J$ and $ullet^-=ullet$
- For each J: Con, a function $(_)^-$: Ty $J \to Ty J$ such that $(Y^-)^- = Y$

- Con, , Ty, Tm as in the definition of CwF
- A functor $(\underline{\ \ \ })^-$: Con o Con such that $(J^-)^-=J$ and $ullet^-=ullet$
- For each J: Con, a function $(_)^-$: Ty $J \to T$ y J such that $(Y^-)^- = Y$
- Two operations of context extension: for s either + or -,

$$\frac{J : \mathsf{Con} \quad Y : \mathsf{Ty}(J^s)}{J \rhd^s Y : \mathsf{Con}}$$

The Local Representability Condition

For any
$$I, J$$
: Con and any J : Ty Γ^s ,
$$\mathsf{Con}(I, J \rhd^s Y) \cong \sum_{j: \mathsf{Con}(I, J)} \mathsf{Tm}(I^s, Y[j^s]^s)$$

natural in 1.

The Category Interpretation of Type Theory

The category model of type theory is a PCwF where

- Con is the category of categories and functors
- Ty J is the set of J-indexed families of categories (i.e. pseudofunctors $J \to \mathsf{Cat}$)
- ...

The Category Interpretation of Type Theory

The category model of type theory is a PCwF where

- Con is the category of categories and functors
- Ty J is the set of J-indexed families of categories (i.e. pseudofunctors $J \to \mathsf{Cat}$)
- . . .
- The context negation functor is the operation of taking **opposite** categories, which extends to a functor $Cat \rightarrow Cat$

The Category Interpretation of Type Theory

The category model of type theory is a PCwF where

- Con is the category of categories and functors
- Ty J is the set of J-indexed families of categories (i.e. pseudofunctors $J \to \mathsf{Cat}$)
- . . .
- The context negation functor is the operation of taking **opposite** $\mathbf{categories}$, which extends to a functor $\mathsf{Cat} \to \mathsf{Cat}$
- Type negation is given by post-composition with the opposite category functor

$$\frac{J : \mathsf{Con} \quad Y : \mathsf{Ty}(J^s)}{J \rhd^s Y : \mathsf{Con}}$$

$$|J\rhd^s Y|=\sum_{j\colon |J|}|Y\,j|$$

$$J : \mathsf{Con} \quad Y : \mathsf{Ty}(J^s) \ J \rhd^s Y : \mathsf{Con}$$
 $(s = +, -)$ $|J \rhd^s Y| = \sum_{j: \, |J|} |Y \, j| \ \mathsf{Hom}_{J \rhd^+ Y}((j_0, y_0), (j_1, y_1)) = \sum_{j_2 : \, \mathsf{Hom}(j_0, j_1)} \mathsf{Hom}_{Y(j_1)}(Y \, j_2 \, y_0, y_1)$

$$J : \mathsf{Con} \quad Y : \mathsf{Ty}(J^s) \ J \rhd^s Y : \mathsf{Con}$$
 $(s = +, -)$ $|J \rhd^s Y| = \sum_{j: \, |J|} |Y \, j|$ $\mathsf{Hom}_{J \rhd^+ Y}((j_0, y_0), (j_1, y_1)) = \sum_{j_2: \, \mathsf{Hom}(j_0, j_1)} \mathsf{Hom}_{Y(j_1)}(Y \, j_2 \, y_0, y_1)$ $\mathsf{Hom}_{J \rhd^- Y}((j_0, y_0), (j_1, y_1)) = \sum_{j_2: \, \mathsf{Hom}(j_0, j_1)} \mathsf{Hom}_{Y(j_0)}(y_0, Y \, j_2 \, y_1)$

Polarized Pi Types

The category model, the preorder model, etc. admit the polarized Π -types of [LH11]:

$$\frac{Y : \mathsf{Ty} \ J^{-} \quad Z : \mathsf{Ty}(J \rhd^{-} Y)}{\Pi \ Y \ Z : \mathsf{Ty} \ J}$$

Polarized Pi Types

The category model, the preorder model, etc. admit the polarized Π -types of [LH11]:

$$\frac{Y : \mathsf{Ty} \ J^{-} \quad Z : \mathsf{Ty}(J \rhd^{-} Y)}{\Pi \ Y \ Z : \mathsf{Ty} \ J}$$

$$\frac{M : \mathsf{Tm}(J \triangleright^{-} Y, Z)}{(\lambda M) : \mathsf{Tm}(J, \Pi Y Z)}$$

$$\frac{M : \mathsf{Tm}(J, \Pi Y Z)}{M : \mathsf{Tm}(J, \Pi Y Z) \quad N : \mathsf{Tm}(J^{-}, Y^{-})}$$

$$\frac{(M N) : \mathsf{Tm}(J, Z[\overline{N}])}{(M N) : \mathsf{Tm}(J, Z[\overline{N}])}$$

1 Presheaf Semantics of HOAS

Need to explicitly require stability under substitution

Definition 3.15 A CwF supports Π -types if for any two types $\sigma \in Ty(\Gamma)$ and $\tau \in Ty(\Gamma,\sigma)$ there is a type $\Pi(\sigma,\tau) \in Ty(\Gamma)$ and for each $M \in Tm(\Gamma,\sigma,\tau)$ there is a term $\lambda_{\sigma,\tau}(M) \in Tm(\Gamma,\Pi(\sigma,\tau))$ and for each $M \in Tm(\Gamma,\Pi(\sigma,\tau))$ and $N \in Tm(\Gamma,\sigma)$ there is a term $App_{\sigma,\tau}(M,N) \in Tm(\Gamma,\tau\{\overline{M}\})$ such that (the appropriately typed universal closures of) the following equations hold:

$$\begin{array}{lll} App_{\,\sigma,\tau}(\lambda_{\sigma,\tau}(M),N) &=& M\{\overline{N}\} & \Pi\text{-C} \\ \Pi(\sigma,\tau)\{f\} &=& \Pi(\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}) \in Ty(\mathsf{B}) & \Pi\text{-S} \\ \lambda_{\sigma,\tau}(M)\{f\} &=& \lambda_{\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}}(M\{\mathsf{q}(f,\sigma)\}) & \lambda\text{-S} \\ App_{\,\sigma,\tau}(M,N)\{f\} &=& App_{\,\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}}(M\{f\},N\{f\}) & App\text{-S} \end{array}$$

From [Hof97, 3.3]

Need to explicitly require stability under substitution

Definition 3.15 A CwF supports Π -types if for any two types $\sigma \in Ty(\Gamma)$ and $\tau \in Ty(\Gamma,\sigma)$ there is a type $\Pi(\sigma,\tau) \in Ty(\Gamma)$ and for each $M \in Tm(\Gamma,\sigma,\tau)$ there is a term $\lambda_{\sigma,\tau}(M) \in Tm(\Gamma,\Pi(\sigma,\tau))$ and for each $M \in Tm(\Gamma,\Pi(\sigma,\tau))$ and $N \in Tm(\Gamma,\sigma)$ there is a term $App_{\sigma,\tau}(M,N) \in Tm(\Gamma,\tau\{\overline{M}\})$ such that (the appropriately typed universal closures of) the following equations hold:

$$\begin{array}{lll} App_{\,\sigma,\tau}(\lambda_{\sigma,\tau}(M),N) &=& M\{\overline{N}\} & \Pi\text{-C} \\ \Pi(\sigma,\tau)\{f\} &=& \Pi(\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}) \in Ty(\mathsf{B}) & \Pi\text{-S} \\ \lambda_{\sigma,\tau}(M)\{f\} &=& \lambda_{\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}}(M\{\mathsf{q}(f,\sigma)\}) & \lambda\text{-S} \\ App_{\,\sigma,\tau}(M,N)\{f\} &=& App_{\,\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}}(M\{f\},N\{f\}) & App\text{-S} \end{array}$$

annoying!

From [Hof97, 3.3]

Solution: Use higher-order abstract syntax!

Solution: Use higher-order abstract syntax!

(and interpret it in a presheaf category!)

Presheaf Model

- Presheaf Model
- Lift Grothendieck Universe(s) [HS99]

- Presheaf Model
- Lift Grothendieck Universe(s) [HS99]
- Higher-Order Abstract Syntax [Hof99]

For a fixed (small) category \mathbb{C} , we can define the **presheaf model** (over \mathbb{C}) to be a CwF ($\widehat{\text{Con}}$, $\widehat{\text{Ty}}$, $\widehat{\text{Tm}}$, . . .)

For a fixed (small) category \mathbb{C} , we can define the **presheaf model** (over \mathbb{C}) to be a CwF ($\widehat{\text{Con}}$, $\widehat{\text{Ty}}$, $\widehat{\text{Tm}}$, . . .), where

Contexts are presheaves $\mathbb{C}^{\mathsf{op}} o \mathsf{Set}$

For a fixed (small) category \mathbb{C} , we can define the **presheaf model** (over \mathbb{C}) to be a CwF ($\widehat{\text{Con}}$, $\widehat{\text{Ty}}$, $\widehat{\text{Tm}}$, . . .), where

- Contexts are presheaves $\mathbb{C}^{\mathsf{op}} o \mathsf{Set}$
- Substitutions are natural transformations

For a fixed (small) category \mathbb{C} , we can define the **presheaf model** (over \mathbb{C}) to be a CwF ($\widehat{\text{Con}}$, $\widehat{\text{Ty}}$, $\widehat{\text{Tm}}$, . . .), where

- Contexts are presheaves $\mathbb{C}^{\mathsf{op}} o \mathsf{Set}$
- Substitutions are natural transformations
- Types in context Γ are presheaves on ∫ Γ

For a fixed (small) category \mathbb{C} , we can define the **presheaf model** (over \mathbb{C}) to be a CwF ($\widehat{\text{Con}}$, $\widehat{\text{Ty}}$, $\widehat{\text{Tm}}$, . . .), where

- Contexts are presheaves $\mathbb{C}^{\mathsf{op}} o \mathsf{Set}$
- Substitutions are natural transformations
- lue Types in context Γ are presheaves on $\int \Gamma$
- The empty context ♦ is the constant-1 presheaf
- . . .

For a fixed (small) category \mathbb{C} , we can define the **presheaf model** (over \mathbb{C}) to be a CwF ($\widehat{\text{Con}}$, $\widehat{\text{Ty}}$, $\widehat{\text{Tm}}$, . . .), where

- Contexts are presheaves $\mathbb{C}^{\mathsf{op}} o \mathsf{Set}$
- Substitutions are natural transformations
- Types in context Γ are presheaves on ∫ Γ
- The empty context ♦ is the constant-1 presheaf
- •

Claim This model of type theory supports \(\Pi\)-types

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

$$\mathbf{U} \ I \cong \widehat{\mathsf{Con}}(\mathbf{y} \ I, \mathbf{U})$$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

$$\mathbf{U} \ I \cong \widehat{\mathsf{Con}}(\mathbf{y} \ I, \mathbf{U})$$
 $\cong \widehat{\mathsf{Tm}}(\mathbf{y} \ I, \mathbf{U})$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

$$\mathbf{U} / \cong \widehat{\mathsf{Con}}(\mathbf{y} /, \mathbf{U})$$

$$\cong \widehat{\mathsf{Tm}}(\mathbf{y} /, \mathbf{U})$$

$$\cong \widehat{\mathsf{Ty}}(\mathbf{y} /)$$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

$$\mathbf{U} / \cong \widehat{\mathsf{Con}}(\mathbf{y} /, \mathbf{U})
\cong \widehat{\mathsf{Tm}}(\mathbf{y} /, \mathbf{U})
\cong \widehat{\mathsf{Ty}}(\mathbf{y} /)
= \mathsf{Set}^{(\int \mathbf{y} /)^{\mathsf{op}}}$$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

$$\mathbf{U} / \cong \widehat{\mathsf{Con}}(\mathbf{y} /, \mathbf{U})$$

$$\cong \widehat{\mathsf{Tm}}(\mathbf{y} /, \mathbf{U})$$

$$\cong \widehat{\mathsf{Ty}}(\mathbf{y} /)$$

$$= \mathsf{Set}^{(\int \mathbf{y} /)^{\mathsf{op}}}$$

$$= \mathsf{Set}^{(\mathbb{C}/I)^{\mathsf{op}}}$$

We want a universe, i.e. a closed type **U** such that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Ty}} \Gamma$$

Thankfully, we're in a presheaf category and can do Yoneda calculations:

$$\mathbf{U} / \cong \widehat{\mathsf{Con}}(\mathbf{y} /, \mathbf{U})$$

$$\cong \widehat{\mathsf{Tm}}(\mathbf{y} /, \mathbf{U})$$

$$\cong \widehat{\mathsf{Ty}}(\mathbf{y} /)$$

$$= \mathsf{Set}^{(\int \mathbf{y} /)^{\mathsf{op}}}$$

$$= \mathsf{Set}^{(\mathbb{C}/I)^{\mathsf{op}}}$$

So just define **U** I to be the set of presheaves on \mathbb{C}/I .

What if C is itself a CwF?

Key Idea: Talk about the "ground" CwF structure using the presheaf CwF structure

Semantics HOAS

Semantics

 $\mathsf{Ty} \colon \mathbb{C}^\mathsf{op} \to \mathsf{Set}$

HOAS

Semantics

Ty: $(\int igoplus)^{\mathsf{op}} o \mathsf{Set}$

HOAS

HOAS

Ty: Con(♦, **U**)

Semantics

HOAS

Ty: $\widehat{\mathsf{Tm}}(\blacklozenge, \mathbf{U})$

Semantics	HOAS
Ty: Tm(♦, U)	Ty: U

C					
	eı	m	a	n	CS

Ty: $\widehat{\mathsf{Tm}}(\blacklozenge, \mathbf{U})$

 $\mathsf{Tm} \colon (\int \mathsf{Ty})^{\mathsf{op}} \to \mathsf{Set}$

HOAS

Ty: U

Semantics	HOAS
Ty: $\widehat{Tm}(\blacklozenge, U)$	Ty: U
$Tm : \widehat{Con}(Ty, \mathbf{U})$	

er	20	10	4:	00
еп				

Ty: $\widehat{\mathsf{Tm}}(\blacklozenge, \mathbf{U})$

 $\mathsf{Tm} \colon \widehat{\mathsf{Con}}(\blacklozenge, \mathsf{Ty} \Rightarrow \mathsf{U})$

HOAS

Ty: U

Sem	antics

Ty: $\widehat{\mathsf{Tm}}(\blacklozenge, \mathbf{U})$

 $\mathsf{Tm} \colon \widehat{\mathsf{Tm}}(\blacklozenge, \mathsf{Ty} \Rightarrow \mathsf{U})$

HOAS

Ty: U

				_ =	
	11	2	n	- 1	CS

Ty: $\widehat{\mathsf{Tm}}(\blacklozenge, \mathbf{U})$

 $\mathsf{Tm} \colon \widehat{\mathsf{Tm}}(\blacklozenge, \mathsf{Ty} \Rightarrow \mathsf{U})$

HOAS

Ty: U

 $\mathsf{Tm} \colon \mathsf{Ty} \to \mathbf{U}$

Semantics	HOAS
Ty: $\widehat{Tm}(\blacklozenge, U)$	Ty: U
$Tm \colon \widehat{Tm}(\blacklozenge, Ty \Rightarrow U)$	$Tm\colon Ty o \mathbf{U}$
	$\Pi \colon (A \colon Ty) o (Tm \ A o Ty) o Ty$

Problem: How do we talk about operations on contexts, after we've abstracted them away?

$$\mathsf{Con}(I,J\rhd^s Y) \cong \sum_{j\colon \mathsf{Con}(I,J)} \mathsf{Tm}(I^s,Y[j^s]^s)$$

$$\mathsf{Con}(I,J\rhd^s Y) \cong \sum_{j\colon \mathsf{Con}(I,J)} \mathsf{Tm}(I^s,Y[j^s]^s)$$

$$\mathsf{Con}(I,J\rhd^s Y) \cong \sum_{j\colon \mathsf{Con}(I,J)} \mathsf{Tm}(I^s,Y[j^s]^s)$$

$$\frac{M : \operatorname{Tm}(J, \Pi Y Z) \quad N : \operatorname{Tm}(J^{-}, Y^{-})}{(M N) : \operatorname{Tm}(J, Z[\overline{N}])}$$

$$\mathsf{Con}(I,J\rhd^s Y) \cong \sum_{j\colon \mathsf{Con}(I,J)} \mathsf{Tm}(I^s,Y[j^s]^s)$$

$$\frac{M : \operatorname{Tm}(J, \Pi Y Z) \quad N : \operatorname{Tm}(J^{-}, Y^{-})}{(M N) : \operatorname{Tm}(J, Z[\overline{N}])}$$

Defining Ty⁻

Defining Ty⁻

$$\mathsf{Ty}^- \colon \mathsf{Con}^\mathsf{op} o \mathsf{Set}$$
 $\mathsf{Ty}^- J := \mathsf{Ty}(J^-)$
 $Y[j] := Y[j^-]$

$$(j : Con(I, J), Y : Ty^{-} J)$$

Defining Ty

$$\mathsf{Ty}^-\colon \mathsf{Con^{op}} o \mathsf{Set}$$
 $\mathsf{Ty}^-J := \mathsf{Ty}(J^-)$
 $Y[j] := Y[j^-]$
 $(j: \mathsf{Con}(I,J), \ Y: \mathsf{Ty}^-J)$

$$\mathsf{Tm}^-\colon\int\mathsf{Ty}^-\to\mathsf{Set}$$
 $\mathsf{Tm}^-(J,Y):=\mathsf{Tm}(J^-,Y^-)$
 $M[j]:=M[j^-]$
 $(j:\mathsf{Con}(I,J),\ M:\mathsf{Tm}^-(J,Y))$

$$\mathsf{Con}(I,J\rhd^s Y)\cong \sum_{j\colon \mathsf{Con}(I,J)} \mathsf{Tm}^s(I,Y[j])$$

$$\mathsf{Con}(I, J \triangleright^s Y) \cong \sum_{j \colon \mathsf{Con}(I, J)} \mathsf{Tm}^s(I, Y[j])$$

$$\frac{M : \operatorname{Tm}(J, \Pi Y Z) \quad N : \operatorname{Tm}^{-}(J, Y)}{(M N) : \operatorname{Tm}(J, Z[\overline{N}])}$$

Defn. An abstractly polarized CwF is a category Con with a terminal object • and two CwF structures

 $\mathsf{Ty}, \mathsf{Tm}, \triangleright$ and $\mathsf{Ty}^-, \mathsf{Tm}^-, \triangleright^-$

Defn. An abstractly polarized CwF is a category Con with a terminal object • and two CwF structures

$$\mathsf{Ty}, \mathsf{Tm}, \triangleright$$
 and $\mathsf{Ty}^-, \mathsf{Tm}^-, \triangleright^-$

Question What more should be added to this definition?

Defn. An abstractly polarized CwF is a category Con with a terminal object • and two CwF structures

$$\mathsf{Ty}, \mathsf{Tm}, \triangleright$$
 and $\mathsf{Ty}^-, \mathsf{Tm}^-, \triangleright^-$

Question What more should be added to this definition?

Ty
$$ullet$$
 = Ty $^ ullet$

Defn. An abstractly polarized CwF is a category Con with a terminal object • and two CwF structures

$$\mathsf{Ty}, \mathsf{Tm}, \triangleright$$
 and $\mathsf{Ty}^-, \mathsf{Tm}^-, \triangleright^-$

Question What more should be added to this definition?

- Ty = Ty[−] •
- ??

This seems to be the right approach

Better fits the formulation of CwFs as natural models [Awo18]

This seems to be the right approach

- Better fits the formulation of CwFs as natural models [Awo18]
- When adapting [ABK⁺21]'s Agda formalization of the setoid model, it is very straightforward to define it as an abstract PCwF but proving much more difficult to do as a concrete PCwF

Semantics	HOAS
$Ty^s \colon \widehat{Tm}(\blacklozenge, U)$	Ty ^s : U

Semantics	HOAS
$Ty^s \colon \widehat{Tm}(\blacklozenge, U)$	Ty ^s : U
$Tm^s \colon \widehat{Tm}(\blacklozenge, Ty^s \Rightarrow U)$	$Tm^s \colon Ty^s o \mathbf{U}$

Semantics	HOAS
$Ty^s \colon \widehat{Tm}(\blacklozenge, U)$	Ty ^s : U
$Tm^s \colon \widehat{Tm}(\blacklozenge, Ty^s \Rightarrow U)$	$Tm^s \colon Ty^s o \mathbf{U}$
	$\Pi \colon (A \colon Ty^-) o (Tm^- A o Ty) o Ty$

Core types, neutral-zoned contexts

- Core types, neutral-zoned contexts
- Hom types

- Core types, neutral-zoned contexts
- Hom types
- Polarized telescopes

- Core types, neutral-zoned contexts
- Hom types
- Polarized telescopes
- Directed Observational TT

- Core types, neutral-zoned contexts
- Hom types
- Polarized telescopes
- Directed Observational TT
- Formalization

- Core types, neutral-zoned contexts
- Hom types
- Polarized telescopes
- Directed Observational TT
- Formalization
- Connections to other varieties of polarized/directed TT

- Core types, neutral-zoned contexts
- Hom types
- Polarized telescopes
- Directed Observational TT
- Formalization
- Connections to other varieties of polarized/directed TT
- Polarizing both layers

[ABK⁺21] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Filippo Sestini.

Constructing a universe for the setoid model.

In *FoSSaCS*, pages 1–21, 2021.

[Alt99] Thorsten Altenkirch.

Extensional equality in intensional type theory.

In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), pages 412–420. IEEE, 1999.

[Awo18] Steve Awodey.

Natural models of homotopy type theory.

Mathematical Structures in Computer Science, 28(2):241–286, 2018

[Dyb95] Peter Dybjer.

Internal type theory.

In International Workshop on Types for Proofs and Programs, pages 120–134. Springer, 1995.

[Hof94] Martin Hofmann.

Elimination of extensionality in Martin-Löf type theory.

In Types for Proofs and Programs: International Workshop TYPES'93 Nijmegen, The Netherlands, May 24–28, 1993 Selected Papers, pages 166–190. Springer, 1994.

[Hof97] Martin Hofmann.

Syntax and semantics of dependent types.

In Extensional Constructs in Intensional Type Theory, pages 13–54. Springer, 1997.

[Hof99] Martin Hofmann.

Semantical analysis of higher-order abstract syntax.

In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), pages 204–213. IEEE, 1999.

[HS95] Martin Hofmann and Thomas Streicher.

The groupoid interpretation of type theory.

Twenty-five years of constructive type theory (Venice, 1995), 36:83–111, 1995.

[HS99] Martin Hofmann and Thomas Streicher.

Lifting grothendieck universes.

Unpublished note, 199:3, 1999.

[LH11] Daniel R Licata and Robert Harper.

2-dimensional directed dependent type theory.

2011.

Thank you!!

