
Deciding entailment for cofibration languages

Robert Rose

jww Matthew Weaver and Dan Licata

HoTT 2023



Motivation

Cubical type theories1,2,3 were invented to realize the potential of
intensional Martin-Löf type theory to become a computational theory of
homotopy types (or even directed homotopy types).

The standard semantics for cubical type theories are cubical presheaves,
which serve as combinatorial models of (directed) homotopy theory.
Witnesses of equality types are implemented as paths out of a special
interval type, whose standard semantics is the representable cubical
presheaf Hom(−, I):

0 1
x1

1Cyril Cohen et al. Cubical Type Theory: a constructive interpretation of the
univalence axiom. 2016. arXiv: 1611.02108 [cs.LO].

2Carlo Angiuli et al. “Syntax and models of Cartesian cubical type theory”. In:
Mathematical Structures in Computer Science 31.4 (2021), pp. 424–468.

3Matthew Z. Weaver and Daniel R. Licata. “A Constructive Model of Directed
Univalence in Bicubical Sets”. In: Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’20. Saarbrücken, Germany:
Association for Computing Machinery, 2020, pp. 915–928.

1

https://arxiv.org/abs/1611.02108


Morphisms in In

We will focus on cube categories which have products, and so higher
dimensional cubes are interpreted naturally as In = I1 × · · · × I1︸ ︷︷ ︸

n-times

.

For example, the non-degenerate 0- and 1-cubes in I2 may be pictured as

(0, 1) (1, 1)

(0, 0) (1, 0)

(x1,1)

(0,x2)

(x1,0)

(x1,x1)
(1,x2)

2



Cofibration language

Cubical type theories include a specification of a cofibration language.
The syntax will be that of a fragment of first-order equational logic.

3



Cofibration language

(0, 1) (1, 1)

(0, 0) (1, 0)

(x1,1)

(0,x2)

(x1,0)

(x1,x1)
(1,x2)

For example, the upper left corner point is specified by the formula

(x1 = 0) ∧ (x2 = 1)

The boundary of the square is specified by

(x1 = 0) ∨ (x1 = 1) ∨ (x2 = 0) ∨ (x2 = 1)

The 2-simplex below the diagonal is specified by (x1 = x1 ∨ x2).

4



Cofibration language

In this talk, the terms of the cofibration language will be those suitable
for formally describing elements in a free (distributive) lattice: they are
generated by

constants 0 and 1

variables xi , yi , ...

operations ∨ and ∧
Formulas will be generated by

⊥ and ⊤
equations (s = t) where s and t are terms

connectives ∨ and ∧
the quantifier ∀

5



Semantics

We will view cofibration languages as fragments of the Mitchell-Bénabou
language of the appropriate cubical presheaf topos. We will interpret
them using the Kripke-Joyal semantics.

The image of the interpretation of formulas of the language is a
subobject of Ω, known as the cofibration classifier Ψ.

6



Decision problem

Given cofibration formulas ϕ, ψ : In → Ω, is it the case that In ⊩ ϕ⇒ ψ?
We will first consider this problem without ∀ in the formulas, and later
with ∀.

7



Example

Does the following formula hold?

(v = z ∨ u) ∧ (u ∧ v = u) ∧ (z = v ∧ z)

⇒
(w ∧ ((v ∨ x) ∧ y) ∨ (x ∧ z)) ∨ (((y ∧ w) ∨ (x ∧ y)) ∧ z)

=

(w ∧ x ∧ v) ∨ (y ∧ ((w ∧ x) ∨ ((x ∨ z) ∧ w) ∨ (w ∧ z) ∨ (x ∧ v)))

8



Example

ϕ := (u = z ∨ t) ∧ (t ∧ u = t) ∧ (z = u ∧ z)

ψ := (w ∧ ((u ∨ x) ∧ y) ∨ (x ∧ z)) ∨ (((y ∧ w) ∨ (x ∧ y)) ∧ z)

= (w ∧ x ∧ u) ∨ (y ∧ ((w ∧ x) ∨ ((x ∨ z) ∧ w)

∨ (w ∧ z) ∨ (x ∧ u)))

According to the Kripke-Joyal semantics, ϕ⇒ ψ holds iff for all m ≥ 0
and morphisms α : Im → I6 whenever ϕ(α) holds, ψ(α) holds.

9



Example

In particular, if this formula ϕ⇒ ψ holds, then it holds when m = 0:
e.g., when α = (0, 1, 0, 0, 1, 1). Such substitutions readily evaluate to
equations between 0 and 1.

(1 = 1 ∨ 0) ∧ (0 ∧ 1 = 0) ∧ (1 = 1 ∧ 1)

⇒
(0 ∧ ((1 ∨ 0) ∧ 1) ∨ (0 ∧ 1)) ∨ (((1 ∧ 0) ∨ (0 ∧ 1)) ∧ 1)

=

(0 ∧ 0 ∧ 1) ∨ (1 ∧ ((0 ∧ 0) ∨ ((0 ∨ 1) ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 1)))

becomes

(1 = 1) ∧ (0 = 0) ∧ (1 = 1) ⇒ (0 = 0)

As it turns out, ϕ⇒ ψ does hold for all such substitutions α, and in this
case, this is enough to know that the formula holds.

10



Example

We get the same answer when we perform the minor translation to
propositional logic (trading = for ⇔) and view α as a Boolean
assignment:

(v ⇔ z ∨ u) ∧ (u ∧ v ⇔ u) ∧ (z ⇔ v ∧ z)

⇒
(w ∧ ((v ∨ x) ∧ y) ∨ (x ∧ z)) ∨ (((y ∧ w) ∨ (x ∧ y)) ∧ z)

⇔
(w ∧ x ∧ v) ∨ (y ∧ ((w ∧ x) ∨ ((x ∨ z) ∧ w) ∨ (w ∧ z) ∨ (x ∧ v)))

11



Reduction to UNSAT

Asking that this formula hold for all Boolean assignments is just to ask if
it valid.

Such a reduction, if it were sound, would mean that the decision problem
is efficiently reducible to UNSAT, the canonical problem of the
complexity class coNP.

On the practical side, this would open the door to using modern SAT
solving techniques in implementations of cubical type theories.

12



Unsound reduction

However, the simplistic effort at a reduction above easily fails in general.
For example,

⊤ ⇒ (x = 0) ∨ (x = 1)

does not hold in the Kripke-Joyal semantics, while

⊤ ⇒ (x ⇔ 0) ∨ (x ⇔ 1)

is valid as a Boolean formula.

The counterexample is just α = id : I1 → I1.

13



Disjunction in the consequent

One difference between these two problems is that the second one has a
disjunction (of formulas) on the right, while the first one does not. As it
turns out, this is the only obstruction. For now, we record that

In ⊩ ϕ⇒ (s = t)

iff

for all β : I0 → In, In ⊩ ϕ(β) implies In ⊩ (s = t)(β)

14



Transforming the consequent

Suppose we extend the formula to I2 and shift the second equation?

I2 ⊮ ⊤ ⇒ (x1 = 0) ∨ (x2 = 1)

because, for example, applying the formula to β = (1, 0) yields ⊥.

Analogously,
⊤ ⇒ (x1 ⇔ 0) ∨ (x2 ⇔ 1)

is not valid as a Boolean formula, with x1 = 1 and x2 = 0 satisfying its
negation.

15



The transformation C

Let ψ : In → Ω. Let a = lvs(ψ) be the number of leaves in a formula ψ.
We define a formula Cj : I

an → Ω:

Cj(ψ1 ∨ ψ2) := Cj(ψ1) ∨ Cj+lvs(ψ1)(ψ2)

Cj(ψ1 ∧ ψ2) := Cj(ψ1) ∧ Cj+lvs(ψ1)(ψ2)

Cj

(
(s = t)

)
:=

(
s[xjn+1/x1, . . . , xjn+n/xn] = t[xjn+1/x1, . . . , xjn+n/xn]

)
Cj(⊤) := ⊤
Cj(⊥) := ⊥

We let C(ψ) := C0(ψ).

16



Example

Consider the problem

ϕ := (x1 = x1 ∨ x2)

ψ := (x1 = 1) ∨ (x1 = x2) ∨ (x2 = 0)

Note that
I2 ⊮ ϕ⇒ ψ

because when α = (x1 ∨ x2, x2) : I
2 → I2, we have

I2 ⊩ (x1 = x1 ∨ x2)(α)

I2 ⊮ (x1 = 1)(α)

I2 ⊮ (x1 = x2)(α)

I2 ⊮ (x2 = 0)(α)

17



Example

Consider the problem

ϕ := (x1 = x1 ∨ x2)

ψ := (x1 = 1) ∨ (x1 = x2) ∨ (x2 = 0)

Specifically, when α = (x1 ∨ x2, x2) : I
2 → I2, we have

I2 ⊩ (x1 = x1 ∨ x2)(α)

I2 ⊮ (x1 = 1)(α) because I2 ⊮ (x1 = 1)(αβ1) where β1 = (0, 0)

I2 ⊮ (x1 = x2)(α) because I2 ⊮ (x1 = x2)(αβ2) where β2 = (1, 0)

I2 ⊮ (x2 = 0)(α) because I2 ⊮ (x1 = 1)(αβ3) where β3 = (0, 1)

Now we combine α and the βi : β = (αβ1, αβ2, αβ3). Given that

C(ψ) := (x1 = 1) ∨ (x3 = x4) ∨ (x5 = 0)

we have that I6 ⊮ C (ψ)(β)

18



Reduction

Let ψ : In → Ω, let a = lvs(ψ), and let ϕ : Ian → Ω.

Ian ⊩ ϕ⇒ C(ψ)

iff

for all β : I0 → Ian, I0 ⊩ ϕ(β) implies I0 ⊩ C(ψ)(β)

The top-to-bottom direction is trivial. The last slide exemplifies the
contrapositive of the bottom-to-top direction.

19



Validity preservation

Let ψ : In → Ω, and let a = lvs(ψ).

In ⊩ ⊤ ⇒ ψ

iff

Ian ⊩ ⊤ ⇒ C(ψ)

20



The transformation A

Our goal now is to transform formulas in antecedent position.

Let ϕ : In → Ω, and let a ≥ 0. We define A(ϕ) : Ian → Ω by

A(ϕ1 ∨ ϕ2) := A(ϕ1) ∨ A(ϕ2)

A(ϕ1 ∧ ϕ2) := A(ϕ1) ∧ A(ϕ2)

A
(
(s = t)

)
:=

∧
0≤j≤a

(
s[xjn+1/x1, . . . , xjn+n/xn] = t[xjn+1/x1, . . . , xjn+n/xn]

)
A(⊥) := ⊥
A(⊤) := ⊤

21



Example

Consider the problem:

ϕ := (x1 = 0) ∨ (x1 = 1)

ψ := (x1 = 0) ∨ (x1 = 1)

Note the different effects of A and C:

A(ϕ) := ((x1 = 0) ∧ (x2 = 0)) ∨ ((x1 = 1) ∧ (x2 = 1))

C(ψ) := (x1 = 0) ∨ (x2 = 1)

22



Validity preservation

In ⊩ ϕ⇒ ψ

iff

Ian ⊩ A(ϕ) ⇒ C(ψ)

23



Main reduction (without ∀)

In ⊩ ϕ⇒ ψ

iff

for all β : I0 → Ian, I0 ⊩ A(ϕ)(β) implies I0 ⊩ C(ψ)(β)

Reducing the latter problem to UNSAT is little more than a change of
notation and prefixing a ¬.

24



Universal quantifier

Because our indexing category has products and our variables have
representable type, the interpretation of ∀ in the Kripke-Joyal semantics
is remarkably efficient: given ϕ : In × Ip → Ω, and letting y be a variable
of type Ip,

In ⊩ ∀y .ϕ iff In × Ip ⊩ ϕ

We extend A and C so that they preserve ∀ and ignore the bound
variables.

25



Main reduction (with ∀)

Let A(ϕ)′,C(ψ)′ : Ian × Ip → Ω denote the formulas A(ϕ) and C(ψ) after
interpreting ∀.

In ⊩ ϕ⇒ ψ

iff

for all β : I0 → Ian, either I0 ⊮ A(ϕ)(β) or I0 ⊩ C(ψ)(β)

iff

for all β : I0 → Ian, either Ip ⊮ A(ϕ)′(β) or Ip ⊩ C(ψ)′(β)

iff

for all β : I0 → Ian, either

there exists γ : I 0 → I p such that I0 ⊮ A(ϕ)′(β, γ), or

for all γ : I 0 → I p, Ip ⊩ C(ψ)′(β, γ)

26



Classification

The final sentence —

for all β : I0 → Ian, either

there exists γ : I 0 → I p such that I0 ⊮ A(ϕ)′(β, γ), or

for all γ : I 0 → I p, Ip ⊩ C(ψ)′(β, γ)

— naturally reduces to a ∀∃-formula of quantified Boolean logic.

Conversely, there’s an efficient reduction of valid ∀∃-formulas in CNF to
entailments in the cofibration language (specifically, entailments of ⊥).

Proposition
The entailment problem for the cofibration language of presheaves over
the fpt for distributive lattices is Πpoly

2 -complete.

27



Classification

The cofibration languages of CCHM4 and ABCFHL5 interpret (efficiently)
into a less expressive fragment of the Mitchell-Bénabou language. This
pays dividends in terms of their run-time complexity.

Proposition
The entailment problem for the CCHM cofibration language is
coNP-complete.

Proposition
The entailment problem for the ABCFHL cofibration language is
coNP-complete.

4Cyril Cohen et al. Cubical Type Theory: a constructive interpretation of the
univalence axiom. 2016. arXiv: 1611.02108 [cs.LO].

5Carlo Angiuli et al. “Syntax and models of Cartesian cubical type theory”. In:
Mathematical Structures in Computer Science 31.4 (2021), pp. 424–468.

28

https://arxiv.org/abs/1611.02108


Thank you!

29


