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The proliferation of type theories

∼2009 Invention of HoTT/UF using Martin-Löf Type Theory
(Awodey–Warren, Voevodsky)

2013 Homotopy Type System (Voevodsky)

∼2013 Internally parametric type theory (BCM)

2015 Real-cohesive type theory (Shulman)

∼2016 Cubical type theory (BCH, CCHM, ABCFHL, . . . )

∼2016 Synthetic guarded recursion (BGCMB)

2017 Two-level type theory (ACKS)

2017 Simplicial type theory (RS)

2017 Differential cohesive type theory (GLNPRSW)

2018 Crisp type theory (LOPS)

2018 Indexed type theory (Isaev)

2021 Stable homotopy type theory (RFL)

2022+ Higher observational type theory (AKS)

2023 Commuting cohesions (MR)

2023+ Displayed type theory (KS)

Is there a unified type theory that includes all these examples?
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(Awodey–Warren, Voevodsky)

2013 Homotopy Type System (Voevodsky)

∼2013 Internally parametric type theory (BCM)

2015 Real-cohesive type theory (Shulman)

∼2016 Cubical type theory (BCH, CCHM, ABCFHL, . . . )

∼2016 Synthetic guarded recursion (BGCMB)

2017 Two-level type theory (ACKS)

2017 Simplicial type theory (RS)

2017 Differential cohesive type theory (GLNPRSW)

2018 Crisp type theory (LOPS)

2018 Indexed type theory (Isaev)

2021 Stable homotopy type theory (RFL)

2022+ Higher observational type theory (AKS)

2023 Commuting cohesions (MR)

2023+ Displayed type theory (KS)

Is there a unified type theory that includes all these examples?



The proliferation of type theories

∼2009 Invention of HoTT/UF using Martin-Löf Type Theory
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Outline

1 Informal modal type theory

2 Modal type theories are everywhere

3 Formal modal type theory: context division

4 Semantics of modal type theory: co-dextrification

5 Enhancements and open problems



What is modal type theory?

A modal type theory consists of

1 One or more ordinary type theories.

2 New unary type formers acting on or between them.
(Higher-ary type formers make a “substructural” type theory.)

3 Functions relating these type formers and their composites.

Accordingly, it is specified by a 2-category M, with

1 Objects p, q, r , . . . called modes.

2 Morphisms µ ∶ p → q, . . . called modalities.

3 2-cells α ∶ µ ⇒ ν, . . . which today I will call laws.

And it should have semantics in a (pseudo) 2-functor M → Cat:
1 Each mode represents a category.

2 Each modality represents a functor.

3 Each law represents a natural transformation.

Licata, Shulman, Riley, “A Fibrational Framework for Substructural and Modal Logics”, FSCD’17

http://dlicata.web.wesleyan.edu/pubs/lsr17multi/lsr17multi-ex.pdf
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Modal dependence

• Each mode has its own ordinary type theory.

• For a p-type A and a q-type B, with µ ∶ p → q,

f ∶ (x ∶µ A) → B

is a function associating, to any x in A, an element of B that
depends on x through µ.

• Ordinary (x ∶ A) → B coincides with (x ∶1p A) → B.



Positive modalities

A modality µ ∶ p → q maps a p-type A to a q-type µ⊡A,
internalizing µ-dependence with a universal property:

(x ∶µ A) → B ≃ (y ∶ µ⊡A) → B

• Semantically, x ∶µ A and y ∶ µ⊡A are equivalent.

• Syntactically, we have a constructor mod ∶ (x ∶µ A) → µ⊡A
with an induction principle that any y ∶ µ⊡A can be assumed
to be mod(x) for some x ∶µ A.
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Cohesive type theory

Example (Spatial type theory)

• One mode t.

• Modalities ♭ ∶ t → t and ♯ ∶ t → t.

• ♭ is an idempotent comonad, ♯ is an idempotent monad.

• An adjunction ♭ ⊣ ♯.

Semantics in topological∗ spaces.

• ♭A = A retopologized discretely

• ♯A = A retopologized indiscretely

•
Other semantics include

• Smooth ∞-groupoids (SDG — cf. Myers’ talk Monday)

• Simplicial ∞-groupoids (shape is geometric realization)

Shulman, “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”, 1509.07584

http://arxiv.org/abs/1509.07584


Cohesive type theory

Example (Cohesive type theory)

• One mode t.

• Modalities ♭ ∶ t → t and ♯ ∶ t → t and π0 ∶ t → t.

• ♭ is an idempotent comonad, ♯ and π0 are idempotent monads.

• Adjunctions π0 ⊣ ♭ ⊣ ♯.

Semantics in locally connected topological∗ spaces.

• ♭A = A retopologized discretely

• ♯A = A retopologized indiscretely

• π0A = the set of connected components of A, discretely

Other semantics include

• Smooth ∞-groupoids (SDG — cf. Myers’ talk Monday)

• Simplicial ∞-groupoids (shape is geometric realization)

Shulman, “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”, 1509.07584

http://arxiv.org/abs/1509.07584


Cohesive type theory

Example (Cohesive homotopy type theory)

• One mode t.

• Modalities ♭ ∶ t → t and ♯ ∶ t → t and s ∶ t → t.

• ♭ is an idempotent comonad, ♯ and s are idempotent monads.

• Adjunctions s ⊣ ♭ ⊣ ♯.

Semantics in locally contractible topological∗ ∞-groupoids.

• ♭A = A retopologized discretely

• ♯A = A retopologized indiscretely

• sA = the shape (fundamental ∞-groupoid) of A, discretely

Other semantics include

• Smooth ∞-groupoids (SDG — cf. Myers’ talk Monday)

• Simplicial ∞-groupoids (shape is geometric realization)

Shulman, “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”, 1509.07584

http://arxiv.org/abs/1509.07584


Cohesive type theory

Example (Cohesive homotopy type theory)

• One mode t.

• Modalities ♭ ∶ t → t and ♯ ∶ t → t and s ∶ t → t.

• ♭ is an idempotent comonad, ♯ and s are idempotent monads.

• Adjunctions s ⊣ ♭ ⊣ ♯.

Semantics in locally contractible topological∗ ∞-groupoids.

• ♭A = A retopologized discretely

• ♯A = A retopologized indiscretely

• sA = the shape (fundamental ∞-groupoid) of A, discretely

Other semantics include

• Smooth ∞-groupoids (SDG — cf. Myers’ talk Monday)

• Simplicial ∞-groupoids (shape is geometric realization)

Shulman, “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”, 1509.07584

http://arxiv.org/abs/1509.07584


Commuting cohesions

As in Riley’s talk Monday:

Example

• One mode.

• Endo-modalities s♡, ♭♡, ♯♡, s♣, ♭♣, ♯♣.

• ♭♡, ♭♣ are idemp. comonads, s♡, ♯♡, s♣, ♯♣ are idemp. monads.

• Adjunctions s♡ ⊣ ♭♡ ⊣ ♯♡ and s♣ ⊣ ♭♣ ⊣ ♯♣.

• ♭♡ ◦ ♭♣ = ♭♣ ◦ ♭♡, etc.

Should have semantics in simplicial topological ∞-groupoids.

Myers, Riley, “Commuting Cohesions”, 2301.13780

https://arxiv.org/abs/2301.13780


More single-mode examples

• Crisp type theory: One idempotent comonad ♭. Semantics in
“global sections” of any connected topos.

• Synthetic stable homotopy theory: a self-adjoint idempotent
monad/comonad ♮. Semantics in parametrized spectra.

• Synthetic guarded domain theory: an idempotent comonad □
and a “later” endofunctor ▷. Semantics in the “topos of
trees” Setω

op
.

• Directed type theory: an idempotent comonad “core” and an
involution “op”. Semantics in Cat or ∞Cat.

Licata, Orton, Pitts, Spitters, “Internal Universes in Models of Homotopy Type Theory”, 1801.07664
Riley, Finster, Licata, “Synthetic Spectra via a Monadic and Comonadic Modality”, 2102.04099
Cisinski, Nguyen, Walde, “Univalent Directed Type Theory”, CMU Seminar 2023

https://arxiv.org/abs/1801.07664
https://arxiv.org/abs/2102.04099
https://www.cmu.edu/dietrich/philosophy/hott/seminars/


Two-level type theory

As in Uskuplu’s talk. Not originally written modally, but it can be:

• Two modes: e for exo-types, f for fibrant types.

• Modalities α ∶ f → e and β ∶ e → f forming an isomorphism.

• α⊡X is the “coercion” c(X ) from fibrant types to exo-types.
We omit β⊡X , since fibrant replacement is inconsistent.

Voevodsky, “A simple type system with two identity types”, IAS 2013
Annenkov, Capriotti, Kraus, Sattler, “Two-Level Type Theory and Applications”, 1705.03307

https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://arxiv.org/abs/1705.03307


Indexed type theory

If p ∶ E → B is a fibration whose fibers have terminal objects, we
have an adjunction

B Eterminals

p

This modal type theory is similar to Isaev’s indexed type theories.

Isaev, “Indexed type theories”, 1806.08038

https://arxiv.org/abs/1806.08038


Identity types

Identity types can also be considered a “unary type former”:

A 7→ IdA

The only difference is that IdA is indexed by A× A.

So we should have one mode p, with one modality ι ∶ p → p.

. . . and two laws 0, 1 ∶ ι ⇒ 1p for the endpoints

. . . and a law ρ ∶ 1p ⇒ ι for reflexivity, with 0 ◦ ρ = 1 ◦ ρ = 11p

. . . and of course we also have ι ◦ ι, etc.

So the (monoidal) hom-category M(p, p) is some cube category.
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Identity types

Identity types can also be considered a “unary type former”:

A 7→ IdA

The only difference is that IdA is indexed by A× A.

So we should have one mode p, with one modality ι ∶ p → p.
. . . and two laws 0, 1 ∶ ι ⇒ 1p for the endpoints
. . . and a law ρ ∶ 1p ⇒ ι for reflexivity, with 0 ◦ ρ = 1 ◦ ρ = 11p
. . . and of course we also have ι ◦ ι, etc.

So the (monoidal) hom-category M(p, p) is some cube category.

Cavallo, “Higher Inductive Types and Internal Parametricity for Cubical Type Theory”, Ph.D. Thesis



Combining type theories

If M and N are 2-categories, so is M×N .

• cohesion × cohesion = two commuting cohesions

• cohesion × cubes

• 2LTT × cubes

• directed × 2LTT (as in Neumann’s talk)

Also gives a framework for more refined combinations,
e.g. 2LTT with only the inner layer being cubical or directed.
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Dealing with modal contexts

Question #1

What kind of thing can a modal function be applied to?

E.g. the constructor mod ∶ (x ∶µ A) → µ⊡A requires a rule

? ⊢ M ∶ A

Γ ⊢ mod(M) ∶ µ⊡A

If µ ∶ p → q, then Γ is a q-context, but ? must be a p-context!

Question #2

When can we use a modal variable x ∶µ A?

(Γ, x ∶µ A) is a q-context, but A is a p-type, so we have no type in
context (Γ, x ∶µ A) for x to belong to.
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? ⊢ M ∶ A
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If µ ∶ p → q, then Γ is a q-context, but ? must be a p-context!
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When can we use a modal variable x ∶µ A?

(Γ, x ∶µ A) is a q-context, but A is a p-type, so we have no type in
context (Γ, x ∶µ A) for x to belong to.



Introducing context division

We need to “cancel out” the µ annotation on x , to use it.

First idea

Define the p-context Γ/µ (also written Γ.µµ or Γ.{µ} or µ\Γ) by:
• For every x ∶µ A in Γ, we have x ∶ A in Γ/µ.
• Omit all the other variables.

Then the rule for mod is

Γ/µ ⊢ M ∶ A

Γ ⊢ mod(M) ∶ µ⊡A

This is the correct rule, but our definition of Γ/µ needs work.



Laws in context division

α ∶ µ ⇒ ν should induce µ⊡A → ν⊡A, that is x ∶µ A ⊢ ? ∶ ν⊡A.

(x ∶µ A)/ν ⊢ ? ∶ A

x ∶µ A ⊢ ? ∶ ν⊡A

If we omit x from (x ∶µ A)/ν since µ ̸= ν, we have nothing left.

Second idea

Define Γ/ν by

• For x ∶µ A in Γ, if there is α ∶ µ ⇒ ν, we have x ∶ A in Γ/ν.
• Omit all the other variables.
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If x disappears in (x ∶ν◦µ A)/ν since ν ◦µ ̸⇒ ν, there’s nothing left.

Third idea

Define Γ/ν by

• For x ∶µ A in Γ, if α ∶ µ ⇒ ν ◦ ϱ, we have x ∶ϱ A in Γ/ν.
• Omit all the other variables.
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Parallel laws in context division

Two laws α, β ∶ µ ⇒ ν should give two terms x ∶µ A ⊢ ? ∶ ν⊡A.

Fourth idea (∼LSR)

Define Γ/ν by

• Replace x ∶µ A in Γ by a variable xα ∶ϱ A for each pair (ϱ, α)
with α ∶ µ ⇒ ν ◦ ϱ.

Given α, β ∶ µ ⇒ ν, we have (x ∶µ A)/ν = (xα ∶ A, xβ ∶ A), and

xα ∶ A, xβ ∶ A ⊢ xα ∶ A

x ∶µ A ⊢ mod(xα) ∶ ν⊡A
xα ∶ A, xβ ∶ A ⊢ xβ ∶ A

x ∶µ A ⊢ mod(xβ) ∶ ν⊡A

Licata, Shulman, Riley, “A Fibrational Framework for Substructural and Modal Logics”, FSCD’17

http://dlicata.web.wesleyan.edu/pubs/lsr17multi/lsr17multi-ex.pdf


Too much choice in context division

At last we have enough variables. . . but actually we have too many.

M = p ⇓α q r

µ

ν

ϱ

Then 1ϱ◦µ ∶ (ϱ ◦ µ) ⇒ ϱ ◦ µ and ϱ ◁ α ∶ (ϱ ◦ µ) ⇒ ϱ ◦ ν, so

(x ∶σ A)/ϱ = (x1ϱ◦µ ∶µ A, xϱ◁α ∶ν A)
(x ∶σ A)/ϱ/ν = (x1ϱ◦µ,α ∶ A, xϱ◁α,1ν ∶ A)

We get two maps (x ∶ϱ◦µ A) → ϱ⊡(ν⊡A) instead of just one.

Thus, LSR imposes equations between canonical forms such as

mod(x1ϱ◦µ,α) ≡ mod(xϱ◁α,1ν).



Multimodal Type Theory

Final idea

Delay the choice of α until the time of use of the variable.
Division is a constructor of contexts, not an operation on them.

Contexts defined inductively from empty, variables, and divisions:

⋄p ctxp

Γ ctxq µ ∶ p → q Γ/µ ⊢ A typep

Γ, (x ∶µ A) ctxq

Γ ctxq µ ∶ p → q

Γ/µ ctxp

Now we choose a law when we use a variable, e.g.

α ∶ µ ⇒ ν ◦ ϱ
Γ, (x ∶µ A) /ν (y ∶ B) /ϱ ⊢ xα ∶ A

Gratzer, Kavvos, Nuyts, Birkedal, “Multimodal Dependent Type Theory”, 2011.15021

https://arxiv.org/abs/2011.15021


Division is an adjoint

Recall the introduction rule of µ⊡A:

Γ/µ ⊢ a ∶ A

Γ ⊢ mod(a) ∶ µ⊡A

This suggests that (−/µ) is a left adjoint to µ⊡−.

Theorem (∼GKNB)

MTT with mode theory M can be interpreted in any 2-functor
C ∶ M → CwF such that

• Each category Cp models MLTT, and

• Each map Cµ ∶ Cp → Cq is a dependent right adjoint.



Left adjoints to modality functors

Thus, in any chain of adjoint functors, we can model all but the
leftmost as modalities in MTT. Sometimes we can do even better:

Example

In a cohesive topos with s ⊣ ♭ ⊣ ♯, we can model ♭ and ♯ as MTT
modalities. And since s is an idempotent monadic modality, we can
represent it internally as a localization (RSS).

But this doesn’t always work:

Example

The category of condensed∗/pyknotic sets has ♭ ⊣ ♯ but not s.
It seems we can only model ♯, and ♭ is a comonad, so not internal.
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The category of liftings

Given µ ∶ p → q and ν ∶ r → q, let Factµν be the category:

• Objects are pairs (ϱ, α) with ϱ ∶ p → r and α ∶ µ ⇒ ν ◦ ϱ
• Morphisms (ϱ, α) → (ϱ′, α′) are β ∶ ϱ ⇒ ϱ′ s.t. (ν ◁ β) ◦ α = α′.

Let C ∶ M → Cat, with µ ∶ p → q and ν ∶ r → q.
For A ∈ Cp, we have a functor

Factµν → Cr

(ϱ, α) 7→ Cϱ(A)

p

q

r

µ

ϱ ⇓α

ν

The ∼LSR approach to (x ∶µ A)/ν has one variable (xα ∶ϱ A) for
each (ϱ, α) ∈ Factµν , which semantically means the product∏

(ϱ,α)∈Factµν Cϱ(A).

Obviously, this ignores the morphisms in Factµν !
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Semantic context division

This suggests (x ∶µ A)/ν should be the limit of (x ∶ϱ A) over Factµν .
It’s unclear if this makes sense syntactically in general, but we can
use it semantically to define division on a context extension:(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, lim(ϱ,α)∈Factµν (x ∶ϱ A)

)

For this to make sense as a definition of /ν, we need either:

1 Contexts are defined inductively, with “extension by a limit”
as a constructor, and this is a recursive definition of /ν.

2 Contexts are defined coinductively, with /ν as a destructor,
and this is a corecursive definition of context extension!

Both should work, but the second is easier.

(“Modal contextual category” vs “Modal category with families”)



Semantic context division

This suggests (x ∶µ A)/ν should be the limit of (x ∶ϱ A) over Factµν .
It’s unclear if this makes sense syntactically in general, but we can
use it semantically to define division on a context extension:(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, lim(ϱ,α)∈Factµν (x ∶ϱ A)

)
For this to make sense as a definition of /ν, we need either:

1 Contexts are defined inductively, with “extension by a limit”
as a constructor, and this is a recursive definition of /ν.

2 Contexts are defined coinductively, with /ν as a destructor,
and this is a corecursive definition of context extension!

Both should work, but the second is easier.

(“Modal contextual category” vs “Modal category with families”)



Semantic context division

This suggests (x ∶µ A)/ν should be the limit of (x ∶ϱ A) over Factµν .
It’s unclear if this makes sense syntactically in general, but we can
use it semantically to define division on a context extension:(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, lim(ϱ,α)∈Factµν (x ∶ϱ A)

)
For this to make sense as a definition of /ν, we need either:

1 Contexts are defined inductively, with “extension by a limit”
as a constructor, and this is a recursive definition of /ν.

2 Contexts are defined coinductively, with /ν as a destructor,
and this is a corecursive definition of context extension!

Both should work, but the second is easier.

(“Modal contextual category” vs “Modal category with families”)



The co-dextrification

Given C ∶ M → Cat, let an object of Ĉr consist of

1 For each µ ∶ p → r in M, an object Γ/µ ∈ Cp.

2 For each ϱ ∶ p → q and α ∶ µ ⇒ ν ◦ ϱ, a map Γ/ν → Cϱ(Γ/µ).
3 Coherence axioms.

Theorem (S.)

Let C ∶ M → Cat, where each Cp has, and each Cµ preserves,

M-sized limits. Then Ĉ ∶ M → Cat, each Ĉµ has a left adjoint,

and the types in Ĉp are those of Cp.

Thus, we can interpret MTT in Ĉ to reason about C .

Shulman, “Semantics of multimodal adjoint type theory”, 2303.02572

https://arxiv.org/abs/2303.02572
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Negative modalities

If µ ⊣ µ† is an adjunction in M, we can define a negative µ�A:

Γ/µ† ⊢ M ∶ A

Γ ⊢ mod(M) ∶ µ�A

Γ/µ ⊢ M ∶ µ�A

Γ ⊢ open(M) ∶ A

with η-conversion, (µ⊡−) ⊣ (µ�−), and µ�A ≃ µ†⊡A.

• No µ†-variables, e.g. ♭ ⊣ ♯ uses only crisp (♭) variables.

• Modeled in co-dextrifications with freely added right adjoints.

MTT + negatives = Multimodal Adjoint Type Theory (MATT).



Indexed modalities and interval variables

Let ι ∶ p → p be a modality with 0, 1 ∶ ι ⇒ 1p.
Its indexed modality IdA has introduction rule

Γ/ι ⊢ M ∶ A

Γ ⊢ λM ∶ IdA(M000,M111)

So Γ/ι acts like extension by an interval variable: (Γ, i ∶ I).

Depending on what else we put in, this acts like

• Cubical type theories

• Internal parametricity type theories

• Simplicial type theory

Is there a general theory of “indexed modalities”?



Parametric adjoints

The elimination rule for cubical path-types looks negative:

Γ ⊢ M ∶ IdA(x , y) Γ ⊢ d ∶ I
Γ ⊢ M d ∶ A

The cubical cylinder Γ 7→ Γ× I isn’t a right adjoint, but it is:

Definition

A functor F ∶ C → D is a parametric right adjoint if the induced
functor C → D/F1 is a right adjoint.

To give ν⊡A a negative eliminator, it suffices for /ν to have a
parametric left adjoint Lν :

Lν(Γ, r) ⊢ M ∶ ν⊡A Γ ⊢ r ∶ ⋄/ν
Γ ⊢ openr(M) ∶ A

Gratzer, Cavallo, Kavvos, Guatto, Birkedal, “Modalities and Parametric Adjoints”, ToCL 2022

https://doi.org/10.1145/3514241


Left liftings

Recall in the co-dextrification (x ∶µ A)/ν = lim(ϱ,α)∈Factµν (x ∶ϱ A).
Can we make sense of this syntactically?

• If Factµν has an initial object η ∶ µ ⇒ ν ◦ (µ/ν), then

lim(ϱ,α)∈Factµν (x ∶ϱ A) = (x ∶µ/ν A)

Such a µ/ν is called a left lifting of µ along ν.

• If Factµν is a disjoint union of categories with initial objects
ηi ∶ µ ⇒ ν ◦ (µ/ν)i (called a left multi-lifting), then

lim(ϱ,α)∈Factµν (x ∶ϱ A) = ∏
i(x ∶(µ/ν)i A)

In particular, if Factµν is empty, then x vanishes in (x ∶µ A)/ν.

Many mode theories have left (multi-)liftings, and in practice we
often use context divisions that compute this way.
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Computing modalities

Most modalities preserve products:

µ⊡(A× B) ≃ µ⊡A× µ⊡B

c(A× B) ≃ c(A)× c(B)
IdA×B(u, v) ≃ IdA(fst u, fst v)× IdB(snd u, snd v)

Some preserve other type-formers too:

c(A → B) ≃ c(A) → c(B)
IdA→B(f , g) ≃

∏
x∶A IdB(f x , g x)

When can we turn these into computation laws for the LHS?

• Higher Observational Type Theory∗ does this for Id

• Displayed Type Theory† does it for modalities ♢ and (−)d

∗ Joint WIP with Altenkirch and Kaposi
† Joint WIP with Kolomatskaia



Modal (co)inductive types

• The positive modality of µ acts like an inductive datatype
with one constructor mod ∶ (x ∶µ A) → µ⊡A.

• The negative modality of µ ⊣ µ† acts like a record type
with one destructor open ∶ (x ∶µ µ�A) → A.

We can also consider more general inductive, coinductive, and
record types with modal constructors and destructors.

• A higher inductive type is an inductive datatype X with
constructors valued in IdX .

We can also consider inductive and coinductive types with
constructors and destructors in other modalities. (Kolomatskaia, WIP)
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Modal type formers

We can modally parametrize type formers, e.g. for p
µ−→ q

ν−→ r

Σµ,ν ∶ (A ∶ν◦µ Up) → (B ∶ν (x ∶µ A) → Uq) → Ur

Πµ,ν ∶ (A ∶ν◦µ Up) → (B ∶ν (x ∶µ A) → Uq) → Ur

Uq typep X ∶µ Uq ⊢ El(A) typeq

and assume that they exist only for certain µ, ν, even if µ, ν are
isomorphisms in M (as for 2LTT).

Examples

• Π-types of (∞-)categories (Neumann’s talk today)

• Smooth/proper families as modes (Anel’s talk yesterday)

• Pure type systems?

• Universe levels?



Homotopical models

• Any (∞, 1)-topos can be presented by a model category that
interprets Book HoTT.

• Any finite diagram of 1-topoi has a co-dextrification that
interprets MATT.

Question

Can a finite diagram of (∞, 1)-topoi be presented by a diagram of
model categories interpreting MATT?

• If the (∞, 1)-topoi are 1-localic, we can work with the 1-sites.

• Some other special cases are tractable.

• Do we need to let M be an (∞, 2)-category?



Implementations

Can we implement general modal type theories?

• Gratzer: MTT satisfies normalization

• SGB: Prototype implementation of locally posetal MTT

Potential issues:

• Substitutions in MTT have no “list of terms” canonical form:
generated inductively by terms, divisions, composites, etc.

• When evaluating a variable xα in an NbE environment, we
have to substitute the resulting “value” along α.

• Co-dextrification with negatives has freely added adjoints.
But such 2-categories can have undecidable equality (DPP).

Gratzer, “Normalization for multimodal type theory”, 2106.01414
Stassen, Gratzer, Birkedal, “mitten: a flexible multimodal proof assistant”, preprint 2022
Dawson, Paré, Pronk, “Undecidability of the Free Adjoint Construction”, ACS 2003

https://www.arxiv.org/abs/2106.01414
https://jozefg.github.io/papers/mitten-a-flexible-multimodal-proof-assistant.pdf
https://doi.org/10.1023/A:1025712521140


Thank you

Thanks for listening!
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