
Homotopy Type Theory 2023
Carnegie Mellon University, Pittsburgh, 22-25 May 2023

Propositional dependent type theories:
a conservativity result for homotopy

elementary types.

Matteo Spadetto (University of Leeds)

The notion of conservativity

Suppose that we are given two dependent type theories T1 and T2

such that T2 extends T1.

One can ask whether the two theories prove the same statements.

This property corresponds to the following: whenever T2 proves a
term-judgement Γ ⊢ a : A, then T1 proves a term-judgement
Γ ⊢ ã : A.

When this happens, we say that T2 is conservative over T1.

The notion of conservativity

Suppose that we are given two dependent type theories T1 and T2

such that T2 extends T1.

One can ask whether the two theories prove the same statements.

This property corresponds to the following: whenever T2 proves a
term-judgement Γ ⊢ a : A, then T1 proves a term-judgement
Γ ⊢ ã : A.

When this happens, we say that T2 is conservative over T1.

Hofmann’s conservativity result

If T2 is an extensional type theory and T1 is an intensional type
theory with some (fundamental) additional extensional assumptions,
e.g.

x : A, p : x = x ⊢ p = r(x)

then T2 is conservative over T1. The proof is contained in:

Martin Hofmann, Conservativity of equality reflection over
intensional type theory, 1996.

Intensional identity types

Formation & Introduction rules.

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

Path Elimination & Computation rules.

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ≡ q(x)

Propositional identity types

Formation & Introduction rules.

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

Path Elimination & Propositional Computation rules.

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ̸≡ q(x)

Propositional identity types

Formation & Introduction rules.

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

Path Elimination & Propositional Computation rules.

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ H(q, x) : J(q, x, x, r(x)) = q(x)

Propositional identity types in the literature

Propositional identity types appear in:

Marc Bezem, Thierry Coquand, Simon Huber, A model of type
theory in cubical sets, 2014.

Benno van den Berg, Path categories and propositional identity
types, 2018.

Benno van den Berg, Martijn den Besten, Quadratic type checking
for objective type theory, 2021.

Dependent sum types

Formation and Introduction rules.

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

Elimination and Computation rules.

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ≡ c(x, y)

Propositional dependent sum types

Formation and Introduction rules.

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

Elimination and Computation rules.

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ̸≡ c(x, y)

Propositional dependent sum types

Formation and Introduction rules.

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

Elimination and Propositional Computation rules.

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ σ(c, x, y) : split(c, ⟨x, y⟩) = c(x, y)

Aim of the talk

Let PTT be a dependent type theory with:
▶ propositional identity types,
▶ propositional dependent sum types,
▶ and propositional dependent product types.

By adapting Hofmann’s argument, we compare PTT to extensional
type theories, looking for a conservativity result of such a type theory
over PTT.

Aim of the talk

Let PTT be a dependent type theory with:
▶ propositional identity types,
▶ propositional dependent sum types,
▶ and propositional dependent product types.

By adapting Hofmann’s argument, we compare PTT to extensional
type theories, looking for a conservativity result of such a type theory
over PTT.

h-elementary types

Definition
The class of the h-elementary type-judgements is the smallest class F
of type-judgements of PTT such that:
▶ atomic type-judgements γ ⊢ S : Type belongs to F if S is an

h-set;
▶ the family F is closed up to applying the formation rules of =, Π

and Σ.

A type-judgement δ ⊢ T (δ) : Type of PTT is h-elementary if it
belongs to this class.

h-elementary types

Definition
The class of the h-elementary type-judgements is the smallest class F
of type-judgements of PTT such that:
▶ atomic type-judgements γ ⊢ S : Type belongs to F if S is an

h-set;
▶ the family F is closed up to applying the formation rules of =, Π

and Σ.

A type-judgement δ ⊢ T (δ) : Type of PTT is h-elementary if it
belongs to this class.

Let ETT be the extensional type theory whose atomic types are the
atomic h-sets of PTT.

Let | · | : PTT ⇀ ETT be the interpretation of:
1. the h-elementary contexts of PTT,
2. the h-elementary type-judgements of PTT in h-elementary

context,
3. the term-judgements of PTT in h-elementary type and context,

i.e. the h-elementary sub-theory of PTT, in ETT.

Theorem
Whenever γ : Γ is an h-elementary context of PTT and:

γ ⊢ A(γ) : Type

is an h-elementary type-judgement of PTT, if ETT infers
|γ| ⊢ext a(|γ|) : |A(γ)| then PTT infers:

γ ⊢ ã(γ) : A(γ).

If the only atomic types of PTT are the empty type, the unit type, the
type of booleans and the natural numbers type, then ETT is
conservative over PTT.

Theorem
Whenever γ : Γ is an h-elementary context of PTT and:

γ ⊢ A(γ) : Type

is an h-elementary type-judgement of PTT, if ETT infers
|γ| ⊢ext a(|γ|) : |A(γ)| then PTT infers:

γ ⊢ ã(γ) : A(γ).

If the only atomic types of PTT are the empty type, the unit type, the
type of booleans and the natural numbers type, then ETT is
conservative over PTT.

Categories with attributes...

A category with attributes (C,tp,−.−, P) consists of:
▶ A category C of semantic contexts Γ, ∆, ...
▶ A presheaf Cop tp−→ Set of semantics types A, B... in some

semantic context Γ

▶ A semantic context extension
∫

tp → C, denoted as (Γ, A) 7→ Γ.A

▶ A cartesian natural family of display maps Γ.A
PA−−→ Γ

The semantic terms of A are the sections Γ
a−→ Γ.A of Γ.A PA−−→ Γ.

...i.e. models of dependent type theories

Suppose that we are given a morphism ∆
f−→ Γ. Then we can define

the mapping a 7→ a[f] as follows:

∆ Γ

∆.A[f] Γ.A

∆ Γ
f

PA[f] PA

f.A

a

f

a[f]

⌟

Idea of the proof

1. One can interpret judgements of a given dependent type theory
into an appropriate category with attributes.

2. One can say when a category with attributes is endowed with
(semantic) extensional/intensional/propositional id types.

3. This provides a notion of sound semantics for the corresponding
extensional/intensional/propositional type theory.

4. Proof strategy. Constructing a model M (according to this notion
of semantics) of ETT, such that the interpretation of the
h-elementary sub-theory of PTT in M is surjective (on contexts,
types and terms).

Idea of the proof

1. One can interpret judgements of a given dependent type theory
into an appropriate category with attributes.

2. One can say when a category with attributes is endowed with
(semantic) extensional/intensional/propositional id types.

3. This provides a notion of sound semantics for the corresponding
extensional/intensional/propositional type theory.

4. Proof strategy. Constructing a model M (according to this notion
of semantics) of ETT, such that the interpretation of the
h-elementary sub-theory of PTT in M is surjective (on contexts,
types and terms).

Idea of the proof

In fact, let us assume that we found such a model M .

And let us assume that γ ⊢ A : Type is h-elementary in PTT and
that |γ| ⊢ a : |A| in ETT.

Then:

|γ|M |γ|M .|A|M

|γ|M

P|A|M

aM

Then there is some h-elementary term-judgement δ ⊢ b : B in PTT
whose interpretation in M coincides with the aM .

By some initiality argument and by “the nature of M ”, one can
assume that δ ≡ γ and B ≡ A, therefore γ ⊢ b : A.

Idea of the proof

In fact, let us assume that we found such a model M .

And let us assume that γ ⊢ A : Type is h-elementary in PTT and
that |γ| ⊢ a : |A| in ETT. Then:

|γ|M |γ|M .|A|M

|γ|M

P|A|M

aM

Then there is some h-elementary term-judgement δ ⊢ b : B in PTT
whose interpretation in M coincides with the aM .

By some initiality argument and by “the nature of M ”, one can
assume that δ ≡ γ and B ≡ A, therefore γ ⊢ b : A.

Idea of the proof

In fact, let us assume that we found such a model M .

And let us assume that γ ⊢ A : Type is h-elementary in PTT and
that |γ| ⊢ a : |A| in ETT. Then:

|γ|M |γ|M .|A|M

|γ|M

P|A|M

aM

Then there is some h-elementary term-judgement δ ⊢ b : B in PTT
whose interpretation in M coincides with the aM .

By some initiality argument and by “the nature of M ”, one can
assume that δ ≡ γ and B ≡ A, therefore γ ⊢ b : A.

How to built M

We start from the syntax of PTT (which can be seen as a category
with attributes itself) and we use it to build M .

We must identify paths with reflexivities:

x, y : A ⊢ p : x = y ↔ x : A ⊢ r(x) : x = x

in a way that maintains the dependent type theoretic structure.

How to built M

We start from the syntax of PTT (which can be seen as a category
with attributes itself) and we use it to build M .

We must identify paths with reflexivities:

x, y : A ⊢ p : x = y ↔ x : A ⊢ r(x) : x = x

in a way that maintains the dependent type theoretic structure.

How to identify types

We identify two types γ ⊢ A(γ) : Type and δ ⊢ B(δ) : Type if
between them there is a canonical homotopy equivalence.

Canonical homotopy equivalences are defined inductively on the
complexity of the types:

▶ If A(γ) ≡ B(δ) is an atomic type, then the identity map is
canonical.

▶ If A(γ) ≡ x1 =A′(γ) x2 and B(δ) ≡ y1 =B′(δ) y2 and there is
canonical f : A′(γ) → B′(δ) together with:

δ ⊢ q1 : f(x1) =B′(δ) y1
δ ⊢ q2 : f(x2) =B′(δ) y2

then the induced equivalence p 7→ q−1
1 • f(p) • q2 between A(γ)

and B(δ) is canonical.

Hence, if ⊢ p : x1 = x2 then p 7→ p−1 • p • r(x2) is (essentially)
canonical x1 = x2 → x2 = x2 and identifies p with r(x2).

How to identify types

We identify two types γ ⊢ A(γ) : Type and δ ⊢ B(δ) : Type if
between them there is a canonical homotopy equivalence.

Canonical homotopy equivalences are defined inductively on the
complexity of the types:
▶ If A(γ) ≡ B(δ) is an atomic type, then the identity map is

canonical.

▶ If A(γ) ≡ x1 =A′(γ) x2 and B(δ) ≡ y1 =B′(δ) y2 and there is
canonical f : A′(γ) → B′(δ) together with:

δ ⊢ q1 : f(x1) =B′(δ) y1
δ ⊢ q2 : f(x2) =B′(δ) y2

then the induced equivalence p 7→ q−1
1 • f(p) • q2 between A(γ)

and B(δ) is canonical.

Hence, if ⊢ p : x1 = x2 then p 7→ p−1 • p • r(x2) is (essentially)
canonical x1 = x2 → x2 = x2 and identifies p with r(x2).

How to identify types

We identify two types γ ⊢ A(γ) : Type and δ ⊢ B(δ) : Type if
between them there is a canonical homotopy equivalence.

Canonical homotopy equivalences are defined inductively on the
complexity of the types:
▶ If A(γ) ≡ B(δ) is an atomic type, then the identity map is

canonical.
▶ If A(γ) ≡ x1 =A′(γ) x2 and B(δ) ≡ y1 =B′(δ) y2 and there is

canonical f : A′(γ) → B′(δ) together with:
δ ⊢ q1 : f(x1) =B′(δ) y1
δ ⊢ q2 : f(x2) =B′(δ) y2

then the induced equivalence p 7→ q−1
1 • f(p) • q2 between A(γ)

and B(δ) is canonical.

Hence, if ⊢ p : x1 = x2 then p 7→ p−1 • p • r(x2) is (essentially)
canonical x1 = x2 → x2 = x2 and identifies p with r(x2).

How to identify types

We identify two types γ ⊢ A(γ) : Type and δ ⊢ B(δ) : Type if
between them there is a canonical homotopy equivalence.

Canonical homotopy equivalences are defined inductively on the
complexity of the types:
▶ If A(γ) ≡ B(δ) is an atomic type, then the identity map is

canonical.
▶ If A(γ) ≡ x1 =A′(γ) x2 and B(δ) ≡ y1 =B′(δ) y2 and there is

canonical f : A′(γ) → B′(δ) together with:
δ ⊢ q1 : f(x1) =B′(δ) y1
δ ⊢ q2 : f(x2) =B′(δ) y2

then the induced equivalence p 7→ q−1
1 • f(p) • q2 between A(γ)

and B(δ) is canonical.

Hence, if ⊢ p : x1 = x2 then p 7→ p−1 • p • r(x2) is (essentially)
canonical x1 = x2 → x2 = x2 and identifies p with r(x2).

So what is M?

The semantic contexts of M are the equivalence classes of contexts of
PTT modulo canonical context homotopy equivalences.

Two morphisms of contexts f and f ′ as in the diagram:

γ δ

γ′ δ′

c′(δ)c(δ)

f(γ)

f ′(γ′)

represent the same morphism [γ] → [δ] in M .

Issues & why h-elementary types

▶ If [f] = [f ′] and [g] = [g′], that is:

γ δ ω

γ′ δ′ ω′

γ⊢f(γ)

c

γ′⊢f ′(γ′)

δ⊢g(δ)

δ′⊢g′(δ′)

c′′′c′′c′

then [gf] is not necessarily [g′f ′] because parallel canonical
context homotopy equivalences are not necessarily homotopic.

Hence we need to allow two identity types to be identified only
when they are mere propositions. We restrict ourselves to types
with h-propositional identities and contexts with h-propositional
identities.

Issues & why h-elementary types

▶ If [f] = [f ′] and [g] = [g′], that is:

γ δ ω

γ′ δ′ ω′

γ⊢f(γ)

c

γ′⊢f ′(γ′)

δ⊢g(δ)

δ′⊢g′(δ′)

c′′′c′′c′

then [gf] is not necessarily [g′f ′] because parallel canonical
context homotopy equivalences are not necessarily homotopic.

Hence we need to allow two identity types to be identified only
when they are mere propositions. We restrict ourselves to types
with h-propositional identities and contexts with h-propositional
identities.

Issues & why h-elementary types

▶ Even in this restriction, a naturality square:

∆.A[f] Γ.A

∆ Γ

PA[f]

f.A

PA

f

is a weak pullback but not necessarily a pullback.

Hence we need to make a further restriction, i.e. we only allow
types to be identified if they are h-elementary and in
h-elementary context.

In this case we actually obtain a category with attributes M that
happens to be a model of ETT.

Issues & why h-elementary types

▶ Even in this restriction, a naturality square:

∆.A[f] Γ.A

∆ Γ

PA[f]

f.A

PA

f

is a weak pullback but not necessarily a pullback.

Hence we need to make a further restriction, i.e. we only allow
types to be identified if they are h-elementary and in
h-elementary context.

In this case we actually obtain a category with attributes M that
happens to be a model of ETT.

In order to have a look at the argument in detail:

Matteo Spadetto, A conservativity result for homotopy
elementary types in dependent type theory, 2023.
arXiv 2303.05623

https://arxiv.org/abs/2303.05623

