Cofibrancy of The Exo-type of Natural Numbers

Elif Uskuplu

University of Southern California

HoTT 2023

References

In our research, we have made some novel contributions to the existing literature on 2LTT and its applications. The primary sources that we used are:

1. [ACKS19] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler, *Two-level type theory and applications*, Available on arXiv:1705.03307v3, 2019.

2. [ANST21] Benedikt Ahrens, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. *The univalence principle*, Available on arXiv:2102.06275, Feb 2021.

Outline

1 Brief overview of 2LTT

- 2 Axiom of Cofibrant Exo-Nat and its consequences
- 3 Semantics
- 4 Further Discussion

Two-Level Type Theory (2LTT)

2LTT [ACKS19] consists of two layers:

- Bottom usual HoTT (objects are called *types*, e.g. 0, 1, N, ∑, ∏, =, ×, +)
- Top MLTT with UIP (objects are called *exo-types*, e.g. $\mathbf{0}^e$, $\mathbf{1}^e$, \mathbb{N}^e , \sum^e , \prod^e , $=^{\mathbf{e}}$, \times^e , $+^e$)

Type formers are defined in both levels similarly.

We assume each type is an exo-type, but not vice-versa. In [ACKS19], it is assumed a coercion from types to exotypes, but we follow the convention in [ANST21], and assume the coercion is the inclusion.

The top layer may be understood as the internalised meta-theory of the bottom.

Fibrant Exo-types

We call an exo-type A fibrant if it is isomorphic (w.r.t. exo-equality) to a type B.

Properties. ([ACKS19], Lemma 3.5)

- The unit exo-type is fibrant.
- If $A : \mathcal{U}^e$ is a fibrant exo-type and $B : A \to \mathcal{U}^e$ is a family of fibrant exo-types, then both $\sum_{a:A}^e B(a)$ and $\prod_{a:A}^e B(a)$ are fibrant.
- Fibrancy may not be preserved under +^e, and **0**^e and N^e may not be fibrant, but these statements can be added as axioms.

Cofibrant Exo-types

We call an exo-type $A : \mathcal{U}^e$ cofibrant if for any family of **types** $Y : A \to \mathcal{U}$,

- i. the exo-type $\prod_{a:A}^{e} Y(a)$ is fibrant, and
- ii. if each Y(a) is contractible, the fibrant match of $\prod_{a:A}^{e} Y(a)$ is contractible.

Properties. ([ACKS19], Lemma 3.25)

- Any fibrant exo-type is cofibrant.
- The exo-empty type is cofibrant. If $C, D : \mathcal{U}^e$ are cofibrant, then so are $C \times^e D$ and $C +^e D$.
- If $A: \mathcal{U}^e$ is a cofibrant exo-type and $B: A \to \mathcal{U}^e$ is a family of cofibrant exo-types, then $\sum_{a:A}^e B(a)$ is cofibrant.

Theorem. The second condition of the cofibrancy definition for A is equivalent to the following:

(Funext for cofibrant types). For any $f, g : \prod_{a:A}^{e} Y(a)$, if f(a) = g(a) for each a : A, then r(f) = r(g) where $FM : \mathcal{U}$ and $r : \prod_{a:A}^{e} Y(a) \to FM$ is an isomorphism.

In our current context, the equivalence bears resemblance to one found in standard HoTT: funext is true if and only if the dependent function types of any contractible family are also contractible. The proof in our case follows a similar structure, but it requires additional attention to distinct equalities.

1 Brief overview of 2LTT

2 Axiom of Cofibrant Exo-Nat and its consequences

- 3 Semantics
- 4 Further Discussion

Note that since we do not assume elimination from a type to an exo-type, we cannot define, for example, a map $\mathbb{N} \to \mathbb{N}^e$ by induction.

It does not seem to be possible to prove that \mathbb{N}^e is cofibrant, but this is a reasonable axiom to add since it holds in some models.

We studied some of the consequences of this axiom and tried to obtain a general class of models of 2LTT where the axiom holds.

Why do we care?

One of the original motivations for 2LTT was to define semisimplicial types, but there was a problem defining the type of untruncated semisimplicial types.

Voevodsky's solution was to assume that exo-nat is fibrant, which works for simplicial sets but may not hold in all infinity-toposes.

But assuming cofibrancy of exo-nat also allows for defining a fibrant type of untruncated semisimplicial types with a wider syntax, including models for all infinity-toposes (Example 2 below).

Assume \mathbb{N}^e is cofibrant List exo-types

For an $A : \mathcal{U}^e$ we define $\text{List}^e(A) : \mathcal{U}^e$ of **finite exo-lists** of terms of A, which has constructors

$$[]^e : \mathsf{List}^e(A) \\ ::^e : A \to \mathsf{List}^e(A) \to \mathsf{List}^e(A)$$

It is easy to see that

$$\operatorname{List}^{e}(A) \cong \sum_{n:\mathbb{N}^{e}}^{e} A^{n}.$$

Theorem. When A is cofibrant, thanks to this isomorphism, $\text{List}^{e}(A)$ is cofibrant. Conversely, if List^{e} preserves cofibrancy, then \mathbb{N}^{e} is cofibrant.

Assume \mathbb{N}^e is cofibrant Exo Types of Binary Trees

For $N, L : \mathcal{U}^e$ we define $\mathsf{BinTree}^e(N, L) : \mathcal{U}^e$ of **binary** exo-trees with node values of N and leaf values of L, which has constructors

- $\mathsf{leaf}^e: L \to \mathsf{BinTree}^e(N, L)$
- node^{*e*} : BinTree^{*e*}(N, L) → N → BinTree^{*e*}(N, L) → BinTree^{*e*}(N, L)

Note that we can define the exo-type of unlabeled binary trees and obtain

$$\mathsf{BinTree}^{e}(N,L) \cong \sum_{t:\mathsf{UnLBinTree}^{e}}^{e} \left(N^{\# \text{ of nodes of } t} \times^{e} L^{\# \text{ of leaves of } t} \right)$$

Assume \mathbb{N}^e is cofibrant **Exo Types of Binary Trees**

Theorem.

It is known that there is a one-to-one correspondence between unlabeled binary trees and balanced parenthesizations.

The second one is obtained by a dependent sum on the list type of parentheses, and this sum exo-type is cofibrant. This yields that the exo-type of unlabeled binary trees, and hence the exo-type of binary trees, is cofibrant. We also formalized all these results about cofibrancy and more in Agda¹. We used one of the new features of Agda that enable a sort SSet for exo-types.

Our work on this subject is a pioneering study regarding Agda's new feature. Based on the data we obtained from this, we also conducted a documentation study on 2LTT. One can read the details of this feature in the documentation².

¹https://github.com/UnivalencePrinciple/2LTT-Agda

²https://agda.readthedocs.io/en/v2.6.3/language/two-level.html

Outline

- 1 Brief overview of 2LTT
- 2 Axiom of Cofibrant Exo-Nat and its consequences
- 3 Semantics
- 4 Further Discussion

One-Level CwFs

Well-known models of 2LTT can be found in CwFs.

- A category with families³ (CwF) consists of the following:
 - A category of contexts C with a terminal object $1_C : C$.
 - A presheaf $Ty : C^{op} \to Set$. If $A : Ty(\Gamma)$, then we say A is a type over Γ .
 - A presheaf $\operatorname{Tm} : (\int \operatorname{Ty})^{\operatorname{op}} \to \operatorname{Set}$. If $a : \operatorname{Tm}(\Gamma, A)$, then we say a is a term of A.
 - For any $\Gamma : C$ and $A : Ty(\Gamma)$, there is an object $\Gamma . A : C$ with a certain universal property. This operation is called the *context extension*.

³Peter Dybjer. Internal type theory, 1995.

A two-level CwF is a combination of two CwF structures on the same category, namely, we have $(C, \mathtt{Ty}^e, \mathtt{Tm}^e, \mathtt{Ty}^f, \mathtt{Tm}^f)$ where both $(C, \mathtt{Ty}^e, \mathtt{Tm}^e)$ and $(C, \mathtt{Ty}^f, \mathtt{Tm}^f)$ are CwFs, and there is a natural transformation $c : \mathtt{Ty}^f \to \mathtt{Ty}^e$.

When (C, Ty^e, Tm^e) models MLTT with UIP and (C, Ty^f, Tm^f) models HoTT, the corresponding two-level CwF models 2LTT [ACKS19].

Cofibrancy in CwF Model

Roughly speaking, in a two-level CwF, cofibrancy is defined as follows:

An exo-type $A : \operatorname{Ty}^{e}(\Gamma)$ is called *cofibrant* if for any context Δ , morphism $\sigma : \Delta \to \Gamma$, and family of types $Y : \operatorname{Ty}^{f}(\Delta . A[\sigma])$, the exo-type

$$\prod\nolimits_{\Delta}^{e}(A[\sigma],c(Y)):\mathrm{Ty}^{e}(\Delta)$$

is fibrant; naturally in Δ ; and if $Y : \operatorname{Ty}^{f}(\Delta . A[\sigma])$ is contractible, then so is the fibrant match of $\prod_{\Delta}^{e}(A[\sigma], c(Y))$, which is again natural in Δ . Let $\mathcal{C} = \text{SSet}$ be the category of simplicial sets. As a presheaf category, it has a CwF structure $(\mathtt{Ty}^e, \mathtt{Tm}^e)$ like any presheaf category. Define $\mathtt{Ty}^f(\Gamma)$ be the subset of $\mathtt{Ty}^e(\Gamma)$ consisting of those types A such that the display map $\Gamma.A \to \Gamma$ is a Kan fibration, and c as the inclusion.

In this model, \mathbb{N}^e is given by the external set **N** with the discrete simplicial structure. Since $\Gamma.\mathbb{N}^e \to \Gamma$ is always a Kan fibration, we have \mathbb{N}^e is fibrant, and hence cofibrant.

Example 2.

Let C be a good model category⁴. Define $\operatorname{Ty}^{e}(\Gamma)$ as the set of all morphisms over Γ and $\operatorname{Ty}^{f}(\Gamma)$ as the set of fibrations over Γ . Define for $A: \operatorname{Ty}^{e}(\Gamma)$ the set $\operatorname{Tm}^{e}(\Gamma, P)$ as the hom-set $C/\Gamma[\Gamma, \Gamma, A]$ and Tm^{f} similarly. Then we get a two-level CwF with the conversion $c: \operatorname{Ty}^{f} \to \operatorname{Ty}^{e}$ as being inclusion.

In this model \mathbb{N}^e is given by the countable coproduct $\coprod_{\mathbf{N}} 1$ of copies of the terminal object. This is not fibrant for an arbitrary good model category. But we have:

Theorem. In this model, \mathbb{N}^e is cofibrant.

⁴Peter LeFanu Lumsdaine, Mike Shulman, Semantics of Higher Inductive Types, 2017, arXiv:1705.07088

Example 2.

Proof Idea. Let $Y : Ty^{f}(\Gamma.\mathbb{N}^{e})$, namely, we have $Y_{a} : Ty^{f}(\Gamma)$ for each $a : \mathbb{N}$. Since fibrations are closed under countable product, we can take the categorical products

$$\left(\prod_{a:\mathbf{N}^e}Y_a\right):\mathtt{Ty}^f(\Gamma)$$

as the fibrant match of $\prod_{\Gamma}^{e}(\mathbb{N}^{e}, Y) : \operatorname{Ty}^{e}(\Gamma)$. The contractibility condition holds by a standard lemma about model categories.

General class of two-level CwFs (Ongoing study)

We say a CwF (C, Ty, Tm) has exo-nat products if for any family of types Y_a : Ty(Γ) indexed by a: N,

- i. there is a type $B : \operatorname{Ty}(\Gamma)$ such that the set $\operatorname{Tm}(\Gamma, B)$ is isomorphic to the categorical product $\prod_{a:\mathbb{N}} \operatorname{Tm}(\Gamma, Y_a)$, naturally in Γ , and
- ii. if also $d, c : \prod_{a:\mathbf{N}} \operatorname{Tm}(\Gamma, Y_a)$ are such that $d_a = c_a$ as terms of $Y_a : \operatorname{Ty}(\Gamma)$, then d = c as terms of B, naturally in Γ .

Theorem. If $(\mathcal{C}, \mathtt{Ty}, \mathtt{Tm})$ has exo-nat products, then the presheaf two-level CwF $(\widehat{\mathcal{C}}, \widehat{\mathtt{Ty}}, \widehat{\mathtt{Tm}}, \mathtt{Ty}^f, \mathtt{Tm}^f)$ has cofibrant exo-nat.

Outline

- 1 Brief overview of 2LTT
- 2 Axiom of Cofibrant Exo-Nat and its consequences
- 3 Semantics
- 4 Further Discussion

Additional analysis is required for W-types to determine the necessary conditions on A and B for establishing the cofibrancy of $W_{a:A}B(a)$. As \mathbb{N}^e is only one instance of W-types, it is unlikely that cofibrancy will be preserved by W-types in all cases. Hence, a general axiom can be proposed, and its semantics can also be examined.

Thanks!