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From geometric morphisms. . .

A geometric morphism f : F → E between toposes is an adjunction f∗ : F ⇆ E : f∗
where f∗ preserves finite limits.

We think of F as a topos over E (Grothendieck’s relative point of view).

Fibered view (Bénabou, Moens, Jibladze): this corresponds to a fibration p : X→ E of
toposes, where p−1(1) ≃ F

Question: When is a functor F : E→ F the inverse image part of a geometric morphism?

Answer (Bénabou ’74): If and only if F preserves 1 and the Artin gluing gl(F ) : F ↓ F → E

is a fibration of toposes with internal sums

F ↓ F F→

E F
F

codgl(F )
⌟
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. . . to finite limit fibrations

Hence, more generally: Characterize those fibered categories p : E → B that are of the
form gl(F ) for some finite limit preserving functor F : B → C between finitely complete
categories B and C.

Moens ’82: Characterization as lextensive fibrations. Recall: A bicomplete category C is
lextensive if

∏
i∈I

C/ai ≃ C/
∐
i∈I

ai for all (small) families (ai)i∈I of objects in C.

Our result: Moens’ Theorem for (∞, 1)-categories. . .

. . . internally to an∞-topos (cf. the talks by Mathieu and Louis)

. . . in type theory!

Generalizing Streicher’s account [Str22].
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The concept of (∞, 1)-category

(∞, 1)-categories: weak composition of 1-morphisms given uniquely up to contractibility

•

• •

How to express this in HoTT?

Problem: We have path types (a =A b), but what about directed hom types (a→A b)?

Several possible approaches; see e.g. the talks by Matthew, Robert, Jacob, Julian, and
Christopher



Motivation Synthetic (∞, 1)-categories Cocartesian families Bicartesian families Beck–Chevalley families Moens fibrations

Simplicial HoTT

Riehl–Shulman’ 17: simplicial extension of HoTT
add strict shapes

• • •

• • • • • • • • • . . .

∆
0

∆
1

∆
2

∂∆
2

Λ
2
1

add extension types (Lumsdaine–Shulman, cf. Cubical Type Theory):

Input:
shape inclusion Φ ↪→ Ψ

family P : Ψ → U ;
partial section a : Πt:ΦP (t)

P̃

Φ Ψ

a
b

Extension type
〈∏

Ψ P
∣∣∣Φa〉

with terms b : ΠΨP such that b|Φ ≡ a.
Semantically:〈∏

Ψ P
∣∣∣Φa〉 P̃Ψ

1 P̃Φa

⌟
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Synthetic (∞, 1)-category theory

Enables (∞, 1)-category theory in (simplicial) HoTT

Could∞-Category Theory be taught to Undergraduates? (E. Riehl, Notices of the AMS
70(5). May 2023, 727–736)

Internalized (parts of) the fibrational theory of Riehl–Verity’s∞-cosmoses [RV22]
in [BW23] and my thesis

Prototype proof assistant rzk developed by Kudasov

https://www.ams.org/journals/notices/202305/noti2692/noti2692.html
https://www.ams.org/journals/notices/202305/noti2692/noti2692.html
https://github.com/fizruk/rzk
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Extension types

Semantically, get algebraic structure making extension types strictly stable under
substitution, cf. Steve’s talk; see W’ 22: arXiv:2203.07194.
Extension types are homotopically well-behaved, assuming a function extensionality
axiom.
De-/strictification [BW23]:

〈∏
x:(I|ψ) A(x)

∣∣∣φa〉 ≃ ∑
f :
∏
x:(I|ψ) A(x)

∏
x:(I|φ)

(a x = f x)

A square

Φ P̃

Ψ B

j

σ

π

κ

∃!

possesses a diagonal filler uniquely up to contractibility if and only if the following
proposition holds:

isContr
(〈
Πt:ΨP (σ(s))

∣∣Φ
κ

〉)

https://arxiv.org/abs/2203.07194
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Hom types I

Definition (Hom types, [RS17])

Let B be a type. Fix terms a, b : B. The type of arrows in B from a to b is the extension type

homB(a, b) :≡ (a→B b) :≡
〈
∆1 → B

∣∣∣∂∆1

[a,b]

〉
.

Definition (Dependent hom types, [RS17])

Let P : B → U be family. Fix an arrow u : homB(a, b) in B and points d : P a, e : P b in the
fibers. The type of dependent arrows in P over u from d to e is the extension type

dhomP,u(d, e) :≡ (d→P
u e) :≡

〈∏
t:∆1 P (u(t))

∣∣∣∂∆1

[d,e]

〉
.
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Hom types II

We will also be considering types of 2-cells: For arrows u, v, w in B with f, g, h in P lying
above, with appropriate co-/domains, let

hom2
B(u, v;w) :≡

〈
∆2 → B

∣∣∣∂∆2

[u,v,w]

〉
, dhom2,P

σ (f, g;h) :≡
〈∏

⟨t,s⟩:∆2 P (σ(t, s))
∣∣∣∂∆2

[f,g,h]

〉
.

P̃ e′

e e′′

b′

B b b′′

u

w

v

h

gf

σ

τ
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Segal, Rezk, and discrete(=groupoidal) types

Can now define synthetic (∞, 1)-categories using shapes and extension types; recall Julie’s
talk

Definition (Synthetic (∞, 1)-categories, [RS17])

Synthetic pre-(∞, 1)-category aka Segal type: types A with weak composition, i.e.:

ι : Λ2
1 ↪→ ∆2 ; Aι : A∆2 ≃−→ AΛ2

1 (Joyal).

Synthetic (∞, 1)-category aka Rezk type: Segal types A satisfying Rezk
completeness/local univalence, i.e.

idtoisoA : Πx,y:A(x =A y)
≃−→ isoA(x, y).

Synthetic∞-groupoid aka discrete type: types A such that every arrow is
invertible, i.e.

idtoarrA : Πx,y:A(x =A y)
≃−→ homA(x, y).
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Cocartesian families: Motivation

Any type family P : B → U transforms covariantly in paths:

u : a =B b ; u! : P a→ P b

What about the directed analogue? We’d like:

u : a→B b ; u! : P a→ P b

This is true for functorial families P : B → U .

Different notions of fibrations, investigated by Riehl–Shulman, and later
Buchholtz–W [BW23] and W.

Satisfy directed arrow induction aka type-theoretic Yoneda Lemmas (originally due
to [RS17], also in [RV22]).

Formalization (in progress) in rzk: https://github.com/emilyriehl/yoneda

https://github.com/emilyriehl/yoneda
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Cocartesian arrows: Intuition

Intuitively: An arrow f : e→P
u e′ over u : b→B b′ is cocartesian if it satisfies the following

universal property:

P̃

B

e e′

e′′

⇑

f

∃! g
∀h

∃! τ : f, g ⇒σ h

b b′

b′′

⇑
u

∀ v
∀w

∀σ : u, v ⇒ w
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Cocartesian arrows: Definition

Definition (Cocartesian arrows ([BW23], cf. [RV22]))

Let B be a type and P : B → U be an inner family. Let b, b′ : B, u : homB(b, b
′), and e : P b,

e′ : P b′. An arrow f : homP u(e, e
′) is a (P -)cocartesian morphism or (P -)cocartesian arrow iff

isCocartArrP f :≡
∏

σ:

〈
∆2→B

∣∣∣∣∆1
0

u

〉
∏

h:
∏
t:∆1 P σ(t,t)

isContr
(〈∏

⟨t,s⟩:∆2 Pσ(t, s)
∣∣∣Λ2

0

[f,h]

〉)
.

Notice that being a cocartesian arrow is a proposition. Over a Segal base, this amounts to:

isCocartArrP f ≃
∏
b′′:B

∏
v:homB(b′,b′′)

∏
w:homB(b,b′′)

∏
σ:hom2

B(u,v;w)

∏
e′′:P b′′

∏
h:dhomP w(e,e′′)

isContr
( ∑
g:dhomP v(e′,e′′)

dhom2
P σ(f, g;h)

)
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Cocartesian families: Definition

Definition (Cocartesian family ([BW23], cf. [RV22]))

Let B be a Rezk type and P : B → U be a family such that P̃ is a Rezk type. Then P is a
cocartesian family if:

hasCocartLiftsP :≡
∏
b,b′:B

∏
u:b→b′

∏
e:P b

∑
e′:P b′

∑
f :e→ue′

isCocartArrP f

A map π : E ↠ B is a cocartesian fibration iff P :≡ StB(π) is a cocartesian family.

E ∀ e uP! e

B a b
∀u

∃(!)π!(u,e)

π ; (−)P! :
∏
a,b:B

(a→B b)→ P (a)→ P (b)
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Cocartesian families: Functoriality

Hence, any u : a→B b induces a functor u! : P a→ P b acting on arrows as follows:

E e u! e

e′ u! e
′

B a b
u

P!(u,e
′)

g

P!(u,e)

u! g

Externally, this corresponds to a Cat-valued∞-functor B → Cat, where Cat is the
(∞, 1)-category of small (∞, 1)-categories.
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Cocartesian families: Examples

1 For g : C → A← B : f , the comma projection ∂C : f ↓ g ↠ C.1 (Hence, in particular the
codomain projections ∂1 : A∆1

↠ A.)
2 The domain projection ∂0 : A∆1

↠ A, provided A has all pushouts.
3 For any map π : E → B between Rezk types, the free cocartesian fibration:

π ↓ B E

B∆1

B

B

∂0
∂1

π

L(π):≡∂1

⌟

In particular, the desired UMP holds: − ◦ ι : CocartFunB(L(π), ξ)
≃−→ FunB(π, ξ) for any

cocartesian fibration ξ : F → B.
1f ↓ g ≃ Σb:B,c:C(f b →A g c)
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Cocartesian families: Characterization

Theorem (Cocartesian families via transport ([BW23], cf. [RV22]))

A given family P : B → U is cocartesian if and only if the map

ι :≡ ιP : E → π ↓B, ι ⟨b, e⟩ :≡ ⟨idb, e⟩

has a fibered left adjoint τ :≡ τP : π ↓B → E as indicated in the diagram:

E π ↓ B

B

ι

π ∂1

τ

⊣

The idea is that τ : π ↓B →B E is the transport map τ(u, e) ≡ u! e : P (u(1)).
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Cartesian and bicartesian families

By (manual) dualization: obtain a theory of cartesian families P : B → U , with
contravariant transport u∗ : P b→ P a and RARI condition.

Combining both variances leads to bicartesian families, where u! ⊣ u∗ : P b→ P a.
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Bicartesian families: Examples

The Artin gluing (or simply gluing) gl(F ) : C ↓ F ↠ B of a functor F : B → C, for Rezk
types B and C, with C having all pullbacks:

C ↓ F C∆1

B C
F

∂1gl(F )
⌟

The family fibration of a cartesian fibration π : E ↠ B, where B has all pullbacks:

π ↓ B E

B∆1

B

B

∂0
∂1

π

Fam(π):≡∂1

⌟
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Beck–Chevalley condition

Definition (Beck–Chevalley condition)

Let P : B → U be a family over a Rezk type all of whose fibers are Rezk. Then P is said to
satisfy the Beck–Chevalley condition (BCC) if for any dependent square of the form

d′ e′

P̃ d e

a′ b′

B a b

f ′

g′ g

f

u′

u

vv′
⌟

it holds that: if f is cocartesian, and g, g′ are cartesian, then f ′ is cocartesian.
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Beck–Chevalley families

Definition

A map between π : E ↠ B is a Beck–Chevalley fibration or a cartesian fibration with internal
sums if:

1 The map π is a bicartesian fibration, i.e. a cartesian and cocartesian fibration.
2 The map π satisfies the Beck–Chevalley condition.

Classical motivation:

Fam(C)→ Set with fibers CI has internal sums if and only if C has small sums

Bénabou’s perspective generalizes this to an arbitrary base
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Beck–Chevalley families: Characterizations

Theorem (Characterizations of BCC fibrations, cf. [Str22])

Let P : B → U be a cartesian family over a Rezk type B which has all pullbacks, with
unstraightening π : E ↠ B be a cartesian fibration. Then π is Beck–Chevalley fibration if and
only if the mediating fibered functor

ιP : E →B π ↓B, ιP (b, e) :≡ ⟨b, idb, e⟩

has a fibered left adjoint which is also a cartesian functor:

E π ↓ B

B

π ∂1

τπ

ιπ

⊣
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Internal sums for gluing

Proposition (Internal sums for gluing, [Str22])

Let A and B be Rezk types with pullbacks and F : A→ B an arbitrary functor (hence all its
fibers are Rezk). Then the following are equivalent:

1 The functor F preserves pullbacks.

2 The gluing fibration gl(F ) ≡ ∂1 : B ↓ F ↠ A is a Beck–Chevalley fibration.
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Extensive sums I

Recall from classical 1-category theory that a category C with pullbacks and coproducts is
extensive if and only if, for all small families (Ai)i∈I the induced functor

∏
i∈I

C/Ai → C/
∐
i∈I

Ai

is an equivalence. This is equivalent to the condition that injections into finite sums are stable
under pullback, and for any family of squares

Bk B

Ak
∐
i∈I

Ai

gk

fk

all of these are pullbacks if and only if all gk : Bk → B are coproduct cones. This generalizes
fibrationally as follows.
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Extensive sums II

Definition (Stable and disjoint internal sums)

Let P : B → U be a lex fibration with internal sums over a Rezk type B. Then P has stable
internal sums if cocartesian arrows are stable under arbitrary pullbacks. The internal sums of P
are disjointa if for every cocartesian arrow f : d P e the fibered diagonal is cocartesian, too:

d

d×e d d

d e
f

f

δf

⌟

aIn a category, a coproduct is disjoint if the inclusion maps are monomorphisms, and the intersection of the
summands is an initial object.
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Extensive sums III

Definition ((Pre-)Moens families)

Let B be a lex Rezk type. A lex Beck–Chevalley family P : B → U is a pre-Moens family if it
has stable internal sums. We call a pre-Moens family P : B → U Moens family (or lextensive
family or pre-geometric family) if, moreover, all its (stable) internal sums are also disjoint.
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When are internal sums extensive? I

Definition (Terminal elements)

Let B be a Segal type. An element z : B is called terminal if isContr
(∑
x:B

homB(x, z)
)
.

Definition (Choice of terminal elements)

Let B be a Rezk type and P : B → U be a family with Rezk fibers such that every fiber has a
terminal element. Then we denote, by type-theoretic choice, the section choosing fiberwise
terminal elements by

ζP :≡ ζ :
∏
b:B

P b,

i.e. for any b : B the element ζb : P b is terminal.

We define
ω′ ≡ ω′

P : B → P z, ω′(b) :≡ ω(ζb) ≡ (!b)!(ζb).
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When are internal sums extensive? II

Proposition (Stable disjoint sums in terms of extensive sums, cf. [Str22])

Let B be a lex Rezk type and P : B → U be a Beck–Chevalley family. Then, the following are
equivalent:

The family P is a Moens family, i.e. P has stable disjoint sums.

The bicartesian family P has internally extensive sums, i.e. for vertical arrows f : d→ d′,
k : e→ e′, cocartesian arrows g : e e′, in a square

d e

d′ e′

f

g

h

k

the arrow h : d→ e is a cocartesian arrow if and only if the square is a pullback.
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When are internal sums extensive? III

Proposition (cont’d)

The internal sums in P are Lawvere-extensive, i.e. in any square of the form

d e

ζa ω′(a)

!ad

P!(!a,ζa)

h

k

where k : e⇝ ω′(a) is vertical the arrow h : d→ e is cocartesian if and only if the given
square is a pullback.

Let z : B be a terminal element in B. For any a : B, the transport functor (!a)! : P a→ P z
reflects isomorphisms and k∗P!(!a, ζa) is cocartesian in case k is vertical.
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When are internal sums extensive? IV

Corollary

Let B be a Rezk type and P : B → U a Moens family.
Then, for all arrows u : a→ b in B and points d : P a, the functor

u! ↓ d : P a ↓ d→ P b ↓ u!d

is an equivalence. In particular, for P a ≃ P a ↓ ζa we have equivalences

u! ↓ ζa : P a ↓ ζa ≃ P b ↓ u!ζa, (!a)! ↓ ζa : P a ↓ ζa ≃ P z ↓ ω′(a).
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When are internal sums extensive? V

Corollary (Pullback preservation of covariant transport in Moens families)

Let B be a Rezk type and P : B → U a Moens family.
Then for all u : a→ b in B, the covariant transport functor

u! : P a→ P b

preserves pullbacks.
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Moens’ Theorem for synthetic (∞, 1)-categories I

We can adapt the proof from [Str22]:

Theorem (Moens’ Theorem in simplicial HoTT (W, cf. [Str22]))

For a small lex Rezk type B : U the type

MoensFam(B) :≡
∑

P :B→U
isMoensFamP

of U -small Moens families is equivalent to the type

B ↓lex LexRezk :≡
∑

C:LexRezk

(B →lex C)

of lex functors from B into the type LexRezk of U -small lex Rezk types.
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Moens’ Theorem for synthetic (∞, 1)-categories II

Idea: Quasi-inverses given by “terminal transport” and gluing

MoensFam(B) B ↓lex LexRezk

Φ

Ψ

≃

i.e.

Φ(P : B → U) ≡ ⟨P z, λb.(!b)!(ζb)⟩ : B → P z, Ψ(F : B → C) :≡ StB
(
gl(F ) : C ↓ F ↠ B

)
:

with z : B terminal, and ζ : ΠBP picking the terminal element in each fiber:

E ζb ΦP (b)

B b z

πP

!b
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Thank you for your attention!
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