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From geometric morphisms. ..

o A geometric morphism f : ¥ — & between toposes is an adjunction /* : F S E : f,
where f* preserves finite limits.

o We think of F as a topos over € (Grothendieck’s relative point of view).

o Fibered view (Bénabou, Moens, Jibladze): this corresponds to a fibration p : X — € of
toposes, where p~ (1) ~ F

o Question: When is a functor F' : € — JF the inverse image part of a geometric morphism?

o Answer (Bénabou '74): If and only if ' preserves 1 and the Artin gluinggl(F) : F | F — &
is a fibration of toposes with internal sums

FLF — 35~

gl(F)i B lcod
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... to finite limit fibrations

©

Hence, more generally: Characterize those fibered categories p : £ — B that are of the
form gl(F’) for some finite limit preserving functor F' : B — C' between finitely complete
categories B and C.
Moens ’82: Characterization as lextensive fibrations. Recall: A bicomplete category C is
lextensive if | | €/a; ~ €/ ] a for all (small) families (a;)c; of objects in C.

i€l i€l
Our result: Moens’ Theorem for (oo, 1)-categories. . .
... internally to an oco-topos (cf. the talks by Mathieu and Louis)

©

... in type theory!
Generalizing Streicher’s account [Str22].

© 0 0 o



The concept of (oo, 1)-category

o (o0, 1)-categories: weak composition of 1-morphisms given uniquely up to contractibility

SN

o How to express this in HoTT?
o Problem: We have path types (a =4 b), but what about directed hom types (a — 4 b)?

o Several possible approaches; see e.g. the talks by Matthew, Robert, Jacob, Julian, and
Christopher



o Riehl-Shulman’ 17: simplicial extension of HOTT
o add strict shapes

A0

Al

A

o add extension types (Lumsdaine—Shulman, cf. Cubical Type Theory):

Input:

o shape inclusion & — ¥
o family P : U — U

o partial section « : I1¢.0 P(t)

P

R4
a

e 4—

ib

D
a

Extension type <Hq, P
with terms 0 : [Ty P such that b & = «.
Semantically:

<Hq,P 3’> N

Lo

1 —2 5 P*




Synthetic (oo, 1)-category theory

o Enables (oo, 1)-category theory in (simplicial) HoTT

o Could >-Category Theory be taught to Undergraduates? (E. Riehl, Notices of the AMS
70(5). May 2023, 727—736)

o Internalized (parts of) the fibrational theory of Riehl-Verity’s co-cosmoses [RV22]
in [BW23] and my thesis

o Prototype proof assistant rzk developed by Kudasov


https://www.ams.org/journals/notices/202305/noti2692/noti2692.html
https://www.ams.org/journals/notices/202305/noti2692/noti2692.html
https://github.com/fizruk/rzk

ET R dmmR mmeew o e S
Extension types

o Semantically, get algebraic structure making extension types strictly stable under
substitution, cf. Steve’s talk; see W’ 22: arXiv:2203.07194.
o Extension types are homotopically well-behaved, assuming a function extensionality

axiom.
f> o~ Z H (ax = fx)

o De-/strictification [BW23]: <Hw:(1\w) A(x)
f:Hx;(I\w) A(z) z:(I]ep)

o A square
P —>
b i
v 2 4B

possesses a diagonal filler uniquely up to contractibility if and only if the following
proposition holds:

iSCODtI'(<Ht:\IIP(O-(S))‘¢)>)

K


https://arxiv.org/abs/2203.07194

Hom types |

Definition (Hom types, [RS17])
Let B be a type. Fix terms «, 0 : B. The type of arrows in B from « to b is the extension type

homp(a,b) = (a =5 b) = (A - BJPA;).

Definition (Dependent hom types, [RS17])

Let I’ : B — U be family. Fix an arrow « : homp(a,b) in B and points ¢ : Pa, ¢ : Pbinthe
fibers. The type of dependent arrows in P over .. from d to ¢ is the extension type

dhomp,(d,e) ;= (d =% e) := <Ht:A1 P(u(t)) [8df‘e1]>.




We will also be considering types of 2-cells: For arrows «, v, w in B with [ ¢, /2 in P lying
above, with appropriate co-/domains, let

2
[u,v w]> dhomi’P(f, g; h) = <H<t,s):A2 P(U(ta 3)) ?fég,h]>'

hom?% (u, v; w) := <A2 — BJ?

P

&
A\

b—)b”
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Segal, Rezk, and discrete(=groupoidal) types

Can now define synthetic (co, 1)-categories using shapes and extension types; recall Julie’s

talk

Definition (Synthetic (co, 1)-categories, [RS17]) |
o Synthetic pre-(co, 1)-category aka Segdal type: types A with weak composition, i.e.:

TAZ 5 A% A AN S AN (Joyal).

o Synthetic (oo, 1)-category aka Rezk type: Segal types A satisfying Rezk
completeness/local univalence, i.e.

Iy ya(z=ay) = isoa(z,y).

o Synthetic co-groupoid aka discrete type: types A such that every arrow is
invertible, i.e.
(I, ya(z =4 y) — homy(z,y).
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Cocartesian families: Motivation

©

Any type family /” : B — U transforms covariantly in paths:

ta=pb ~ :Pa— Pb

©

What about the directed analogue? We'd like:

ta—>pb ~ :Pa— Pb

©

This is true for functorial families /” : B — U.

Different notions of fibrations, investigated by Riehl-Shulman, and later
Buchholtz—W [BW23] and W.

Satisfy directed arrow induction aka type-theoretic Yoneda Lemmas (originally due
to [RS17], also in [RV22]).

Formalization (in progress) in rzk: https://github.com/emilyriehl/yoneda

()

©

©


https://github.com/emilyriehl/yoneda

Intuitively: An arrow | : e —>f ¢ overu : b —p b is cocartesian if it satisfies the following
universal property:

ANr:fig=sh

Sy

Vo:u,v=w




Cocartesian arrows: Definition

Definition (Cocartesian arrows ([BW23], cf. [RV22]))

Let B be atype and I’ : B — U be an inner family. Let 0,/ : B, u : homp(b,b"), and ¢ : Pb,
PV, Anarrow [ : homp (e, ¢") is a (I’-)cocartesian morphism or (I°-)cocartesian arrow iff

isCocartArrp f := H H isContr ( <H(t,5>;A2 Pa(t,s) ‘ﬁfgh]> )
$5> h:[T;.a1 Po(t,t)

a:<A2—>B

Notice that being a cocartesian arrow is a proposition. Over a Segal base, this amounts to:
scoentames=[] T I I I I
b"":B v:homp (b/,b") w:homp (b,b") o:hom? (u,v;w) €”:P b h:dhomp 4 (e,e’)

isContr ( Z dhom?,(f, g; 1))

g:dhomp , (e’,e’’)



Cocartesian families: Definition

Definition (Cocartesian family ([BW23], cf. [RV22]))

Let B be a Rezk type and /” : B — U be a family such that P is a Rezk type. Then /7 is a
cocartesian family if:

hasCocartLifts P := H H H Z Z isCocartArrp f

b,b/:Bu:b—b' e:Pbe’:Pb f:e—,e’

Amap 7 : E — B is a cocartesian fibration iff /> := St (7 ) is a cocartesian family.

) (e
E Ve 20, >———)—> l/.P(

Wl Ha—>3b — P(a) — P(b)

b:B
Y ou @



o Hence, any « : a —p binduces a functor v : P a — P b acting on arrows as follows:

Pi(u,e)
E C —— e

1
gl fur g
-

e —— e

o Externally, this corresponds to a Cat-valued oco-functor B — Cat, where Cat is the
(00, 1)-category of small (oo, 1)-categories.



Cocartesian families: Examples

@ Forg:C — A+« B: [, the comma projection O : f | ¢ — C.! (Hence, in particular the
codomain projections 7, : AX" — A.)

® The domain projection ¢, : AN, A, provided A has all pushouts.

@ Forany map 7 : £ — B between Rezk types, the free cocartesian fibration:

T, B — F
Lir):=0r | gAt B
E)

o
2

B

In particular, the desired UMP holds: — o/ : CocartFunpg(L(7), &) — Fung(r, ¢) for any
cocartesian fibration ¢ : F' — B.

flg~Supec(fb—age)
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Cocartesian families: Characterization

Theorem (Cocartesian families via transport ((BW23], cf. [RV22]))
A given family I” : B — U is cocartesian if and only if the map
=.p: F—>7w|B, =

has a fibered left adjoint 7 := 7 : 7 | B — F as indicated in the diagram:

The ideaisthat 7 : 7| B —p E is the transport map

: P(u(1)).

Moens fibrations
000000000000



o By (manual) dualization: obtain a theory of cartesian families /” : B — U, with
contravariant transport «* : Pb — P a and RARI condition.

o Combining both variances leads to bicartesian families, where v, 4 u" : Pb — Pa.



o The Artin gluing (or simply gluing) ¢1(F) : C'| F — B of a functor /' : B — C/, for Rezk
types B and C, with C' having all pullbacks:

ClF — 5 ¢~

gl(F)l B lﬁl

—_
B - C
o The family fibration of a cartesian fibration 7 : £ — B, where B has all pullbacks:
B — F
Fam(7):=0; BAl — s B

o
L

B
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Beck—Chevalley condition

Definition (Beck—Chevalley condition) |

Let /7 : B — U be a family over a Rezk type all of whose fibers are Rezk. Then 7 is said to
satisfy the Beck—Chevalley condition (BCC) if for any dependent square of the form

_—

; ;

-

_

W4—————

it holds that: if / is cocartesian, and ¢, " are cartesian, then /' is cocartesian.
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Beck—Chevalley families

Definition

A map between 7 : E — B is a Beck—Chevalley fibration or a cartesian fibration with internal
sums if:

@ The map 7 is a bicartesian fibration, i.e. a cartesian and cocartesian fibration.
@ The map = satisfies the Beck—Chevalley condition.

o Classical motivation:
o Fam(C) — Set with fibers C’ has internal sums if and only if C has small sums
@ Bénabou’s perspective generalizes this to an arbitrary base
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Beck—Chevalley families: Characterizations

Theorem (Characterizations of BCC fibrations, cf. [Str22])

Let I’ : B — U be a cartesian family over a Rezk type B which has all pullbacks, with
unstraightening  : 2 — B be a cartesian fibration. Then 7 is Beck—Chevalley fibration if and
only if the mediating fibered functor

:E —pwl B, tp(be):=(bidy,e)
has a fibered left adjoint which is also a cartesian functor:

EYX _+ .rnlB

N s

B



Internal sums for gluing

Proposition (Internal sums for gluing, [Str22])

Let A and B be Rezk types with pullbacks and " : A — B an arbitrary functor (hence all its
fibers are Rezk). Then the following are equivalent:

@ The functor I preserves pullbacks.
@ The gluing fibration o( /) = 0, : B | F — A is a Beck—Chevalley fibration.
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Extensive sums |

Recall from classical 1-category theory that a category C with pullbacks and coproducts is

extensive if and only if, for all small families (A;);c the induced functor H C/A; —C/ H A;
icl i€l

is an equivalence. This is equivalent to the condition that injections into finite sums are stable

under pullback, and for any family of squares

B, —%» B

il |

A, — [[ A
i€l

all of these are pullbacks if and only if all g : B — B are coproduct cones. This generalizes
fibrationally as follows.
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Extensive sums I

Definition (Stable and disjoint internal sums) |

Let /7 : B — U be a lex fibration with internal sums over a Rezk type 5. Then P has stable
internal sums if cocartesian arrows are stable under arbitrary pullbacks. The internal sums of P
are disjoint? if for every cocartesian arrow | : d-» ¢ the fibered diagonal is cocartesian, too:

b

! i

4In a category, a coproduct is disjoint if the inclusion maps are monomorphisms, and the intersection of the
summands is an initial object.

—
)
e




Extensive sums Il

Definition ((Pre-)Moens families)

Let B be a lex Rezk type. A lex Beck—Chevalley family /7 : B — U is a pre-Moens family if it
has stable internal sums. We call a pre-Moens family /” : B — U/ Moens family (or lextensive
family or pre-geometric family) if, moreover, all its (stable) internal sums are also disjoint.
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When are internal sums extensive? |

Definition (Terminal elements)

Let B be a Segal type. An element - : B is called terminal if isContr (Z homp(z, ~))
x:B

Definition (Choice of terminal elements) |

Let B be a Rezk type and /” : B — U be a family with Rezk fibers such that every fiber has a
terminal element. Then we denote, by type-theoretic choice, the section choosing fiberwise
terminal elements by
= (: H Pb,
b:B

i.e.forany 0 : B the element ¢, : Pbis terminal.

We define
:B— Pz,
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When are internal sums extensive? Il

Proposition (Stable disjoint sums in terms of extensive sums, cf. [Str22]) |

Let B be a lex Rezk type and I’ : B — U be a Beck—Chevalley family. Then, the following are
equivalent:

o The family I is a Moens family, i.e. |’ has stable disjoint sums.

o The bicartesian family I” has internally extensive sums, i.e. for vertical arrows [ : d — d’,
e — ¢/, cocartesian arrows ( : e—»>¢’, in a square

—_

! !

>

the arrow |, : d — e is a cocartesian arrow if and only if the square is a pullback.
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When are internal sums extensive? Il

Proposition (cont'd)

o The internal sums in I° are Lawvere-extensive, i.e. in any square of the form

where | : e ~ w'(a) is vertical the arrow |, : d — e is cocartesian if and only if the given
square is a pullback.

o Let: : B be a terminal element in B. For any « : B, the transport functor :Pa— Pz
reflects isomorphisms and is cocartesian in case /- is vertical.

0000 000008880000



When are internal sums extensive? IV

Corollary

Let B be a Rezk type and I : B — U a Moens family.
Then, for all arrows . : a — b in B and points « : P a, the functor

wld:Pald— Pbluwd
is an equivalence. In particular, for P a ~ P a | (, we have equivalences

uy \LC(I, : PGJ/Ca 2Pbeu!Caa (lu,)!\LCa, : Pa\l/Ca =~ PZ\LUJ/(CL)




When are internal sums extensive? V

Corollary (Pullback preservation of covariant transport in Moens families)

Let B be a Rezk type and I : B — U a Moens family.
Then for all . : a — b in B, the covariant transport functor

w:Pa— Pb

preserves pullbacks.
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Moens’ Theorem for synthetic (oo, 1)-categories |

We can adapt the proof from [Str22]:
Theorem (Moens’ Theorem in simplicial HOTT (W, cf. [Str22]))

For a small lex Rezk type I© : U the type

MoensFam(B) := Z isMoensFam P
P:B—U
of U-small Moens families is equivalent to the type

B " LexRezk := Y (B -=!"0)

C':LexRezk

of lex functors from B into the type LexRezk of U-small lex Rezk types.




Idea: Quasi-inverses given by “terminal transport” and gluing

m
MoensFam(B) ~ B |'** LexRezk

H/
ie.
PP :B—=U)= (P2 Ab.(1)((): B— Pz, U(F:B—C):=5ts(gl(F):CLF - B):
with = : B terminal, and ¢ : I1z P picking the terminal element in each fiber:

E (G ——— Op(b)

ﬂpl

B b - >
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Thank you for your attention!
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