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Motivation

By now, Voevodsky’s simplicial model [KL21] is a well-established
and familiar setting for interpreting homotopy type theory.

However, verifying expected properties of the simplicial model is
not always immediate.

For instance, while the proof that LEM holds in the said
model [KL20] is not complicated per se, it is not as straightforward
as one might expect.

The goal of today is to sketch a way to transport properties of the set
model to the simplicial model with h-sets.
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Properties of sets in the simplicial model: AC

For any Γ ⊢ 𝐴 and Γ, 𝐴 ⊢ 𝐵 in the Set model, the type

Γ ⊢ (Π𝑎∶𝐴‖𝐵𝑎‖) → ‖Π𝑎∶𝐴𝐵𝑎‖

is inhabited (assuming AC for the category Set of course).

If we now take Γ ⊢ 𝐴 and Γ, 𝐴 ⊢ 𝐵 in the sSet model with terms of

Γ ⊢ isSet𝐴 and Γ, 𝐴 ⊢ isSet𝐵,

is the corresponded type still inhabited?
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Properties of sets in the simplicial model

Consider a proposition 𝑃 constructed by

Γ1 ⊢ 𝐴1 type … Γ𝑛 ⊢ 𝐴𝑛 type 𝐽1 … 𝐽𝑚

Γ ⊢ 𝑃 type.

If 𝑃 is inhabited in the Set model,

is the proposition

Γ1 ⊢ 𝐴1 type
⋮

Γ𝑛 ⊢ 𝐴𝑛 type

Γ1 ⊢ 𝑤1 ∶ isSet𝐴1
⋮

Γ𝑛 ⊢ 𝑤𝑛 ∶ isSet𝐴𝑛

𝐽1
⋮

𝐽𝑚

Γ ⊢ 𝑃 type.

inhabited as well in the sSet model?
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Categories with Attributes

A category with attributes consists of
• a category C of contexts,
• a presheaf Ty ∶ Cop → Set of types,
• and context extension: for each Γ ∈ C and 𝐴 ∈ Ty(Γ), a map

𝑝𝐴 ∶ Γ.𝐴 → Γ
satisfying some conditions.

Example: the Set model

C = Set and Ty(𝐽) = Fam(𝐽) = Set𝐽
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Sets over simplicial sets

In the simplicial model, C is sSet and Ty(Γ) is essentially the set of
Kan fibrations with codomain Γ, which we write Fib(Γ).

There are two different CwA structures on sSet worth considering:

• The CwA of h-sets where
Ty(Γ) = Fib0(Γ) = (𝐴 ∶ Fib(Γ)) × isSet(𝐴).

• The CwA of discrete sets where
Ty(Γ) = DFib(Γ) = sSet(Γ, 𝒩 Set≅).

Another way to see discrete sets is as a generalisation of Fam,
because

sSet(Γ, 𝒩 Set≅) ≅ Cat(𝜏Γ, Set≅),

where 𝜏 ∶ sSet → Cat is the associated category functor.
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From sets to simplicial sets

We can break down the evident CwA map

(Set, Fam) (sSet, Fib)

as factors

(Set, Fam) (sSet,DFib) (sSet, Fib0) (sSet, Fib)

where
Fam(𝐽) = Set𝐽

DFib(Γ) = sSet(Γ, 𝒩 Set≅)
Fib0(Γ) = (𝐴 ∶ Fib(Γ)) × isSet(𝐴)
Fib(Γ) = {Kan fibrations over Γ}
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Local equivalence of CwAs

A CwA map 𝐹 ∶ C → D is a local equivalence [KL18] if it satisfies:
• Weak type lifting: for any Γ ∈ C and 𝐴 ∈ TyD(𝐹Γ), there exists

𝐴 ∈ TyC(Γ) together with an equivalence 𝐹𝐴
∼
−→ 𝐴 over 𝐹Γ.

• Weak term lifting: for any Γ ∈ C, 𝐴 ∈ TyC(Γ), and
𝑎 ∈ Tm(𝐹𝐴), there exists 𝑎 ∈ Tm(𝐴) together with an element
of the identity type Id𝐹𝐴(𝐹𝑎, 𝑎).

When a CwA map is a local equivalence it also satisfies weak context
lifting and weak section lifting (the iterated versions of the above).
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Local isomorphism of CwAs

A CwA map 𝐹 ∶ C → D is a local isomorphism if it satisfies:
• Type lifting: for any Γ ∈ C and 𝐴 ∈ TyD(𝐹Γ), there exists

𝐴 ∈ TyC(Γ) together with an isomorphism 𝐹𝐴
≅
−→ 𝐴 over 𝐹Γ.

• Term lifting: for any Γ ∈ C, 𝐴 ∈ TyC(Γ), and 𝑎 ∈ Tm(𝐹𝐴),
there exists 𝑎 ∈ Tm(𝐴) such that 𝐹(𝑎) = 𝑎 (up to
𝐹(Γ.𝐴) ≅ 𝐹Γ.𝐹𝐴).

The map (Set, Fam) → (sSet,DFib) is a local isomorphism: If
𝐽 ∈ Set, then

𝐴 ∈ DFib(𝐽) = sSet(𝐽, 𝒩 Set≅) ≅ Cat(𝜏𝐽, Set≅)

is induced by a 𝐽-family of sets because 𝜏𝐽 is discrete.
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(sSet,DFib) → (sSet, Fib0) is a local equivalence

Dependent version of: every 0-truncated Kan complex 𝐴 is
equivalent to the discrete set 𝜋0(𝐴) of its connected components.

From 𝐴 ∈ Fib0(Γ), need 𝐴 ∈ DFib(Γ) equivalent over Γ.
In terms of 𝜏Γ → Set≅, we can take

𝐴𝑣 = 𝜋0(𝐴𝑣) for 𝑣 ∈ Γ0

and if 𝑓 is a 1-simplex of Γ from 𝑣 to 𝑤, the 1-simplices of 𝐴 above 𝑓
induce a map 𝜋(𝐴𝑣) → 𝜋(𝐴𝑤).

In this way, the fibrations 𝐴 and 𝐴 are fibrewise equivalent, hence
equivalent over Γ.
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Type formers: Propositional truncation

What about type formers? It is important that they play well with

(Set, Fam) → (sSet, Fib)

for this to work.

As a guiding example, we only consider the case of propositional
truncation ‖–‖ today.

In the set model, for 𝐴 ∈ Fam(𝐽), this is modelled by

(‖𝐴‖)𝑗 = { {∗} if 𝐴𝑗 ≠ ∅,
∅ if 𝐴𝑗 = ∅.

And in the simplicial model, it is obtained as a special case of more
general methods for interpreting higher inductive types [LS20].
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Truncation via image factorisations

It is not entirely evident how these two notions relate to each other.
We give an alternate interpretation of proposition truncation in the
simplicial model which mimics that of the set model.

The natural candidate is image factorisation:

Γ.𝐴

Γ.‖𝐴‖

Γ

𝑝𝐴

𝑝‖𝐴‖
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Coherence with substitutions
As expected, this naive definition will not commute with
substitutions on the nose, but the usual trick of defining it via a
universe works.

Namely, set

̃𝑈

‖ ̃𝑈‖ ̃𝑈−1

𝑈 𝑈−1

𝑝

𝑚

⌟
⌜𝑚⌝

and for 𝐴 ∈ FibΓ = sSet(Γ, 𝑈) define ‖𝐴‖ as

Γ
𝐴
−→ 𝑈

⌜𝑚⌝
−−→ 𝑈−1 → 𝑈

12 / 14



Coherence with substitutions
As expected, this naive definition will not commute with
substitutions on the nose, but the usual trick of defining it via a
universe works. Namely, set

̃𝑈

‖ ̃𝑈‖ ̃𝑈−1

𝑈 𝑈−1

𝑝

𝑚

⌟
⌜𝑚⌝

and for 𝐴 ∈ FibΓ = sSet(Γ, 𝑈) define ‖𝐴‖ as

Γ
𝐴
−→ 𝑈

⌜𝑚⌝
−−→ 𝑈−1 → 𝑈

12 / 14



Preservation and computation

Since the map Set → sSet preserves epi-mono factorisations, the
CwA map

(Set, Fam) → (sSet, Fib)

preserves propositional truncation up to isomorphism.
The same is true of the intermediate maps

(Set, Fam) → (sSet,DFib) and (sSet,DFib) → (sSet, Fib0).

Remark: with this interpretation of propositional truncation,
𝛽-reduction does not hold definitionally, but overall this is still
equivalent to the more homotopical definition of truncation.
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What about arbitrary contexts?

The above only yields preservation for contexts in the image of
Set → sSet, we can do better.

Solution: for propositions, set covers suffice.

Given a context Γ ∈ sSet and a proposition 𝑃 over it, we pull it back

Γ0.𝑃 ′ Γ.𝑃

Γ0 Γ0 Γ

⌟
𝑠

Γ0 Γ0.𝑃 ′ Γ.𝑃

Γ Γ

𝑠

and we get a term of 𝑃 from a term 𝑠 of 𝑃 ′ because Γ0 → Γ is
(−1)-connected and Γ.𝑃 → Γ is (−1)-truncated.
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Thank you!
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