
Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY

Homotopy Type Theory
Univalent Foundations of Mathematics

Homotopy Type Theory
Univalent Foundations of Mathematics

The Univalent Foundations Program
Institute for Advanced Study

“Homotopy Type Theory: Univalent Foundations of Mathematics”
© 2013 The Univalent Foundations Program

Book version: first-edition-13-g2e736d1

MSC 2010 classification: 03-02, 55-02, 03B15

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

This book is freely available at http://homotopytypetheory.org/book/.

Acknowledgment

Apart from the generous support from the Institute for Advanced Study, some contributors to the book were partially
or fully supported by the following agencies and grants:

• Association of Members of the Institute for Advanced Study: a grant to the Institute for Advanced Study
• Agencija za raziskovalno dejavnost Republike Slovenije: P1–0294, N1–0011.
• Air Force Office of Scientific Research: FA9550-11-1-0143, and FA9550-12-1-0370.

This material is based in part upon work supported by the AFOSR under the above awards. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do
not necessarily reflect the views of the AFOSR.

• Engineering and Physical Sciences Research Council: EP/G034109/1, EP/G03298X/1.
• European Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath).
• National Science Foundation: DMS-1001191, DMS-1100938, CCF-1116703, and DMS-1128155.

This material is based in part upon work supported by the National Science Foundation under the above
awards. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

• The Simonyi Fund: a grant to the Institute for Advanced Study

http://creativecommons.org/licenses/by-sa/3.0/
http://homotopytypetheory.org/book/
http://www.sicris.si/search/prg.aspx?id=6120
http://www.sicris.si/search/prj.aspx?id=7109
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G034109/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G03298X/1
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath/
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1001191
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1100938
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1116703
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1128155

Preface

IAS Special Year on Univalent Foundations

A Special Year on Univalent Foundations of Mathematics was held in 2012-13 at the Institute
for Advanced Study, School of Mathematics, organized by Steve Awodey, Thierry Coquand, and
Vladimir Voevodsky. The following people were the official participants.

Peter Aczel
Benedikt Ahrens
Thorsten Altenkirch
Steve Awodey
Bruno Barras
Andrej Bauer
Yves Bertot
Marc Bezem
Thierry Coquand

Eric Finster
Daniel Grayson
Hugo Herbelin
André Joyal
Dan Licata
Peter Lumsdaine
Assia Mahboubi
Per Martin-Löf
Sergey Melikhov

Alvaro Pelayo
Andrew Polonsky
Michael Shulman
Matthieu Sozeau
Bas Spitters
Benno van den Berg
Vladimir Voevodsky
Michael Warren
Noam Zeilberger

There were also the following students, whose participation was no less valuable.

Carlo Angiuli
Anthony Bordg

Guillaume Brunerie
Chris Kapulkin

Egbert Rijke
Kristina Sojakova

In addition, there were the following short- and long-term visitors, including student visitors,
whose contributions to the Special Year were also essential.

Jeremy Avigad
Cyril Cohen
Robert Constable
Pierre-Louis Curien
Peter Dybjer
Martı́n Escardó
Kuen-Bang Hou
Nicola Gambino

Richard Garner
Georges Gonthier
Thomas Hales
Robert Harper
Martin Hofmann
Pieter Hofstra
Joachim Kock
Nicolai Kraus

Nuo Li
Zhaohui Luo
Michael Nahas
Erik Palmgren
Emily Riehl
Dana Scott
Philip Scott
Sergei Soloviev

vi

About this book

We did not set out to write a book. The present work has its origins in our collective attempts to
develop a new style of “informal type theory” that can be read and understood by a human be-
ing, as a complement to a formal proof that can be checked by a machine. Univalent foundations
is closely tied to the idea of a foundation of mathematics that can be implemented in a computer
proof assistant. Although such a formalization is not part of this book, much of the material
presented here was actually done first in the fully formalized setting inside a proof assistant,
and only later “unformalized” to arrive at the presentation you find before you — a remarkable
inversion of the usual state of affairs in formalized mathematics.

Each of the above-named individuals contributed something to the Special Year — and so
to this book — in the form of ideas, words, or deeds. The spirit of collaboration that prevailed
throughout the year was truly extraordinary.

Special thanks are due to the Institute for Advanced Study, without which this book would
obviously never have come to be. It proved to be an ideal setting for the creation of this new
branch of mathematics: stimulating, congenial, and supportive. May some trace of this unique
atmosphere linger in the pages of this book, and in the future development of this new field of
study.

The Univalent Foundations Program
Institute for Advanced Study

Princeton, April 2013

Contents

Introduction 1

I Foundations 15

1 Type theory 17
1.1 Type theory versus set theory . 17
1.2 Function types . 21
1.3 Universes and families . 23
1.4 Dependent function types (Π-types) . 24
1.5 Product types . 26
1.6 Dependent pair types (Σ-types) . 29
1.7 Coproduct types . 32
1.8 The type of booleans . 33
1.9 The natural numbers . 35
1.10 Pattern matching and recursion . 38
1.11 Propositions as types . 39
1.12 Identity types . 45
Notes . 51
Exercises . 53

2 Homotopy type theory 55
2.1 Types are higher groupoids . 58
2.2 Functions are functors . 66
2.3 Type families are fibrations . 67
2.4 Homotopies and equivalences . 70
2.5 The higher groupoid structure of type formers . 74
2.6 Cartesian product types . 75
2.7 Σ-types . 77
2.8 The unit type . 80
2.9 Π-types and the function extensionality axiom . 80
2.10 Universes and the univalence axiom . 83
2.11 Identity type . 84
2.12 Coproducts . 86
2.13 Natural numbers . 88
2.14 Example: equality of structures . 90

viii Contents

2.15 Universal properties . 93
Notes . 95
Exercises . 97

3 Sets and logic 99
3.1 Sets and n-types . 99
3.2 Propositions as types? . 101
3.3 Mere propositions . 103
3.4 Classical vs. intuitionistic logic . 104
3.5 Subsets and propositional resizing . 106
3.6 The logic of mere propositions . 107
3.7 Propositional truncation . 108
3.8 The axiom of choice . 110
3.9 The principle of unique choice . 111
3.10 When are propositions truncated? . 112
3.11 Contractibility . 114
Notes . 117
Exercises . 117

4 Equivalences 121
4.1 Quasi-inverses . 122
4.2 Half adjoint equivalences . 124
4.3 Bi-invertible maps . 128
4.4 Contractible fibers . 128
4.5 On the definition of equivalences . 129
4.6 Surjections and embeddings . 130
4.7 Closure properties of equivalences . 131
4.8 The object classifier . 133
4.9 Univalence implies function extensionality . 135
Notes . 137
Exercises . 137

5 Induction 139
5.1 Introduction to inductive types . 139
5.2 Uniqueness of inductive types . 141
5.3 W-types . 144
5.4 Inductive types are initial algebras . 147
5.5 Homotopy-inductive types . 149
5.6 The general syntax of inductive definitions . 153
5.7 Generalizations of inductive types . 156
5.8 Identity types and identity systems . 159
Notes . 163
Exercises . 163

Contents ix

6 Higher inductive types 167
6.1 Introduction . 167
6.2 Induction principles and dependent paths . 169
6.3 The interval . 173
6.4 Circles and spheres . 174
6.5 Suspensions . 176
6.6 Cell complexes . 179
6.7 Hubs and spokes . 180
6.8 Pushouts . 181
6.9 Truncations . 185
6.10 Quotients . 187
6.11 Algebra . 192
6.12 The flattening lemma . 196
6.13 The general syntax of higher inductive definitions 201
Notes . 203
Exercises . 204

7 Homotopy n-types 205
7.1 Definition of n-types . 205
7.2 Uniqueness of identity proofs and Hedberg’s theorem 208
7.3 Truncations . 212
7.4 Colimits of n-types . 217
7.5 Connectedness . 221
7.6 Orthogonal factorization . 225
7.7 Modalities . 230
Notes . 233
Exercises . 234

II Mathematics 239

8 Homotopy theory 241
8.1 π1(S1) . 244
8.2 Connectedness of suspensions . 252
8.3 πk≤n of an n-connected space and πk<n(S

n) . 253
8.4 Fiber sequences and the long exact sequence . 254
8.5 The Hopf fibration . 258
8.6 The Freudenthal suspension theorem . 263
8.7 The van Kampen theorem . 269
8.8 Whitehead’s theorem and Whitehead’s principle . 277
8.9 A general statement of the encode-decode method 280
8.10 Additional Results . 282
Notes . 282
Exercises . 284

x Contents

9 Category theory 285

9.1 Categories and precategories . 286

9.2 Functors and transformations . 289

9.3 Adjunctions . 292

9.4 Equivalences . 293

9.5 The Yoneda lemma . 299

9.6 Strict categories . 302

9.7 †-categories . 302

9.8 The structure identity principle . 303

9.9 The Rezk completion . 306

Notes . 313

Exercises . 314

10 Set theory 317

10.1 The category of sets . 317

10.2 Cardinal numbers . 325

10.3 Ordinal numbers . 328

10.4 Classical well-orderings . 334

10.5 The cumulative hierarchy . 337

Notes . 342

Exercises . 342

11 Real numbers 347

11.1 The field of rational numbers . 348

11.2 Dedekind reals . 348

11.3 Cauchy reals . 354

11.4 Comparison of Cauchy and Dedekind reals . 372

11.5 Compactness of the interval . 373

11.6 The surreal numbers . 379

Notes . 389

Exercises . 390

Appendix 395

A Formal type theory 397

A.1 The first presentation . 399

A.2 The second presentation . 403

A.3 Homotopy type theory . 409

A.4 Basic metatheory . 410

Notes . 411

Contents xi

Bibliography 413

Index of symbols 421

Index 427

Introduction

Homotopy type theory is a new branch of mathematics that combines aspects of several different
fields in a surprising way. It is based on a recently discovered connection between homotopy the-
ory and type theory. Homotopy theory is an outgrowth of algebraic topology and homological
algebra, with relationships to higher category theory; while type theory is a branch of mathe-
matical logic and theoretical computer science. Although the connections between the two are
currently the focus of intense investigation, it is increasingly clear that they are just the begin-
ning of a subject that will take more time and more hard work to fully understand. It touches on
topics as seemingly distant as the homotopy groups of spheres, the algorithms for type checking,
and the definition of weak ∞-groupoids.

Homotopy type theory also brings new ideas into the very foundation of mathematics. On
the one hand, there is Voevodsky’s subtle and beautiful univalence axiom. The univalence ax-
iom implies, in particular, that isomorphic structures can be identified, a principle that mathe-
maticians have been happily using on workdays, despite its incompatibility with the “official”
doctrines of conventional foundations. On the other hand, we have higher inductive types, which
provide direct, logical descriptions of some of the basic spaces and constructions of homotopy
theory: spheres, cylinders, truncations, localizations, etc. Both ideas are impossible to capture
directly in classical set-theoretic foundations, but when combined in homotopy type theory, they
permit an entirely new kind of “logic of homotopy types”.

This suggests a new conception of foundations of mathematics, with intrinsic homotopical
content, an “invariant” conception of the objects of mathematics — and convenient machine
implementations, which can serve as a practical aid to the working mathematician. This is the
Univalent Foundations program. The present book is intended as a first systematic exposition of
the basics of univalent foundations, and a collection of examples of this new style of reasoning
— but without requiring the reader to know or learn any formal logic, or to use any computer
proof assistant.

We emphasize that homotopy type theory is a young field, and univalent foundations is very
much a work in progress. This book should be regarded as a “snapshot” of just one portion of the
field, taken at the time it was written, rather than a polished exposition of a completed edifice.
As we will discuss briefly later, there are many aspects of homotopy type theory that are not
yet fully understood — and some that are not even touched upon here. The ultimate theory will
almost certainly not look exactly like the one described in this book, but it will surely be at least as
capable and powerful; we therefore believe that univalent foundations will eventually become
a viable alternative to set theory as the “implicit foundation” for the unformalized mathematics
done by most mathematicians.

2 INTRODUCTION

Type theory

Type theory was originally invented by Bertrand Russell [Rus08], as a device for blocking the
paradoxes in the logical foundations of mathematics that were under investigation at the time. It
was developed further by many people over the next few decades, particularly Church [Chu40,
Chu41] who combined it with his λ-calculus. Although it is not generally regarded as the founda-
tion for classical mathematics, set theory being more customary, type theory still has numerous
applications, especially in computer science and the theory of programming languages [Pie02].
Per Martin-Löf [ML98, ML75, ML82, ML84], among others, developed a “predicative” modifica-
tion of Church’s type system, which is now usually called dependent, constructive, intuitionistic,
or simply Martin-Löf type theory. This is the basis of the system that we consider here; it was orig-
inally intended as a rigorous framework for the formalization of constructive mathematics. In
what follows, we will often use “type theory” to refer specifically to this system and similar ones,
although type theory as a subject is much broader (see [Som10, KLN04] for the history of type
theory).

In type theory, unlike set theory, objects are classified using a primitive notion of type, similar
to the data-types used in programming languages. These elaborately structured types can be
used to express detailed specifications of the objects classified, giving rise to principles of rea-
soning about these objects. To take a very simple example, the objects of a product type A× B
are known to be of the form (a, b), and so one automatically knows how to construct them and
how to decompose them. Similarly, an object of function type A → B can be acquired from an
object of type B parametrized by objects of type A, and can be evaluated at an argument of type
A. This rigidly predictable behavior of all objects (as opposed to set theory’s more liberal for-
mation principles, allowing inhomogeneous sets) is one aspect of type theory that has led to its
extensive use in verifying the correctness of computer programs. The clear reasoning principles
associated with the construction of types also form the basis of modern computer proof assistants,
which are used for formalizing mathematics and verifying the correctness of formalized proofs.
We return to this aspect of type theory below.

One problem in understanding type theory from a mathematical point of view, however, has
always been that the basic concept of type is unlike that of set in ways that have been hard to make
precise. We believe that the new idea of regarding types, not as strange sets (perhaps constructed
without using classical logic), but as spaces, viewed from the perspective of homotopy theory, is
a significant step forward. In particular, it solves the problem of understanding how the notion
of equality of elements of a type differs from that of elements of a set.

In homotopy theory one is concerned with spaces and continuous mappings between them,
up to homotopy. A homotopy between a pair of continuous maps f : X → Y and g : X → Y is a
continuous map H : X× [0, 1]→ Y satisfying H(x, 0) = f (x) and H(x, 1) = g(x). The homotopy
H may be thought of as a “continuous deformation” of f into g. The spaces X and Y are said to
be homotopy equivalent, X ≃ Y, if there are continuous maps going back and forth, the composites
of which are homotopical to the respective identity mappings, i.e., if they are isomorphic “up to
homotopy”. Homotopy equivalent spaces have the same algebraic invariants (e.g., homology, or
the fundamental group), and are said to have the same homotopy type.

Homotopy type theory

Homotopy type theory (HoTT) interprets type theory from a homotopical perspective. In ho-
motopy type theory, we regard the types as “spaces” (as studied in homotopy theory) or higher
groupoids, and the logical constructions (such as the product A× B) as homotopy-invariant con-

3

structions on these spaces. In this way, we are able to manipulate spaces directly without first
having to develop point-set topology (or any combinatorial replacement for it, such as the the-
ory of simplicial sets). To briefly explain this perspective, consider first the basic concept of type
theory, namely that the term a is of type A, which is written:

a : A.

This expression is traditionally thought of as akin to:

“a is an element of the set A”.

However, in homotopy type theory we think of it instead as:

“a is a point of the space A”.

Similarly, every function f : A → B in type theory is regarded as a continuous map from the
space A to the space B.

We should stress that these “spaces” are treated purely homotopically, not topologically. For
instance, there is no notion of “open subset” of a type or of “convergence” of a sequence of
elements of a type. We only have “homotopical” notions, such as paths between points and
homotopies between paths, which also make sense in other models of homotopy theory (such as
simplicial sets). Thus, it would be more accurate to say that we treat types as ∞-groupoids; this
is a name for the “invariant objects” of homotopy theory which can be presented by topological
spaces, simplicial sets, or any other model for homotopy theory. However, it is convenient to
sometimes use topological words such as “space” and “path”, as long as we remember that
other topological concepts are not applicable.

(It is tempting to also use the phrase homotopy type for these objects, suggesting the dual
interpretation of “a type (as in type theory) viewed homotopically” and “a space considered from
the point of view of homotopy theory”. The latter is a bit different from the classical meaning
of “homotopy type” as an equivalence class of spaces modulo homotopy equivalence, although it
does preserve the meaning of phrases such as “these two spaces have the same homotopy type”.)

The idea of interpreting types as structured objects, rather than sets, has a long pedigree, and
is known to clarify various mysterious aspects of type theory. For instance, interpreting types
as sheaves helps explain the intuitionistic nature of type-theoretic logic, while interpreting them
as partial equivalence relations or “domains” helps explain its computational aspects. It also
implies that we can use type-theoretic reasoning to study the structured objects, leading to the
rich field of categorical logic. The homotopical interpretation fits this same pattern: it clarifies
the nature of identity (or equality) in type theory, and allows us to use type-theoretic reasoning
in the study of homotopy theory.

The key new idea of the homotopy interpretation is that the logical notion of identity a = b of
two objects a, b : A of the same type A can be understood as the existence of a path p : a ; b from
point a to point b in the space A. This also means that two functions f , g : A→ B can be identified
if they are homotopic, since a homotopy is just a (continuous) family of paths px : f (x) ; g(x) in
B, one for each x : A. In type theory, for every type A there is a (formerly somewhat mysterious)
type IdA of identifications of two objects of A; in homotopy type theory, this is just the path
space AI of all continuous maps I → A from the unit interval. In this way, a term p : IdA(a, b)
represents a path p : a ; b in A.

The idea of homotopy type theory arose around 2006 in independent work by Awodey and
Warren [AW09] and Voevodsky [Voe06], but it was inspired by Hofmann and Streicher’s earlier

4 INTRODUCTION

groupoid interpretation [HS98]. Indeed, higher-dimensional category theory (particularly the
theory of weak ∞-groupoids) is now known to be intimately connected to homotopy theory, as
proposed by Grothendieck and now being studied intensely by mathematicians of both sorts.
The original semantic models of Awodey–Warren and Voevodsky use well-known notions and
techniques from homotopy theory which are now also in use in higher category theory, such as
Quillen model categories and Kan simplicial sets.

In particular, Voevodsky constructed an interpretation of type theory in Kan simplicial sets,
and recognized that this interpretation satisfied a further crucial property which he dubbed uni-
valence. This had not previously been considered in type theory (although Church’s principle of
extensionality for propositions turns out to be a very special case of it, and Hofmann and Stre-
icher had considered another special case under the name “universe extensionality”). Adding
univalence to type theory in the form of a new axiom has far-reaching consequences, many of
which are natural, simplifying and compelling. The univalence axiom also further strengthens
the homotopical view of type theory, since it holds in the simplicial model and other related
models, while failing under the view of types as sets.

Univalent foundations

Very briefly, the basic idea of the univalence axiom can be explained as follows. In type theory,
one can have a type whose elements are themselves types; such a type is called a universe and
is usually denoted by U . Those types that are terms of U are commonly called small types. Like
any type, U has an identity type IdU , which expresses the identity relation A = B between small
types. Thinking of types as spaces, U is a space, the points of which are spaces; to understand
its identity type, we must ask, what is a path p : A ; B between spaces in U? The univalence
axiom says that such paths correspond to homotopy equivalences A ≃ B, (roughly) as explained
above. A bit more precisely, given any (small) types A and B, in addition to the primitive type
IdU (A, B) of identifications of A with B, there is the defined type Equiv(A, B) of equivalences
from A to B. Since the identity map on any object is an equivalence, there is a canonical map,

IdU (A, B)→ Equiv(A, B).

The univalence axiom states that this map is itself an equivalence. At the risk of oversimplifying,
we can state this succinctly as follows:

Univalence Axiom: (A = B) ≃ (A ≃ B).

In other words, identity is equivalent to equivalence. In particular, one may say that “equivalent
types are identical”. However, this phrase is somewhat misleading, since it may sound like a
sort of “skeletality” condition which collapses the notion of equivalence to coincide with identity,
whereas in fact univalence is about expanding the notion of identity so as to coincide with the
(unchanged) notion of equivalence.

From the homotopical point of view, univalence implies that spaces of the same homotopy
type are connected by a path in the universe U , in accord with the intuition of a classifying
space for (small) spaces. From the logical point of view, however, it is a radically new idea: it
says that isomorphic things can be identified! Mathematicians are of course used to identifying
isomorphic structures in practice, but they generally do so by “abuse of notation”, or some other
informal device, knowing that the objects involved are not “really” identical. But in this new
foundational scheme, such structures can be formally identified, in the logical sense that every

5

property or construction involving one also applies to the other. Indeed, the identification is
now made explicit, and properties and constructions can be systematically transported along
it. Moreover, the different ways in which such identifications may be made themselves form a
structure that one can (and should!) take into account.

Thus in sum, for points A and B of the universe U (i.e., small types), the univalence axiom
identifies the following three notions:

• (logical) an identification p : A = B of A and B
• (topological) a path p : A ; B from A to B in U
• (homotopical) an equivalence p : A ≃ B between A and B.

Higher inductive types

One of the classical advantages of type theory is its simple and effective techniques for work-
ing with inductively defined structures. The simplest nontrivial inductively defined structure is
the natural numbers, which is inductively generated by zero and the successor function. From
this statement one can algorithmically extract the principle of mathematical induction, which
characterizes the natural numbers. More general inductive definitions encompass lists and well-
founded trees of all sorts, each of which is characterized by a corresponding “induction prin-
ciple”. This includes most data structures used in certain programming languages; hence the
usefulness of type theory in formal reasoning about the latter. If conceived in a very general
sense, inductive definitions also include examples such as a disjoint union A + B, which may
be regarded as “inductively” generated by the two injections A → A + B and B → A + B. The
“induction principle” in this case is “proof by case analysis”, which characterizes the disjoint
union.

In homotopy theory, it is natural to consider also “inductively defined spaces” which are
generated not merely by a collection of points, but also by collections of paths and higher paths.
Classically, such spaces are called CW complexes. For instance, the circle S1 is generated by a
single point and a single path from that point to itself. Similarly, the 2-sphere S2 is generated by
a single point b and a single two-dimensional path from the constant path at b to itself, while
the torus T2 is generated by a single point, two paths p and q from that point to itself, and a
two-dimensional path from p � q to q � p.

By using the identification of paths with identities in homotopy type theory, these sort of
“inductively defined spaces” can be characterized in type theory by “induction principles”, en-
tirely analogously to classical examples such as the natural numbers and the disjoint union. The
resulting higher inductive types give a direct “logical” way to reason about familiar spaces such
as spheres, which (in combination with univalence) can be used to perform familiar arguments
from homotopy theory, such as calculating homotopy groups of spheres, in a purely formal way.
The resulting proofs are a marriage of classical homotopy-theoretic ideas with classical type-
theoretic ones, yielding new insight into both disciplines.

Moreover, this is only the tip of the iceberg: many abstract constructions from homotopy
theory, such as homotopy colimits, suspensions, Postnikov towers, localization, completion, and
spectrification, can also be expressed as higher inductive types. Many of these are classically
constructed using Quillen’s “small object argument”, which can be regarded as a finite way of
algorithmically describing an infinite CW complex presentation of a space, just as “zero and suc-
cessor” is a finite algorithmic description of the infinite set of natural numbers. Spaces produced
by the small object argument are infamously complicated and difficult to understand; the type-
theoretic approach is potentially much simpler, bypassing the need for any explicit construction

6 INTRODUCTION

by giving direct access to the appropriate “induction principle”. Thus, the combination of univa-
lence and higher inductive types suggests the possibility of a revolution, of sorts, in the practice
of homotopy theory.

Sets in univalent foundations

We have claimed that univalent foundations can eventually serve as a foundation for “all” of
mathematics, but so far we have discussed only homotopy theory. Of course, there are many
specific examples of the use of type theory without the new homotopy type theory features to
formalize mathematics, such as the recent formalization of the Feit–Thompson odd-order theo-
rem in COQ [GAA+13].

But the traditional view is that mathematics is founded on set theory, in the sense that all
mathematical objects and constructions can be coded into a theory such as Zermelo–Fraenkel set
theory (ZF). However, it is well-established by now that for most mathematics outside of set the-
ory proper, the intricate hierarchical membership structure of sets in ZF is really unnecessary: a
more “structural” theory, such as Lawvere’s Elementary Theory of the Category of Sets [Law05],
suffices.

In univalent foundations, the basic objects are “homotopy types” rather than sets, but we can
define a class of types which behave like sets. Homotopically, these can be thought of as spaces
in which every connected component is contractible, i.e. those which are homotopy equivalent
to a discrete space. It is a theorem that the category of such “sets” satisfies Lawvere’s axioms (or
related ones, depending on the details of the theory). Thus, any sort of mathematics that can be
represented in an ETCS-like theory (which, experience suggests, is essentially all of mathematics)
can equally well be represented in univalent foundations.

This supports the claim that univalent foundations is at least as good as existing founda-
tions of mathematics. A mathematician working in univalent foundations can build structures
out of sets in a familiar way, with more general homotopy types waiting in the foundational
background until there is need of them. For this reason, most of the applications in this book
have been chosen to be areas where univalent foundations has something new to contribute that
distinguishes it from existing foundational systems.

Unsurprisingly, homotopy theory and category theory are two of these, but perhaps less
obvious is that univalent foundations has something new and interesting to offer even in subjects
such as set theory and real analysis. For instance, the univalence axiom allows us to identify
isomorphic structures, while higher inductive types allow direct descriptions of objects by their
universal properties. Thus we can generally avoid resorting to arbitrarily chosen representatives
or transfinite iterative constructions. In fact, even the objects of study in ZF set theory can be
characterized, inside the sets of univalent foundations, by such an inductive universal property.

Informal type theory

One difficulty often encountered by the classical mathematician when faced with learning about
type theory is that it is usually presented as a fully or partially formalized deductive system. This
style, which is very useful for proof-theoretic investigations, is not particularly convenient for
use in applied, informal reasoning. Nor is it even familiar to most working mathematicians, even
those who might be interested in foundations of mathematics. One objective of the present work
is to develop an informal style of doing mathematics in univalent foundations that is at once
rigorous and precise, but is also closer to the language and style of presentation of everyday

7

mathematics.
In present-day mathematics, one usually constructs and reasons about mathematical objects

in a way that could in principle, one presumes, be formalized in a system of elementary set the-
ory, such as ZFC — at least given enough ingenuity and patience. For the most part, one does
not even need to be aware of this possibility, since it largely coincides with the condition that a
proof be “fully rigorous” (in the sense that all mathematicians have come to understand intu-
itively through education and experience). But one does need to learn to be careful about a few
aspects of “informal set theory”: the use of collections too large or inchoate to be sets; the axiom
of choice and its equivalents; even (for undergraduates) the method of proof by contradiction;
and so on. Adopting a new foundational system such as homotopy type theory as the implicit
formal basis of informal reasoning will require adjusting some of one’s instincts and practices.
The present text is intended to serve as an example of this “new kind of mathematics”, which
is still informal, but could now in principle be formalized in homotopy type theory, rather than
ZFC, again given enough ingenuity and patience.

It is worth emphasizing that, in this new system, such formalization can have real practical
benefits. The formal system of type theory is suited to computer systems and has been imple-
mented in existing proof assistants. A proof assistant is a computer program which guides the
user in construction of a fully formal proof, only allowing valid steps of reasoning. It also pro-
vides some degree of automation, can search libraries for existing theorems, and can even extract
numerical algorithms from the resulting (constructive) proofs.

We believe that this aspect of the univalent foundations program distinguishes it from other
approaches to foundations, potentially providing a new practical utility for the working math-
ematician. Indeed, proof assistants based on older type theories have already been used to for-
malize substantial mathematical proofs, such as the four-color theorem and the Feit–Thompson
theorem. Computer implementations of univalent foundations are presently works in progress
(like the theory itself). However, even its currently available implementations (which are mostly
small modifications to existing proof assistants such as COQ and AGDA) have already demon-
strated their worth, not only in the formalization of known proofs, but in the discovery of new
ones. Indeed, many of the proofs described in this book were actually first done in a fully for-
malized form in a proof assistant, and are only now being “unformalized” for the first time — a
reversal of the usual relation between formal and informal mathematics.

One can imagine a not-too-distant future when it will be possible for mathematicians to verify
the correctness of their own papers by working within the system of univalent foundations,
formalized in a proof assistant, and that doing so will become as natural as typesetting their
own papers in TEX. In principle, this could be equally true for any other foundational system,
but we believe it to be more practically attainable using univalent foundations, as witnessed by
the present work and its formal counterpart.

Constructivity

One of the most striking differences between classical foundations and type theory is the idea
of proof relevance, according to which mathematical statements, and even their proofs, become
first-class mathematical objects. In type theory, we represent mathematical statements by types,
which can be regarded simultaneously as both mathematical constructions and mathematical
assertions, a conception also known as propositions as types. Accordingly, we can regard a term
a : A as both an element of the type A (or in homotopy type theory, a point of the space A), and
at the same time, a proof of the proposition A. To take an example, suppose we have sets A and

8 INTRODUCTION

B (discrete spaces), and consider the statement “A is isomorphic to B”. In type theory, this can
be rendered as:

Iso(A, B) :≡ ∑
(f :A→B)

∑
(g:B→A)

((
∏(x:A)g(f (x)) = x

)
×
(
∏(y:B) f (g(y)) = y

))
.

Reading the type constructors Σ, Π,× here as “there exists”, “for all”, and “and” respectively
yields the usual formulation of “A and B are isomorphic”; on the other hand, reading them as
sums and products yields the type of all isomorphisms between A and B! To prove that A and B
are isomorphic, one constructs a proof p : Iso(A, B), which is therefore the same as constructing
an isomorphism between A and B, i.e., exhibiting a pair of functions f , g together with proofs
that their composites are the respective identity maps. The latter proofs, in turn, are nothing but
homotopies of the appropriate sorts. In this way, proving a proposition is the same as constructing an
element of some particular type. In particular, to prove a statement of the form “A and B” is just to
prove A and to prove B, i.e., to give an element of the type A× B. And to prove that A implies B
is just to find an element of A→ B, i.e. a function from A to B (determining a mapping of proofs
of A to proofs of B).

The logic of propositions-as-types is flexible and supports many variations, such as using
only a subclass of types to represent propositions. In homotopy type theory, there are natural
such subclasses arising from the fact that the system of all types, just like spaces in classical
homotopy theory, is “stratified” according to the dimensions in which their higher homotopy
structure exists or collapses. In particular, Voevodsky has found a purely type-theoretic defi-
nition of homotopy n-types, corresponding to spaces with no nontrivial homotopy information
above dimension n. (The 0-types are the “sets” mentioned previously as satisfying Lawvere’s
axioms.) Moreover, with higher inductive types, we can universally “truncate” a type into an n-
type; in classical homotopy theory this would be its nth Postnikov section. Particularly important
for logic is the case of homotopy (−1)-types, which we call mere propositions. Classically, every
(−1)-type is empty or contractible; we interpret these possibilities as the truth values “false” and
“true” respectively.

Using all types as propositions yields a very “constructive” conception of logic; for more on
this, see [Kol32, TvD88a, TvD88b]. For instance, every proof that something exists carries with it
enough information to actually find such an object; and every proof that “A or B” holds is either
a proof that A holds or a proof that B holds. Thus, from every proof we can automatically extract
an algorithm; this can be very useful in applications to computer programming.

On the other hand, however, this logic does diverge from the traditional understanding of
existence proofs in mathematics. In particular, it does not faithfully represent certain important
classical principles of reasoning, such as the axiom of choice and the law of excluded middle.
For these we need to use the “(−1)-truncated” logic, in which only the homotopy (−1)-types
represent propositions.

More specifically, consider on one hand the axiom of choice: “if for every x : A there exists a
y : B such that R(x, y), there is a function f : A → B such that for all x : A we have R(x, f (x)).”
The pure propositions-as-types notion of “there exists” is strong enough to make this statement
simply provable — yet it does not have all the consequences of the usual axiom of choice. How-
ever, in (−1)-truncated logic, this statement is not automatically true, but is a strong assumption
with the same sorts of consequences as its counterpart in classical set theory.

On the other hand, consider the law of excluded middle: “for all A, either A or not A.” Inter-
preting this in the pure propositions-as-types logic yields a statement that is inconsistent with
the univalence axiom. For since proving “A” means exhibiting an element of it, this assumption

9

would give a uniform way of selecting an element from every nonempty type — a sort of Hilber-
tian choice operator. Univalence implies that the element of A selected by such a choice operator
must be invariant under all self-equivalences of A, since these are identified with self-identities
and every operation must respect identity; but clearly some types have automorphisms with no
fixed points, e.g. we can swap the elements of a two-element type. However, the “(−1)-truncated
law of excluded middle”, though also not automatically true, may consistently be assumed with
most of the same consequences as in classical mathematics.

In other words, while the pure propositions-as-types logic is “constructive” in the strong
algorithmic sense mentioned above, the default (−1)-truncated logic is “constructive” in a dif-
ferent sense (namely, that of the logic formalized by Heyting under the name “intuitionistic”);
and to the latter we may freely add the axioms of choice and excluded middle to obtain a logic
that may be called “classical”. Thus, homotopy type theory is compatible with both construc-
tive and classical conceptions of logic, and many more besides. Indeed, the homotopical per-
spective reveals that classical and constructive logic can coexist, as endpoints of a spectrum of
different systems, with an infinite number of possibilities in between (the homotopy n-types
for −1 < n < ∞). We may speak of “LEMn” and “ACn”, with AC∞ being provable and LEM∞

inconsistent with univalence, while AC−1 and LEM−1 are the versions familiar to classical math-
ematicians (hence in most cases it is appropriate to assume the subscript (−1) when none is
given). Indeed, one can even have useful systems in which only certain types satisfy such further
“classical” principles, while types in general remain “constructive”.

It is worth emphasizing that univalent foundations does not require the use of constructive or
intuitionistic logic. Most of classical mathematics which depends on the law of excluded middle
and the axiom of choice can be performed in univalent foundations, simply by assuming that
these two principles hold (in their proper, (−1)-truncated, form). However, type theory does
encourage avoiding these principles when they are unnecessary, for several reasons.

First of all, every mathematician knows that a theorem is more powerful when proven using
fewer assumptions, since it applies to more examples. The situation with AC and LEM is no
different: type theory admits many interesting “nonstandard” models, such as in sheaf toposes,
where classicality principles such as AC and LEM tend to fail. Homotopy type theory admits
similar models in higher toposes, such as are studied in [TV02, Rez05, Lur09]. Thus, if we avoid
using these principles, the theorems we prove will be valid internally to all such models.

Secondly, one of the additional virtues of type theory is its computable character. In addition
to being a foundation for mathematics, type theory is a formal theory of computation, and can
be treated as a powerful programming language. From this perspective, the rules of the system
cannot be chosen arbitrarily the way set-theoretic axioms can: there must be a harmony between
them which allows all proofs to be “executed” as programs. We do not yet fully understand the
new principles introduced by homotopy type theory, such as univalence and higher inductive
types, from this point of view, but the basic outlines are emerging; see, for example, [LH12]. It
has been known for a long time, however, that principles such as AC and LEM are fundamentally
antithetical to computability, since they assert baldly that certain things exist without giving any
way to compute them. Thus, avoiding them is necessary to maintain the character of type theory
as a theory of computation.

Fortunately, constructive reasoning is not as hard as it may seem. In some cases, simply by
rephrasing some definitions, a theorem can be made constructive and its proof more elegant.
Moreover, in univalent foundations this seems to happen more often. For instance:

(i) In set-theoretic foundations, at various points in homotopy theory and category theory one

10 INTRODUCTION

needs the axiom of choice to perform transfinite constructions. But with higher inductive
types, we can encode these constructions directly and constructively. In particular, none of
the “synthetic” homotopy theory in Chapter 8 requires LEM or AC.

(ii) In set-theoretic foundations, the statement “every fully faithful and essentially surjective
functor is an equivalence of categories” is equivalent to the axiom of choice. But with the
univalence axiom, it is just true; see Chapter 9.

(iii) In set theory, various circumlocutions are required to obtain notions of “cardinal num-
ber” and “ordinal number” which canonically represent isomorphism classes of sets and
well-ordered sets, respectively — possibly involving the axiom of choice or the axiom of
foundation. But with univalence and higher inductive types, we can obtain such represen-
tatives directly by truncating the universe; see Chapter 10.

(iv) In set-theoretic foundations, the definition of the real numbers as equivalence classes of
Cauchy sequences requires either the law of excluded middle or the axiom of (countable)
choice to be well-behaved. But with higher inductive types, we can give a version of this
definition which is well-behaved and avoids any choice principles; see Chapter 11.

Of course, these simplifications could as well be taken as evidence that the new methods will
not, ultimately, prove to be really constructive. However, we emphasize again that the reader
does not have to care, or worry, about constructivity in order to read this book. The point is
that in all of the above examples, the version of the theory we give has independent advantages,
whether or not LEM and AC are assumed to be available. Constructivity, if attained, will be an
added bonus.

Given this discussion of adding new principles such as univalence, higher inductive types,
AC, and LEM, one may wonder whether the resulting system remains consistent. (One of the
original virtues of type theory, relative to set theory, was that it can be seen to be consistent
by proof-theoretic means). As with any foundational system, consistency is a relative ques-
tion: “consistent with respect to what?” The short answer is that all of the constructions and
axioms considered in this book have a model in the category of Kan complexes, due to Vo-
evodsky [KLV12] (see [LS17] for higher inductive types). Thus, they are known to be consistent
relative to ZFC (with as many inaccessible cardinals as we need nested univalent universes).
Giving a more traditionally type-theoretic account of this consistency is work in progress (see,
e.g., [LH12, BCH13]).

We summarize the different points of view of the type-theoretic operations in Table 1.

Open problems

For those interested in contributing to this new branch of mathematics, it may be encouraging to
know that there are many interesting open questions.

Perhaps the most pressing of them is the “constructivity” of the Univalence Axiom, posed
by Voevodsky in [Voe12]. The basic system of type theory follows the structure of Gentzen’s
natural deduction. Logical connectives are defined by their introduction rules, and have elimi-
nation rules justified by computation rules. Following this pattern, and using Tait’s computabil-
ity method, originally designed to analyse Gödel’s Dialectica interpretation, one can show the
property of normalization for type theory. This in turn implies important properties such as decid-
ability of type-checking (a crucial property since type-checking corresponds to proof-checking,
and one can argue that we should be able to “recognize a proof when we see one”), and the
so-called “canonicity property” that any closed term of the type of natural numbers reduces to a

11

Types Logic Sets Homotopy

A proposition set space
a : A proof element point
B(x) predicate family of sets fibration
b(x) : B(x) conditional proof family of elements section
0, 1 ⊥,⊤ ∅, {∅} ∅, ∗
A + B A ∨ B disjoint union coproduct
A× B A ∧ B set of pairs product space
A→ B A⇒ B set of functions function space

∑(x:A) B(x) ∃x:AB(x) disjoint sum total space

∏(x:A) B(x) ∀x:AB(x) product space of sections
IdA equality = { (x, x) | x ∈ A } path space AI

Table 1: Comparing points of view on type-theoretic operations

numeral. This last property, and the uniform structure of introduction/elimination rules, are lost
when one extends type theory with an axiom, such as the axiom of function extensionality, or
the univalence axiom. Voevodsky has formulated a precise mathematical conjecture connected
to this question of canonicity for type theory extended with the axiom of Univalence: given a
closed term of the type of natural numbers, is it always possible to find a numeral and a proof
that this term is equal to this numeral, where this proof of equality may itself use the univalence
axiom? More generally, an important issue is whether it is possible to provide a constructive
justification of the univalence axiom. What about if one adds other homotopically motivated
constructions, like higher inductive types? These questions remain open at the present time,
although methods are currently being developed to try to find answers.

Another basic issue is the difficulty of working with types, such as the natural numbers, that
are essentially sets (i.e., discrete spaces), containing only trivial paths. At present, homotopy
type theory can really only characterize spaces up to homotopy equivalence, which means that
these “discrete spaces” may only be homotopy equivalent to discrete spaces. Type-theoretically,
this means there are many paths that are equal to reflexivity, but not judgmentally equal to it
(see §1.1 for the meaning of “judgmentally”). While this homotopy-invariance has advantages,
these “meaningless” identity terms do introduce needless complications into arguments and
constructions, so it would be convenient to have a systematic way of eliminating or collapsing
them.

A more specialized, but no less important, problem is the relation between homotopy type
theory and the research on higher toposes currently happening at the intersection of higher cat-
egory theory and homotopy theory. There is a growing conviction among those familiar with
both subjects that they are intimately connected. For instance, the notion of a univalent universe
should coincide with that of an object classifier, while higher inductive types should be an “el-
ementary” reflection of local presentability. More generally, homotopy type theory should be
the “internal language” of (∞, 1)-toposes, just as intuitionistic higher-order logic is the internal
language of ordinary 1-toposes. Despite this general consensus, however, details remain to be
worked out — in particular, questions of coherence and strictness remain to be addressed — and
doing so will undoubtedly lead to further insights into both concepts.

12 INTRODUCTION

But by far the largest field of work to be done is in the ongoing formalization of everyday
mathematics in this new system. Recent successes in formalizing some facts from basic homo-
topy theory and category theory have been encouraging; some of these are described in Chap-
ters 8 and 9. Obviously, however, much work remains to be done.

The homotopy type theory community maintains a web site and group blog at http://
homotopytypetheory.org, as well as a discussion email list. Newcomers are always wel-
come!

How to read this book

This book is divided into two parts. Part I, “Foundations”, develops the fundamental concepts
of homotopy type theory. This is the mathematical foundation on which the development of spe-
cific subjects is built, and which is required for the understanding of the univalent foundations
approach. To a programmer, this is “library code”. Since univalent foundations is a new and
different kind of mathematics, its basic notions take some getting used to; thus Part I is fairly
extensive.

Part II, “Mathematics”, consists of four chapters that build on the basic notions of Part I to
exhibit some of the new things we can do with univalent foundations in four different areas of
mathematics: homotopy theory (Chapter 8), category theory (Chapter 9), set theory (Chapter 10),
and real analysis (Chapter 11). The chapters in Part II are more or less independent of each other,
although occasionally one will use a lemma proven in another.

A reader who wants to seriously understand univalent foundations, and be able to work in
it, will eventually have to read and understand most of Part I. However, a reader who just wants
to get a taste of univalent foundations and what it can do may understandably balk at having to
work through over 200 pages before getting to the “meat” in Part II. Fortunately, not all of Part I
is necessary in order to read the chapters in Part II. Each chapter in Part II begins with a brief
overview of its subject, what univalent foundations has to contribute to it, and the necessary
background from Part I, so the courageous reader can turn immediately to the appropriate chap-
ter for their favorite subject. For those who want to understand one or more chapters in Part II
more deeply than this, but are not ready to read all of Part I, we provide here a brief summary of
Part I, with remarks about which parts are necessary for which chapters in Part II.

Chapter 1 is about the basic notions of type theory, prior to any homotopical interpretation. A
reader who is familiar with Martin-Löf type theory can quickly skim it to pick up the particulars
of the theory we are using. However, readers without experience in type theory will need to
read Chapter 1, as there are many subtle differences between type theory and other foundations
such as set theory.

Chapter 2 introduces the homotopical viewpoint on type theory, along with the basic notions
supporting this view, and describes the homotopical behavior of each component of the type
theory from Chapter 1. It also introduces the univalence axiom (§2.10) — the first of the two basic
innovations of homotopy type theory. Thus, it is quite basic and we encourage everyone to read
it, especially §§2.1–2.4.

Chapter 3 describes how we represent logic in homotopy type theory, and its connection
to classical logic as well as to constructive and intuitionistic logic. Here we define the law of
excluded middle, the axiom of choice, and the axiom of propositional resizing (although, for
the most part, we do not need to assume any of these in the rest of the book), as well as the
propositional truncation which is essential for representing traditional logic. This chapter is essen-
tial background for Chapters 10 and 11, less important for Chapter 9, and not so necessary for

http://homotopytypetheory.org
http://homotopytypetheory.org

13

Chapter 8.
Chapters 4 and 5 study two special topics in detail: equivalences (and related notions) and

generalized inductive definitions. While these are important subjects in their own rights and
provide a deeper understanding of homotopy type theory, for the most part they are not neces-
sary for Part II. Only a few lemmas from Chapter 4 are used here and there, while the general
discussions in §§5.1, 5.6 and 5.7 are helpful for providing the intuition required for Chapter 6.
The generalized sorts of inductive definition discussed in §5.7 are also used in a few places in
Chapters 10 and 11.

Chapter 6 introduces the second basic innovation of homotopy type theory — higher induc-
tive types — with many examples. Higher inductive types are the primary object of study in
Chapter 8, and some particular ones play important roles in Chapters 10 and 11. They are not so
necessary for Chapter 9, although one example is used in §9.9.

Finally, Chapter 7 discusses homotopy n-types and related notions such as n-connected types.
These notions are important for Chapter 8, but not so important in the rest of Part II, although
the case n = −1 of some of the lemmas are used in §10.1.

This completes Part I. As mentioned above, Part II consists of four largely unrelated chapters,
each describing what univalent foundations has to offer to a particular subject.

Of the chapters in Part II, Chapter 8 (Homotopy theory) is perhaps the most radical. Univa-
lent foundations has a very different “synthetic” approach to homotopy theory in which homo-
topy types are the basic objects (namely, the types) rather than being constructed using topolog-
ical spaces or some other set-theoretic model. This enables new styles of proof for classical theo-
rems in algebraic topology, of which we present a sampling, from π1(S

1) = Z to the Freudenthal
suspension theorem.

In Chapter 9 (Category theory), we develop some basic (1-)category theory, adhering to the
principle of the univalence axiom that equality is isomorphism. This has the pleasant effect of
ensuring that all definitions and constructions are automatically invariant under equivalence of
categories: indeed, equivalent categories are equal just as equivalent types are equal. (It also has
connections to higher category theory and higher topos theory.)

Chapter 10 (Set theory) studies sets in univalent foundations. The category of sets has its
usual properties, hence provides a foundation for any mathematics that doesn’t need homotopi-
cal or higher-categorical structures. We also observe that univalence makes cardinal and ordinal
numbers a bit more pleasant, and that higher inductive types yield a cumulative hierarchy satis-
fying the usual axioms of Zermelo–Fraenkel set theory.

In Chapter 11 (Real numbers), we summarize the construction of Dedekind real numbers,
and then observe that higher inductive types allow a definition of Cauchy real numbers that
avoids some associated problems in constructive mathematics. Then we sketch a similar ap-
proach to Conway’s surreal numbers.

Each chapter in this book ends with a Notes section, which collects historical comments,
references to the literature, and attributions of results, to the extent possible. We have also in-
cluded Exercises at the end of each chapter, to assist the reader in gaining familiarity with doing
mathematics in univalent foundations.

Finally, recall that this book was written as a massively collaborative effort by a large number
of people. We have done our best to achieve consistency in terminology and notation, and to
put the mathematics in a linear sequence that flows logically, but it is very likely that some
imperfections remain. We ask the reader’s forgiveness for any such infelicities, and welcome
suggestions for improvement of the next edition.

14 INTRODUCTION

PART I

FOUNDATIONS

Chapter 1

Type theory

1.1 Type theory versus set theory

Homotopy type theory is (among other things) a foundational language for mathematics, i.e.,
an alternative to Zermelo–Fraenkel set theory. However, it behaves differently from set theory
in several important ways, and that can take some getting used to. Explaining these differences
carefully requires us to be more formal here than we will be in the rest of the book. As stated in
the introduction, our goal is to write type theory informally; but for a mathematician accustomed
to set theory, more precision at the beginning can help avoid some common misconceptions and
mistakes.

We note that a set-theoretic foundation has two “layers”: the deductive system of first-order
logic, and, formulated inside this system, the axioms of a particular theory, such as ZFC. Thus,
set theory is not only about sets, but rather about the interplay between sets (the objects of the
second layer) and propositions (the objects of the first layer).

By contrast, type theory is its own deductive system: it need not be formulated inside any
superstructure, such as first-order logic. Instead of the two basic notions of set theory, sets and
propositions, type theory has one basic notion: types. Propositions (statements which we can
prove, disprove, assume, negate, and so on1) are identified with particular types, via the corre-
spondence shown in Table 1 on page 11. Thus, the mathematical activity of proving a theorem is
identified with a special case of the mathematical activity of constructing an object—in this case,
an inhabitant of a type that represents a proposition.

This leads us to another difference between type theory and set theory, but to explain it
we must say a little about deductive systems in general. Informally, a deductive system is a
collection of rules for deriving things called judgments. If we think of a deductive system as a
formal game, then the judgments are the “positions” in the game which we reach by following
the game rules. We can also think of a deductive system as a sort of algebraic theory, in which
case the judgments are the elements (like the elements of a group) and the deductive rules are
the operations (like the group multiplication). From a logical point of view, the judgments can be
considered to be the “external” statements, living in the metatheory, as opposed to the “internal”
statements of the theory itself.

1Confusingly, it is also a common practice (dating back to Euclid) to use the word “proposition” synonymously
with “theorem”. We will confine ourselves to the logician’s usage, according to which a proposition is a statement
susceptible to proof, whereas a theorem (or “lemma” or “corollary”) is such a statement that has been proven. Thus
“0 = 1” and its negation “¬(0 = 1)” are both propositions, but only the latter is a theorem.

18 CHAPTER 1. TYPE THEORY

In the deductive system of first-order logic (on which set theory is based), there is only one
kind of judgment: that a given proposition has a proof. That is, each proposition A gives rise to
a judgment “A has a proof”, and all judgments are of this form. A rule of first-order logic such
as “from A and B infer A∧ B” is actually a rule of “proof construction” which says that given the
judgments “A has a proof” and “B has a proof”, we may deduce that “A ∧ B has a proof”. Note
that the judgment “A has a proof” exists at a different level from the proposition A itself, which is
an internal statement of the theory.

The basic judgment of type theory, analogous to “A has a proof”, is written “a : A” and
pronounced as “the term a has type A”, or more loosely “a is an element of A” (or, in homotopy
type theory, “a is a point of A”). When A is a type representing a proposition, then a may be
called a witness to the provability of A, or evidence of the truth of A (or even a proof of A, but
we will try to avoid this confusing terminology). In this case, the judgment a : A is derivable in
type theory (for some a) precisely when the analogous judgment “A has a proof” is derivable in
first-order logic (modulo differences in the axioms assumed and in the encoding of mathematics,
as we will discuss throughout the book).

On the other hand, if the type A is being treated more like a set than like a proposition
(although as we will see, the distinction can become blurry), then “a : A” may be regarded as
analogous to the set-theoretic statement “a ∈ A”. However, there is an essential difference in that
“a : A” is a judgment whereas “a ∈ A” is a proposition. In particular, when working internally in
type theory, we cannot make statements such as “if a : A then it is not the case that b : B”, nor
can we “disprove” the judgment “a : A”.

A good way to think about this is that in set theory, “membership” is a relation which may
or may not hold between two pre-existing objects “a” and “A”, while in type theory we cannot
talk about an element “a” in isolation: every element by its very nature is an element of some
type, and that type is (generally speaking) uniquely determined. Thus, when we say informally
“let x be a natural number”, in set theory this is shorthand for “let x be a thing and assume
that x ∈ N”, whereas in type theory “let x : N” is an atomic statement: we cannot introduce a
variable without specifying its type.

At first glance, this may seem an uncomfortable restriction, but it is arguably closer to the
intuitive mathematical meaning of “let x be a natural number”. In practice, it seems that when-
ever we actually need “a ∈ A” to be a proposition rather than a judgment, there is always an
ambient set B of which a is known to be an element and A is known to be a subset. This situation
is also easy to represent in type theory, by taking a to be an element of the type B, and A to be a
predicate on B; see §3.5.

A last difference between type theory and set theory is the treatment of equality. The familiar
notion of equality in mathematics is a proposition: e.g. we can disprove an equality or assume
an equality as a hypothesis. Since in type theory, propositions are types, this means that equality
is a type: for elements a, b : A (that is, both a : A and b : A) we have a type “a =A b”. (In
homotopy type theory, of course, this equality proposition can behave in unfamiliar ways: see
§1.12 and Chapter 2, and the rest of the book). When a =A b is inhabited, we say that a and b are
(propositionally) equal.

However, in type theory there is also a need for an equality judgment, existing at the same
level as the judgment “x : A”. This is called judgmental equality or definitional equality, and
we write it as a ≡ b : A or simply a ≡ b. It is helpful to think of this as meaning “equal by
definition”. For instance, if we define a function f : N → N by the equation f (x) = x2, then
the expression f (3) is equal to 32 by definition. Inside the theory, it does not make sense to negate
or assume an equality-by-definition; we cannot say “if x is equal to y by definition, then z is

1.1 TYPE THEORY VERSUS SET THEORY 19

not equal to w by definition”. Whether or not two expressions are equal by definition is just a
matter of expanding out the definitions; in particular, it is algorithmically decidable (though the
algorithm is necessarily meta-theoretic, not internal to the theory).

As type theory becomes more complicated, judgmental equality can get more subtle than
this, but it is a good intuition to start from. Alternatively, if we regard a deductive system as
an algebraic theory, then judgmental equality is simply the equality in that theory, analogous to
the equality between elements of a group—the only potential for confusion is that there is also
an object inside the deductive system of type theory (namely the type “a = b”) which behaves
internally as a notion of “equality”.

The reason we want a judgmental notion of equality is so that it can control the other form of
judgment, “a : A”. For instance, suppose we have given a proof that 32 = 9, i.e. we have derived
the judgment p : (32 = 9) for some p. Then the same witness p ought to count as a proof that
f (3) = 9, since f (3) is 32 by definition. The best way to represent this is with a rule saying that
given the judgments a : A and A ≡ B, we may derive the judgment a : B.

Thus, for us, type theory will be a deductive system based on two forms of judgment:

Judgment Meaning

a : A “a is an object of type A”
a ≡ b : A “a and b are definitionally equal objects of type A”

When introducing a definitional equality, i.e., defining one thing to be equal to another, we will
use the symbol “:≡”. Thus, the above definition of the function f would be written as f (x) :≡ x2.

Because judgments cannot be put together into more complicated statements, the symbols “:”
and “≡” bind more loosely than anything else.2 Thus, for instance, “p : x = y” should be parsed
as “p : (x = y)”, which makes sense since “x = y” is a type, and not as “(p : x) = y”, which is
senseless since “p : x” is a judgment and cannot be equal to anything. Similarly, “A ≡ x = y”
can only be parsed as “A ≡ (x = y)”, although in extreme cases such as this, one ought to
add parentheses anyway to aid reading comprehension. Moreover, later on we will fall into the
common notation of chaining together equalities — e.g. writing a = b = c = d to mean “a = b
and b = c and c = d, hence a = d” — and we will also include judgmental equalities in such
chains. Context usually suffices to make the intent clear.

This is perhaps also an appropriate place to mention that the common mathematical notation
“ f : A → B”, expressing the fact that f is a function from A to B, can be regarded as a typing
judgment, since we use “A→ B” as notation for the type of functions from A to B (as is standard
practice in type theory; see §1.4).

Judgments may depend on assumptions of the form x : A, where x is a variable and A is a
type. For example, we may construct an object m + n : N under the assumptions that m, n : N.
Another example is that assuming A is a type, x, y : A, and p : x =A y, we may construct
an element p−1 : y =A x. The collection of all such assumptions is called the context; from a
topological point of view it may be thought of as a “parameter space”. In fact, technically the
context must be an ordered list of assumptions, since later assumptions may depend on previous
ones: the assumption x : A can only be made after the assumptions of any variables appearing
in the type A.

2In formalized type theory, commas and turnstiles can bind even more loosely. For instance, x : A, y : B ⊢ c : C is
parsed as ((x : A), (y : B)) ⊢ (c : C). However, in this book we refrain from such notation until Appendix A.

20 CHAPTER 1. TYPE THEORY

If the type A in an assumption x : A represents a proposition, then the assumption is a
type-theoretic version of a hypothesis: we assume that the proposition A holds. When types are
regarded as propositions, we may omit the names of their proofs. Thus, in the second example
above we may instead say that assuming x =A y, we can prove y =A x. However, since we
are doing “proof-relevant” mathematics, we will frequently refer back to proofs as objects. In
the example above, for instance, we may want to establish that p−1 together with the proofs of
transitivity and reflexivity behave like a groupoid; see Chapter 2.

Note that under this meaning of the word assumption, we can assume a propositional equality
(by assuming a variable p : x = y), but we cannot assume a judgmental equality x ≡ y, since it
is not a type that can have an element. However, we can do something else which looks kind of
like assuming a judgmental equality: if we have a type or an element which involves a variable
x : A, then we can substitute any particular element a : A for x to obtain a more specific type or
element. We will sometimes use language like “now assume x ≡ a” to refer to this process of
substitution, even though it is not an assumption in the technical sense introduced above.

By the same token, we cannot prove a judgmental equality either, since it is not a type in
which we can exhibit a witness. Nevertheless, we will sometimes state judgmental equalities as
part of a theorem, e.g. “there exists f : A → B such that f (x) ≡ y”. This should be regarded as
the making of two separate judgments: first we make the judgment f : A→ B for some element
f , then we make the additional judgment that f (x) ≡ y.

In the rest of this chapter, we attempt to give an informal presentation of type theory, suffi-
cient for the purposes of this book; we give a more formal account in Appendix A. Aside from
some fairly obvious rules (such as the fact that judgmentally equal things can always be substi-
tuted for each other), the rules of type theory can be grouped into type formers. Each type former
consists of a way to construct types (possibly making use of previously constructed types), to-
gether with rules for the construction and behavior of elements of that type. In most cases, these
rules follow a fairly predictable pattern, but we will not attempt to make this precise here; see
however the beginning of §1.5 and also Chapter 5.

An important aspect of the type theory presented in this chapter is that it consists entirely
of rules, without any axioms. In the description of deductive systems in terms of judgments, the
rules are what allow us to conclude one judgment from a collection of others, while the axioms
are the judgments we are given at the outset. If we think of a deductive system as a formal game,
then the rules are the rules of the game, while the axioms are the starting position. And if we
think of a deductive system as an algebraic theory, then the rules are the operations of the theory,
while the axioms are the generators for some particular free model of that theory.

In set theory, the only rules are the rules of first-order logic (such as the rule allowing us to
deduce “A∧ B has a proof” from “A has a proof” and “B has a proof”): all the information about
the behavior of sets is contained in the axioms. By contrast, in type theory, it is usually the rules
which contain all the information, with no axioms being necessary. For instance, in §1.5 we will
see that there is a rule allowing us to deduce the judgment “(a, b) : A × B” from “a : A” and
“b : B”, whereas in set theory the analogous statement would be (a consequence of) the pairing
axiom.

The advantage of formulating type theory using only rules is that rules are “procedural”. In
particular, this property is what makes possible (though it does not automatically ensure) the
good computational properties of type theory, such as “canonicity”. However, while this style
works for traditional type theories, we do not yet understand how to formulate everything we
need for homotopy type theory in this way. In particular, in §§2.9 and 2.10 and Chapter 6 we will
have to augment the rules of type theory presented in this chapter by introducing additional ax-

1.2 FUNCTION TYPES 21

ioms, notably the univalence axiom. In this chapter, however, we confine ourselves to a traditional
rule-based type theory.

1.2 Function types

Given types A and B, we can construct the type A → B of functions with domain A and
codomain B. We also sometimes refer to functions as maps. Unlike in set theory, functions
are not defined as functional relations; rather they are a primitive concept in type theory. We
explain the function type by prescribing what we can do with functions, how to construct them
and what equalities they induce.

Given a function f : A → B and an element of the domain a : A, we can apply the function
to obtain an element of the codomain B, denoted f (a) and called the value of f at a. It is common
in type theory to omit the parentheses and denote f (a) simply by f a, and we will sometimes do
this as well.

But how can we construct elements of A → B? There are two equivalent ways: either by
direct definition or by using λ-abstraction. Introducing a function by definition means that we
introduce a function by giving it a name — let’s say, f — and saying we define f : A → B by
giving an equation

f (x) :≡ Φ (1.2.1)

where x is a variable and Φ is an expression which may use x. In order for this to be valid, we
have to check that Φ : B assuming x : A.

Now we can compute f (a) by replacing the variable x in Φ with a. As an example, consider
the function f : N → N which is defined by f (x) :≡ x + x. (We will define N and + in §1.9.)
Then f (2) is judgmentally equal to 2 + 2.

If we don’t want to introduce a name for the function, we can use λ-abstraction. Given an
expression Φ of type B which may use x : A, as above, we write λ(x : A). Φ to indicate the same
function defined by (1.2.1). Thus, we have

(λ(x : A). Φ) : A→ B.

For the example in the previous paragraph, we have the typing judgment

(λ(x : N). x + x) : N→N.

As another example, for any types A and B and any element y : B, we have a constant function
(λ(x : A). y) : A→ B.

We generally omit the type of the variable x in a λ-abstraction and write λx. Φ, since the typ-
ing x : A is inferable from the judgment that the function λx. Φ has type A→ B. By convention,
the “scope” of the variable binding “λx. ” is the entire rest of the expression, unless delimited
with parentheses. Thus, for instance, λx. x + x should be parsed as λx. (x + x), not as (λx. x) + x
(which would, in this case, be ill-typed anyway).

Another equivalent notation is

(x 7→ Φ) : A→ B.

We may also sometimes use a blank “–” in the expression Φ in place of a variable, to denote an
implicit λ-abstraction. For instance, g(x, –) is another way to write λy. g(x, y).

22 CHAPTER 1. TYPE THEORY

Now a λ-abstraction is a function, so we can apply it to an argument a : A. We then have the
following computation rule3, which is a definitional equality:

(λx. Φ)(a) ≡ Φ′

where Φ′ is the expression Φ in which all occurrences of x have been replaced by a. Continuing
the above example, we have

(λx. x + x)(2) ≡ 2 + 2.

Note that from any function f : A→ B, we can construct a lambda abstraction function λx. f (x).
Since this is by definition “the function that applies f to its argument” we consider it to be
definitionally equal to f :4

f ≡ (λx. f (x)).

This equality is the uniqueness principle for function types, because it shows that f is uniquely
determined by its values.

The introduction of functions by definitions with explicit parameters can be reduced to sim-
ple definitions by using λ-abstraction: i.e., we can read a definition of f : A→ B by

f (x) :≡ Φ

as
f :≡ λx. Φ.

When doing calculations involving variables, we have to be careful when replacing a vari-
able with an expression that also involves variables, because we want to preserve the binding
structure of expressions. By the binding structure we mean the invisible link generated by binders
such as λ, Π and Σ (the latter we are going to meet soon) between the place where the variable
is introduced and where it is used. As an example, consider f : N→ (N→N) defined as

f (x) :≡ λy. x + y.

Now if we have assumed somewhere that y : N, then what is f (y)? It would be wrong to
just naively replace x by y everywhere in the expression “λy. x + y” defining f (x), obtaining
λy. y + y, because this means that y gets captured. Previously, the substituted y was referring to
our assumption, but now it is referring to the argument of the λ-abstraction. Hence, this naive
substitution would destroy the binding structure, allowing us to perform calculations which are
semantically unsound.

But what is f (y) in this example? Note that bound (or “dummy”) variables such as y in
the expression λy. x + y have only a local meaning, and can be consistently replaced by any
other variable, preserving the binding structure. Indeed, λy. x + y is declared to be judgmentally
equal5 to λz. x + z. It follows that f (y) is judgmentally equal to λz. y + z, and that answers our
question. (Instead of z, any variable distinct from y could have been used, yielding an equal
result.)

Of course, this should all be familiar to any mathematician: it is the same phenomenon as
the fact that if f (x) :≡

∫ 2
1

dt
x−t , then f (t) is not

∫ 2
1

dt
t−t but rather

∫ 2
1

ds
t−s . A λ-abstraction binds a

dummy variable in exactly the same way that an integral does.

3Use of this equality is often referred to as β-conversion or β-reduction.
4Use of this equality is often referred to as η-conversion or η-expansion.
5Use of this equality is often referred to as α-conversion.

1.3 UNIVERSES AND FAMILIES 23

We have seen how to define functions in one variable. One way to define functions in several
variables would be to use the cartesian product, which will be introduced later; a function with
parameters A and B and results in C would be given the type f : A× B → C. However, there is
another choice that avoids using product types, which is called currying (after the mathemati-
cian Haskell Curry).

The idea of currying is to represent a function of two inputs a : A and b : B as a function
which takes one input a : A and returns another function, which then takes a second input b : B and
returns the result. That is, we consider two-variable functions to belong to an iterated function
type, f : A → (B → C). We may also write this without the parentheses, as f : A → B → C,
with associativity to the right as the default convention. Then given a : A and b : B, we can
apply f to a and then apply the result to b, obtaining f (a)(b) : C. To avoid the proliferation of
parentheses, we allow ourselves to write f (a)(b) as f (a, b) even though there are no products
involved. When omitting parentheses around function arguments entirely, we write f a b for
(f a) b, with the default associativity now being to the left so that f is applied to its arguments in
the correct order.

Our notation for definitions with explicit parameters extends to this situation: we can define
a named function f : A→ B→ C by giving an equation

f (x, y) :≡ Φ

where Φ : C assuming x : A and y : B. Using λ-abstraction this corresponds to

f :≡ λx. λy. Φ,

which may also be written as
f :≡ x 7→ y 7→ Φ.

We can also implicitly abstract over multiple variables by writing multiple blanks, e.g. g(–, –)
means λx. λy. g(x, y). Currying a function of three or more arguments is a straightforward ex-
tension of what we have just described.

1.3 Universes and families

So far, we have been using the expression “A is a type” informally. We are going to make this
more precise by introducing universes. A universe is a type whose elements are types. As
in naive set theory, we might wish for a universe of all types U∞ including itself (that is, with
U∞ : U∞). However, as in set theory, this is unsound, i.e. we can deduce from it that every type,
including the empty type representing the proposition False (see §1.7), is inhabited. For instance,
using a representation of sets as trees, we can directly encode Russell’s paradox [Coq92a].

To avoid the paradox we introduce a hierarchy of universes

U0 : U1 : U2 : · · ·

where every universe Ui is an element of the next universe Ui+1. Moreover, we assume that our
universes are cumulative, that is that all the elements of the ith universe are also elements of
the (i + 1)st universe, i.e. if A : Ui then also A : Ui+1. This is convenient, but has the slightly
unpleasant consequence that elements no longer have unique types, and is a bit tricky in other
ways that need not concern us here; see the Notes.

24 CHAPTER 1. TYPE THEORY

When we say that A is a type, we mean that it inhabits some universe Ui. We usually want to
avoid mentioning the level i explicitly, and just assume that levels can be assigned in a consistent
way; thus we may write A : U omitting the level. This way we can even write U : U , which can
be read as Ui : Ui+1, having left the indices implicit. Writing universes in this style is referred to as
typical ambiguity. It is convenient but a bit dangerous, since it allows us to write valid-looking
proofs that reproduce the paradoxes of self-reference. If there is any doubt about whether an
argument is correct, the way to check it is to try to assign levels consistently to all universes
appearing in it. When some universe U is assumed, we may refer to types belonging to U as
small types.

To model a collection of types varying over a given type A, we use functions B : A →
U whose codomain is a universe. These functions are called families of types (or sometimes
dependent types); they correspond to families of sets as used in set theory.

An example of a type family is the family of finite sets Fin : N → U , where Fin(n) is a
type with exactly n elements. (We cannot define the family Fin yet — indeed, we have not even
introduced its domain N yet — but we will be able to soon; see Exercise 1.9.) We may denote
the elements of Fin(n) by 0n, 1n, . . . , (n− 1)n, with subscripts to emphasize that the elements of
Fin(n) are different from those of Fin(m) if n is different from m, and all are different from the
ordinary natural numbers (which we will introduce in §1.9).

A more trivial (but very important) example of a type family is the constant type family at a
type B : U , which is of course the constant function (λ(x : A). B) : A→ U .

As a non-example, in our version of type theory there is no type family “λ(i : N).Ui”. Indeed,
there is no universe large enough to be its codomain. Moreover, we do not even identify the in-
dices i of the universes Ui with the natural numbers N of type theory (the latter to be introduced
in §1.9).

1.4 Dependent function types (Π-types)

In type theory we often use a more general version of function types, called a Π-type or de-
pendent function type. The elements of a Π-type are functions whose codomain type can vary
depending on the element of the domain to which the function is applied, called dependent
functions. The name “Π-type” is used because this type can also be regarded as the cartesian
product over a given type.

Given a type A : U and a family B : A → U , we may construct the type of dependent
functions ∏(x:A) B(x) : U . There are many alternative notations for this type, such as

∏(x:A)B(x) ∏
(x:A)

B(x) ∏(x : A), B(x).

If B is a constant family, then the dependent product type is the ordinary function type:

∏(x:A)B ≡ (A→ B).

Indeed, all the constructions of Π-types are generalizations of the corresponding constructions
on ordinary function types.

We can introduce dependent functions by explicit definitions: to define f : ∏(x:A) B(x), where
f is the name of a dependent function to be defined, we need an expression Φ : B(x) possibly
involving the variable x : A, and we write

f (x) :≡ Φ for x : A.

1.4 DEPENDENT FUNCTION TYPES (Π-TYPES) 25

Alternatively, we can use λ-abstraction

λx. Φ : ∏
x:A

B(x). (1.4.1)

As with non-dependent functions, we can apply a dependent function f : ∏(x:A) B(x) to an
argument a : A to obtain an element f (a) : B(a). The equalities are the same as for the ordinary
function type, i.e. we have the computation rule given a : A we have f (a) ≡ Φ′ and (λx. Φ)(a) ≡
Φ′, where Φ′ is obtained by replacing all occurrences of x in Φ by a (avoiding variable capture,
as always). Similarly, we have the uniqueness principle f ≡ (λx. f (x)) for any f : ∏(x:A) B(x).

As an example, recall from §1.3 that there is a type family Fin : N → U whose values are
the standard finite sets, with elements 0n, 1n, . . . , (n − 1)n : Fin(n). There is then a dependent
function fmax : ∏(n:N) Fin(n + 1) which returns the “largest” element of each nonempty finite
type, fmax(n) :≡ nn+1. As was the case for Fin itself, we cannot define fmax yet, but we will be
able to soon; see Exercise 1.9.

Another important class of dependent function types, which we can define now, are functions
which are polymorphic over a given universe. A polymorphic function is one which takes a type
as one of its arguments, and then acts on elements of that type (or of other types constructed from
it). An example is the polymorphic identity function id : ∏(A:U) A→ A, which we define by id :≡
λ(A :U). λ(x : A). x. (Like λ-abstractions, Πs automatically scope over the rest of the expression
unless delimited; thus id : ∏(A:U) A → A means id : ∏(A:U)(A → A). This convention, though
unusual in mathematics, is common in type theory.)

We sometimes write some arguments of a dependent function as subscripts. For instance,
we might equivalently define the polymorphic identity function by idA(x) :≡ x. Moreover, if an
argument can be inferred from context, we may omit it altogether. For instance, if a : A, then
writing id(a) is unambiguous, since id must mean idA in order for it to be applicable to a.

Another, less trivial, example of a polymorphic function is the “swap” operation that switches
the order of the arguments of a (curried) two-argument function:

swap : ∏
(A:U)

∏
(B:U)

∏
(C:U)

(A→ B→ C)→ (B→ A→ C).

We can define this by
swap(A, B, C, g) :≡ λb. λa. g(a)(b).

We might also equivalently write the type arguments as subscripts:

swapA,B,C(g)(b, a) :≡ g(a, b).

Note that as we did for ordinary functions, we use currying to define dependent functions
with several arguments (such as swap). However, in the dependent case the second domain may
depend on the first one, and the codomain may depend on both. That is, given A : U and type
families B : A → U and C : ∏(x:A) B(x) → U , we may construct the type ∏(x:A) ∏(y:B(x)) C(x, y)
of functions with two arguments. In the case when B is constant and equal to A, we may con-
dense the notation and write ∏(x,y:A); for instance, the type of swap could also be written as

swap : ∏
A,B,C:U

(A→ B→ C)→ (B→ A→ C).

Finally, given f : ∏(x:A) ∏(y:B(x)) C(x, y) and arguments a : A and b : B(a), we have f (a)(b) :
C(a, b), which, as before, we write as f (a, b) : C(a, b).

26 CHAPTER 1. TYPE THEORY

1.5 Product types

Given types A, B : U we introduce the type A× B : U , which we call their cartesian product. We
also introduce a nullary product type, called the unit type 1 : U . We intend the elements of A× B
to be pairs (a, b) : A× B, where a : A and b : B, and the only element of 1 to be some particular
object ⋆ : 1. However, unlike in set theory, where we define ordered pairs to be particular sets
and then collect them all together into the cartesian product, in type theory, ordered pairs are a
primitive concept, as are functions.

Remark 1.5.1. There is a general pattern for introduction of a new kind of type in type theory. We
have already seen this pattern in §§1.2 and 1.46, so it is worth emphasizing the general form. To
specify a type, we specify:

(i) how to form new types of this kind, via formation rules. (For example, we can form the
function type A → B when A is a type and when B is a type. We can form the dependent
function type ∏(x:A) B(x) when A is a type and B(x) is a type for x : A.)

(ii) how to construct elements of that type. These are called the type’s constructors or in-
troduction rules. (For example, a function type has one constructor, λ-abstraction. Re-
call that a direct definition like f (x) :≡ 2x can equivalently be phrased as a λ-abstraction
f :≡ λx. 2x.)

(iii) how to use elements of that type. These are called the type’s eliminators or elimination
rules. (For example, the function type has one eliminator, namely function application.)

(iv) a computation rule7, which expresses how an eliminator acts on a constructor. (For exam-
ple, for functions, the computation rule states that (λx. Φ)(a) is judgmentally equal to the
substitution of a for x in Φ.)

(v) an optional uniqueness principle8, which expresses uniqueness of maps into or out of
that type. For some types, the uniqueness principle characterizes maps into the type, by
stating that every element of the type is uniquely determined by the results of applying
eliminators to it, and can be reconstructed from those results by applying a constructor—
thus expressing how constructors act on eliminators, dually to the computation rule. (For
example, for functions, the uniqueness principle says that any function f is judgmentally
equal to the “expanded” function λx. f (x), and thus is uniquely determined by its values.)
For other types, the uniqueness principle says that every map (function) from that type is
uniquely determined by some data. (An example is the coproduct type introduced in §1.7,
whose uniqueness principle is mentioned in §2.15.)

When the uniqueness principle is not taken as a rule of judgmental equality, it is often nev-
ertheless provable as a propositional equality from the other rules for the type. In this case
we call it a propositional uniqueness principle. (In later chapters we will also occasionally
encounter propositional computation rules.)

The inference rules in Appendix A.2 are organized and named accordingly; see, for example,
Appendix A.2.4, where each possibility is realized.

The way to construct pairs is obvious: given a : A and b : B, we may form (a, b) : A × B.
Similarly, there is a unique way to construct elements of 1, namely we have ⋆ : 1. We expect that

6The description of universes above is an exception.
7also referred to as β-reduction
8also referred to as η-expansion

1.5 PRODUCT TYPES 27

“every element of A × B is a pair”, which is the uniqueness principle for products; we do not
assert this as a rule of type theory, but we will prove it later on as a propositional equality.

Now, how can we use pairs, i.e. how can we define functions out of a product type? Let us
first consider the definition of a non-dependent function f : A× B→ C. Since we intend the only
elements of A× B to be pairs, we expect to be able to define such a function by prescribing the
result when f is applied to a pair (a, b). We can prescribe these results by providing a function
g : A → B → C. Thus, we introduce a new rule (the elimination rule for products), which says
that for any such g, we can define a function f : A× B→ C by

f ((a, b)) :≡ g(a)(b).

We avoid writing g(a, b) here, in order to emphasize that g is not a function on a product. (How-
ever, later on in the book we will often write g(a, b) both for functions on a product and for
curried functions of two variables.) This defining equation is the computation rule for product
types.

Note that in set theory, we would justify the above definition of f by the fact that every
element of A× B is an ordered pair, so that it suffices to define f on such pairs. By contrast, type
theory reverses the situation: we assume that a function on A× B is well-defined as soon as we
specify its values on pairs, and from this (or more precisely, from its more general version for
dependent functions, below) we will be able to prove that every element of A× B is a pair. From
a category-theoretic perspective, we can say that we define the product A× B to be left adjoint
to the “exponential” B→ C, which we have already introduced.

As an example, we can derive the projection functions

pr1 : A× B→ A

pr2 : A× B→ B

with the defining equations

pr1((a, b)) :≡ a

pr2((a, b)) :≡ b.

Rather than invoking this principle of function definition every time we want to define a func-
tion, an alternative approach is to invoke it once, in a universal case, and then simply apply the
resulting function in all other cases. That is, we may define a function of type

recA×B : ∏
C:U

(A→ B→ C)→ A× B→ C (1.5.2)

with the defining equation
recA×B(C, g, (a, b)) :≡ g(a)(b).

Then instead of defining functions such as pr1 and pr2 directly by a defining equation, we could
define

pr1 :≡ recA×B(A, λa. λb. a)

pr2 :≡ recA×B(B, λa. λb. b).

We refer to the function recA×B as the recursor for product types. The name “recursor” is a bit
unfortunate here, since no recursion is taking place. It comes from the fact that product types

28 CHAPTER 1. TYPE THEORY

are a degenerate example of a general framework for inductive types, and for types such as the
natural numbers, the recursor will actually be recursive. We may also speak of the recursion
principle for cartesian products, meaning the fact that we can define a function f : A× B → C
as above by giving its value on pairs.

We leave it as a simple exercise to show that the recursor can be derived from the projections
and vice versa.

We also have a recursor for the unit type:

rec1 : ∏
C:U

C → 1→ C

with the defining equation
rec1(C, c, ⋆) :≡ c.

Although we include it to maintain the pattern of type definitions, the recursor for 1 is com-
pletely useless, because we could have defined such a function directly by simply ignoring the
argument of type 1.

To be able to define dependent functions over the product type, we have to generalize the
recursor. Given C : A × B → U , we may define a function f : ∏(x:A×B) C(x) by providing a
function g : ∏(x:A) ∏(y:B) C((x, y)) with defining equation

f ((x, y)) :≡ g(x)(y).

For example, in this way we can prove the propositional uniqueness principle, which says that
every element of A× B is equal to a pair. Specifically, we can construct a function

uniqA×B : ∏
x:A×B

((pr1(x), pr2(x)) =A×B x).

Here we are using the identity type, which we are going to introduce below in §1.12. However,
all we need to know now is that there is a reflexivity element reflx : x =A x for any x : A. Given
this, we can define

uniqA×B((a, b)) :≡ refl(a,b).

This construction works, because in the case that x :≡ (a, b) we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b)

using the defining equations for the projections. Therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed, since both sides of the equality are judgmentally equal.
More generally, the ability to define dependent functions in this way means that to prove

a property for all elements of a product, it is enough to prove it for its canonical elements, the
ordered pairs. When we come to inductive types such as the natural numbers, the analogous
property will be the ability to write proofs by induction. Thus, if we do as we did above and ap-
ply this principle once in the universal case, we call the resulting function induction for product
types: given A, B : U we have

indA×B : ∏
C:A×B→U

(
∏
(x:A)

∏
(y:B)

C((x, y))
)
→ ∏

x:A×B
C(x)

1.6 DEPENDENT PAIR TYPES (Σ-TYPES) 29

with the defining equation
indA×B(C, g, (a, b)) :≡ g(a)(b).

Similarly, we may speak of a dependent function defined on pairs being obtained from the in-
duction principle of the cartesian product. It is easy to see that the recursor is just the special
case of induction in the case that the family C is constant. Because induction describes how to
use an element of the product type, induction is also called the (dependent) eliminator, and
recursion the non-dependent eliminator.

Induction for the unit type turns out to be more useful than the recursor:

ind1 : ∏
C:1→U

C(⋆)→∏
x:1

C(x)

with the defining equation
ind1(C, c, ⋆) :≡ c.

Induction enables us to prove the propositional uniqueness principle for 1, which asserts that its
only inhabitant is ⋆. That is, we can construct

uniq1 : ∏
x:1

x = ⋆

by using the defining equations
uniq1(⋆) :≡ refl⋆

or equivalently by using induction:

uniq1 :≡ ind1(λx. x = ⋆, refl⋆).

1.6 Dependent pair types (Σ-types)

Just as we generalized function types (§1.2) to dependent function types (§1.4), it is often useful
to generalize the product types from §1.5 to allow the type of the second component of a pair
to vary depending on the choice of the first component. This is called a dependent pair type,
or Σ-type, because in set theory it corresponds to an indexed sum (in the sense of coproduct or
disjoint union) over a given type.

Given a type A : U and a family B : A→ U , the dependent pair type is written as ∑(x:A) B(x) :
U . Alternative notations are

∑(x:A)B(x) ∑
(x:A)

B(x) ∑(x : A), B(x).

Like other binding constructs such as λ-abstractions and Πs, Σs automatically scope over the
rest of the expression unless delimited, so e.g. ∑(x:A) B(x)→ C means ∑(x:A)(B(x)→ C).

The way to construct elements of a dependent pair type is by pairing: we have (a, b) :
∑(x:A) B(x) given a : A and b : B(a). If B is constant, then the dependent pair type is the or-
dinary cartesian product type: (

∑
x:A

B
)
≡ (A× B).

All the constructions on Σ-types arise as straightforward generalizations of the ones for product
types, with dependent functions often replacing non-dependent ones.

30 CHAPTER 1. TYPE THEORY

For instance, the recursion principle says that to define a non-dependent function out of a
Σ-type f : (∑(x:A) B(x)) → C, we provide a function g : ∏(x:A) B(x) → C, and then we can
define f via the defining equation

f ((a, b)) :≡ g(a)(b).

For instance, we can derive the first projection from a Σ-type:

pr1 :
(
∑
x:A

B(x)
)
→ A

by the defining equation
pr1((a, b)) :≡ a.

However, since the type of the second component of a pair (a, b) : ∑(x:A) B(x) is B(a), the second
projection must be a dependent function, whose type involves the first projection function:

pr2 : ∏
p:∑(x:A) B(x)

B(pr1(p)).

Thus we need the induction principle for Σ-types (the “dependent eliminator”). This says that to
construct a dependent function out of a Σ-type into a family C : (∑(x:A) B(x)) → U , we need a
function

g : ∏
(a:A)

∏
(b:B(a))

C((a, b)).

We can then derive a function
f : ∏

p:∑(x:A) B(x)
C(p)

with defining equation
f ((a, b)) :≡ g(a)(b).

Applying this with C(p) :≡ B(pr1(p)), we can define pr2 : ∏(p:∑(x:A) B(x)) B(pr1(p)) with the obvi-
ous equation

pr2((a, b)) :≡ b.

To convince ourselves that this is correct, we note that B(pr1((a, b))) ≡ B(a), using the defining
equation for pr1, and indeed b : B(a).

We can package the recursion and induction principles into the recursor for Σ:

rec∑(x:A) B(x) : ∏
(C:U)

(
∏(x:A)B(x)→ C

)
→
(

∑(x:A)B(x)
)
→ C

with the defining equation

rec∑(x:A) B(x)(C, g, (a, b)) :≡ g(a)(b)

and the corresponding induction operator:

ind∑(x:A) B(x) : ∏
(C:(∑(x:A) B(x))→U)

(
∏(a:A)∏(b:B(a))C((a, b))

)
→ ∏

(p:∑(x:A) B(x))
C(p)

1.6 DEPENDENT PAIR TYPES (Σ-TYPES) 31

with the defining equation

ind∑(x:A) B(x)(C, g, (a, b)) :≡ g(a)(b).

As before, the recursor is the special case of induction when the family C is constant.
As a further example, consider the following principle, where A and B are types and R : A→

B→ U :
ac :

(
∏(x:A)∑(y:B)R(x, y)

)
→
(

∑(f :A→B)∏(x:A)R(x, f (x))
)

.

We may regard R as a “proof-relevant relation” between A and B, with R(a, b) the type of wit-
nesses for relatedness of a : A and b : B. Then ac says intuitively that if we have a dependent
function g assigning to every a : A a dependent pair (b, r) where b : B and r : R(a, b), then we
have a function f : A → B and a dependent function assigning to every a : A a witness that
R(a, f (a)). Our intuition tells us that we can just split up the values of g into their components.
Indeed, using the projections we have just defined, we can define:

ac(g) :≡
(

λx. pr1(g(x)), λx. pr2(g(x))
)

.

To verify that this is well-typed, note that if g : ∏(x:A) ∑(y:B) R(x, y), we have

λx. pr1(g(x)) : A→ B,

λx. pr2(g(x)) : ∏(x:A)R(x, pr1(g(x))).

Moreover, the type ∏(x:A) R(x, pr1(g(x))) is the result of applying the type family λ f . ∏(x:A) R(x, f (x))
being summed over in the codomain of ac to the function λx. pr1(g(x)):

∏(x:A)R(x, pr1(g(x))) ≡
(

λ f . ∏(x:A)R(x, f (x))
)(

λx. pr1(g(x))
)
.

Thus, we have (
λx. pr1(g(x)), λx. pr2(g(x))

)
: ∑(f :A→B)∏(x:A)R(x, f (x))

as required.
If we read Π as “for all” and Σ as “there exists”, then the type of the function ac expresses:

if for all x : A there is a y : B such that R(x, y), then there is a function f : A → B such that for all
x : A we have R(x, f (x)). Since this sounds like a version of the axiom of choice, the function ac

has traditionally been called the type-theoretic axiom of choice, and as we have just shown, it
can be proved directly from the rules of type theory, rather than having to be taken as an axiom.
However, note that no choice is actually involved, since the choices have already been given to
us in the premise: all we have to do is take it apart into two functions: one representing the
choice and the other its correctness. In §3.8 we will give another formulation of an “axiom of
choice” which is closer to the usual one.

Dependent pair types are often used to define types of mathematical structures, which com-
monly consist of several dependent pieces of data. To take a simple example, suppose we want
to define a magma to be a type A together with a binary operation m : A → A → A. The
precise meaning of the phrase “together with” (and the synonymous “equipped with”) is that
“a magma” is a pair (A, m) consisting of a type A : U and an operation m : A → A → A. Since
the type A→ A→ A of the second component m of this pair depends on its first component A,

32 CHAPTER 1. TYPE THEORY

such pairs belong to a dependent pair type. Thus, the definition “a magma is a type A together
with a binary operation m : A→ A→ A” should be read as defining the type of magmas to be

Magma :≡ ∑
A:U

(A→ A→ A).

Given a magma, we extract its underlying type (its “carrier”) with the first projection pr1, and its
operation with the second projection pr2. Of course, structures built from more than two pieces
of data require iterated pair types, which may be only partially dependent; for instance the type
of pointed magmas (magmas (A, m) equipped with a basepoint e : A) is

PointedMagma :≡ ∑
A:U

(A→ A→ A)× A.

We generally also want to impose axioms on such a structure, e.g. to make a pointed magma into
a monoid or a group. This can also be done using Σ-types; see §1.11.

In the rest of the book, we will sometimes make definitions of this sort explicit, but eventually
we trust the reader to translate them from English into Σ-types. We also generally follow the
common mathematical practice of using the same letter for a structure of this sort and for its
carrier (which amounts to leaving the appropriate projection function implicit in the notation):
that is, we will speak of a magma A with its operation m : A→ A→ A.

Note that the canonical elements of PointedMagma are of the form (A, (m, e)) where A : U ,
m : A → A → A, and e : A. Because of the frequency with which iterated Σ-types of this sort
arise, we use the usual notation of ordered triples, quadruples and so on to stand for nested
pairs (possibly dependent) associating to the right. That is, we have (x, y, z) :≡ (x, (y, z)) and
(x, y, z, w) :≡ (x, (y, (z, w))), etc.

1.7 Coproduct types

Given A, B : U , we introduce their coproduct type A + B : U . This corresponds to the disjoint
union in set theory, and we may also use that name for it. In type theory, as was the case with
functions and products, the coproduct must be a fundamental construction, since there is no
previously given notion of “union of types”. We also introduce a nullary version: the empty
type 0 : U .

There are two ways to construct elements of A + B, either as inl(a) : A + B for a : A, or as
inr(b) : A + B for b : B. (The names inl and inr are short for “left injection” and “right injection”.)
There are no ways to construct elements of the empty type.

To construct a non-dependent function f : A + B → C, we need functions g0 : A → C and
g1 : B→ C. Then f is defined via the defining equations

f (inl(a)) :≡ g0(a),

f (inr(b)) :≡ g1(b).

That is, the function f is defined by case analysis. As before, we can derive the recursor:

recA+B : ∏
(C:U)

(A→ C)→ (B→ C)→ A + B→ C

with the defining equations

recA+B(C, g0, g1, inl(a)) :≡ g0(a),

recA+B(C, g0, g1, inr(b)) :≡ g1(b).

1.8 THE TYPE OF BOOLEANS 33

We can always construct a function f : 0→ C without having to give any defining equations,
because there are no elements of 0 on which to define f . Thus, the recursor for 0 is

rec0 : ∏(C:U)0→ C,

which constructs the canonical function from the empty type to any other type. Logically, it
corresponds to the principle ex falso quodlibet.

To construct a dependent function f : ∏(x:A+B) C(x) out of a coproduct, we assume as given
the family C : (A + B)→ U , and require

g0 : ∏
a:A

C(inl(a)),

g1 : ∏
b:B

C(inr(b)).

This yields f with the defining equations:

f (inl(a)) :≡ g0(a),

f (inr(b)) :≡ g1(b).

We package this scheme into the induction principle for coproducts:

indA+B : ∏
(C:(A+B)→U)

(
∏(a:A)C(inl(a))

)
→
(

∏(b:B)C(inr(b))
)
→ ∏(x:A+B)C(x).

As before, the recursor arises in the case that the family C is constant.
The induction principle for the empty type

ind0 : ∏
(C:0→U)

∏
(z:0)

C(z)

gives us a way to define a trivial dependent function out of the empty type.

1.8 The type of booleans

The type of booleans 2 : U is intended to have exactly two elements 02, 12 : 2. It is clear that
we could construct this type out of coproduct and unit types as 1 + 1. However, since it is used
frequently, we give the explicit rules here. Indeed, we are going to observe that we can also go
the other way and derive binary coproducts from Σ-types and 2.

To derive a function f : 2→ C we need c0, c1 : C and add the defining equations

f (02) :≡ c0,

f (12) :≡ c1.

The recursor corresponds to the if-then-else construct in functional programming:

rec2 : ∏
C:U

C → C → 2→ C

with the defining equations

rec2(C, c0, c1, 02) :≡ c0,

rec2(C, c0, c1, 12) :≡ c1.

34 CHAPTER 1. TYPE THEORY

Given C : 2 → U , to derive a dependent function f : ∏(x:2) C(x) we need c0 : C(02) and
c1 : C(12), in which case we can give the defining equations

f (02) :≡ c0,

f (12) :≡ c1.

We package this up into the induction principle

ind2 : ∏
(C:2→U)

C(02)→ C(12)→ ∏(x:2)C(x)

with the defining equations

ind2(C, c0, c1, 02) :≡ c0,

ind2(C, c0, c1, 12) :≡ c1.

As an example, using the induction principle we can deduce that, as we expect, every element
of 2 is either 12 or 02. As before, in order to state this we use the equality types which we have
not yet introduced, but we need only the fact that everything is equal to itself by reflx : x = x.
Thus, we construct an element of

∏
x:2

(x = 02) + (x = 12), (1.8.1)

i.e. a function assigning to each x : 2 either an equality x = 02 or an equality x = 12. We define
this element using the induction principle for 2, with C(x) :≡ (x = 02) + (x = 12); the two
inputs are inl(refl02) : C(02) and inr(refl12) : C(12). In other words, our element of (1.8.1) is

ind2
(
λx. (x = 02) + (x = 12), inl(refl02), inr(refl12)

)
.

We have remarked that Σ-types can be regarded as analogous to indexed disjoint unions,
while coproducts are binary disjoint unions. It is natural to expect that a binary disjoint union
A + B could be constructed as an indexed one over the two-element type 2. For this we need a
type family P : 2 → U such that P(02) ≡ A and P(12) ≡ B. Indeed, we can obtain such a family
precisely by the recursion principle for 2. (The ability to define type families by induction and
recursion, using the fact that the universe U is itself a type, is a subtle and important aspect of
type theory.) Thus, we could have defined

A + B :≡∑
x:2

rec2(U , A, B, x)

with

inl(a) :≡ (02, a),

inr(b) :≡ (12, b).

We leave it as an exercise to derive the induction principle of a coproduct type from this defini-
tion. (See also Exercise 1.5 and §5.2.)

We can apply the same idea to products and Π-types: we could have defined

A× B :≡∏
x:2

rec2(U , A, B, x).

1.9 THE NATURAL NUMBERS 35

Pairs could then be constructed using induction for 2:

(a, b) :≡ ind2(rec2(U , A, B), a, b)

while the projections are straightforward applications

pr1(p) :≡ p(02),

pr2(p) :≡ p(12).

The derivation of the induction principle for binary products defined in this way is a bit more
involved, and requires function extensionality, which we will introduce in §2.9. Moreover, we do
not get the same judgmental equalities; see Exercise 1.6. This is a recurrent issue when encoding
one type as another; we will return to it in §5.5.

We may occasionally refer to the elements 02 and 12 of 2 as “false” and “true” respectively.
However, note that unlike in classical mathematics, we do not use elements of 2 as truth values
or as propositions. (Instead we identify propositions with types; see §1.11.) In particular, the
type A → 2 is not generally the power set of A; it represents only the “decidable” subsets of A
(see Chapter 3).

1.9 The natural numbers

So far we have rules for constructing new types by abstract operations, but for doing concrete
mathematics we also require some concrete types, such as types of numbers. The most basic
such is the type N : U of natural numbers; once we have this we can construct integers, rational
numbers, real numbers, and so on (see Chapter 11).

The elements of N are constructed using 0 : N and the successor operation succ : N → N.
When denoting natural numbers, we adopt the usual decimal notation 1 :≡ succ(0), 2 :≡ succ(1),
3 :≡ succ(2),

The essential property of the natural numbers is that we can define functions by recursion
and perform proofs by induction — where now the words “recursion” and “induction” have a
more familiar meaning. To construct a non-dependent function f : N → C out of the natural
numbers by recursion, it is enough to provide a starting point c0 : C and a “next step” function
cs : N→ C → C. This gives rise to f with the defining equations

f (0) :≡ c0,

f (succ(n)) :≡ cs(n, f (n)).

We say that f is defined by primitive recursion.
As an example, we look at how to define a function on natural numbers which doubles its

argument. In this case we have C :≡ N. We first need to supply the value of double(0), which
is easy: we put c0 :≡ 0. Next, to compute the value of double(succ(n)) for a natural number n,
we first compute the value of double(n) and then perform the successor operation twice. This
is captured by the recurrence cs(n, y) :≡ succ(succ(y)). Note that the second argument y of cs

stands for the result of the recursive call double(n).
Defining double : N→N by primitive recursion in this way, therefore, we obtain the defining

equations:

double(0) :≡ 0

double(succ(n)) :≡ succ(succ(double(n))).

36 CHAPTER 1. TYPE THEORY

This indeed has the correct computational behavior: for example, we have

double(2) ≡ double(succ(succ(0)))

≡ cs(succ(0), double(succ(0)))

≡ succ(succ(double(succ(0))))

≡ succ(succ(cs(0, double(0))))

≡ succ(succ(succ(succ(double(0)))))

≡ succ(succ(succ(succ(c0))))

≡ succ(succ(succ(succ(0))))

≡ 4.

We can define multi-variable functions by primitive recursion as well, by currying and allowing
C to be a function type. For example, we define addition add : N→ N→ N with C :≡ N→ N

and the following “starting point” and “next step” data:

c0 : N→N

c0(n) :≡ n

cs : N→ (N→N)→ (N→N)

cs(m, g)(n) :≡ succ(g(n)).

We thus obtain add : N→N→N satisfying the definitional equalities

add(0, n) ≡ n

add(succ(m), n) ≡ succ(add(m, n)).

As usual, we write add(m, n) as m + n. The reader is invited to verify that 2 + 2 ≡ 4.
As in previous cases, we can package the principle of primitive recursion into a recursor:

recN : ∏
(C:U)

C → (N→ C → C)→N→ C

with the defining equations

recN(C, c0, cs, 0) :≡ c0,

recN(C, c0, cs, succ(n)) :≡ cs(n, recN(C, c0, cs, n)).

Using recN we can present double and add as follows:

double :≡ recN

(
N, 0, λn. λy. succ(succ(y))

)
(1.9.1)

add :≡ recN

(
N→N, λn. n, λm. λg. λn. succ(g(n))

)
. (1.9.2)

Of course, all functions definable only using the primitive recursion principle will be computable.
(The presence of higher function types — that is, functions with other functions as arguments
— does, however, mean we can define more than the usual primitive recursive functions; see
e.g. Exercise 1.10.) This is appropriate in constructive mathematics; in §§3.4 and 3.8 we will see
how to augment type theory so that we can define more general mathematical functions.

We now follow the same approach as for other types, generalizing primitive recursion to
dependent functions to obtain an induction principle. Thus, assume as given a family C : N→ U ,

1.9 THE NATURAL NUMBERS 37

an element c0 : C(0), and a function cs : ∏(n:N) C(n) → C(succ(n)); then we can construct
f : ∏(n:N) C(n) with the defining equations:

f (0) :≡ c0,

f (succ(n)) :≡ cs(n, f (n)).

We can also package this into a single function

indN : ∏
(C:N→U)

C(0)→
(

∏(n:N)C(n)→ C(succ(n))
)
→ ∏(n:N)C(n)

with the defining equations

indN(C, c0, cs, 0) :≡ c0,

indN(C, c0, cs, succ(n)) :≡ cs(n, indN(C, c0, cs, n)).

Here we finally see the connection to the classical notion of proof by induction. Recall that in
type theory we represent propositions by types, and proving a proposition by inhabiting the
corresponding type. In particular, a property of natural numbers is represented by a family of
types P : N → U . From this point of view, the above induction principle says that if we can
prove P(0), and if for any n we can prove P(succ(n)) assuming P(n), then we have P(n) for all
n. This is, of course, exactly the usual principle of proof by induction on natural numbers.

As an example, consider how we might represent an explicit proof that + is associative. (We
will not actually write out proofs in this style, but it serves as a useful example for understanding
how induction is represented formally in type theory.) To derive

assoc : ∏
i,j,k:N

i + (j + k) = (i + j) + k,

it is sufficient to supply
assoc0 : ∏

j,k:N
0 + (j + k) = (0 + j) + k

and

assocs : ∏
i:N

(
∏

j,k:N
i + (j + k) = (i + j) + k

)
→ ∏

j,k:N
succ(i) + (j + k) = (succ(i) + j) + k.

To derive assoc0, recall that 0 + n ≡ n, and hence 0 + (j + k) ≡ j + k ≡ (0 + j) + k. Hence we can
just set

assoc0(j, k) :≡ reflj+k.

For assocs, recall that the definition of + gives succ(m) + n ≡ succ(m + n), and hence

succ(i) + (j + k) ≡ succ(i + (j + k)) and

(succ(i) + j) + k ≡ succ((i + j) + k).

Thus, the output type of assocs is equivalently succ(i + (j + k)) = succ((i + j) + k). But its input
(the “inductive hypothesis”) yields i + (j + k) = (i + j) + k, so it suffices to invoke the fact
that if two natural numbers are equal, then so are their successors. (We will prove this obvious
fact in Lemma 2.2.1, using the induction principle of identity types.) We call this latter fact
apsucc : (m =N n)→ (succ(m) =N succ(n)), so we can define

assocs(i, h, j, k) :≡ apsucc(h(j, k)).

Putting these together with indN, we obtain a proof of associativity.

38 CHAPTER 1. TYPE THEORY

1.10 Pattern matching and recursion

The natural numbers introduce an additional subtlety over the types considered up until now.
In the case of coproducts, for instance, we could define a function f : A + B→ C either with the
recursor:

f :≡ recA+B(C, g0, g1)

or by giving the defining equations:

f (inl(a)) :≡ g0(a)

f (inr(b)) :≡ g1(b).

To go from the former expression of f to the latter, we simply use the computation rules for the
recursor. Conversely, given any defining equations

f (inl(a)) :≡ Φ0

f (inr(b)) :≡ Φ1

where Φ0 and Φ1 are expressions that may involve the variables a and b respectively, we can
express these equations equivalently in terms of the recursor by using λ-abstraction:

f :≡ recA+B(C, λa. Φ0, λb. Φ1).

In the case of the natural numbers, however, the “defining equations” of a function such as
double:

double(0) :≡ 0 (1.10.1)

double(succ(n)) :≡ succ(succ(double(n))) (1.10.2)

involve the function double itself on the right-hand side. However, we would still like to be able
to give these equations, rather than (1.9.1), as the definition of double, since they are much more
convenient and readable. The solution is to read the expression “double(n)” on the right-hand
side of (1.10.2) as standing in for the result of the recursive call, which in a definition of the form
double :≡ recN(N, c0, cs) would be the second argument of cs.

More generally, if we have a “definition” of a function f : N→ C such as

f (0) :≡ Φ0

f (succ(n)) :≡ Φs

where Φ0 is an expression of type C, and Φs is an expression of type C which may involve the
variable n and also the symbol “ f (n)”, we may translate it to a definition

f :≡ recN(C, Φ0, λn. λr. Φ′s)

where Φ′s is obtained from Φs by replacing all occurrences of “ f (n)” by the new variable r.
This style of defining functions by recursion (or, more generally, dependent functions by in-

duction) is so convenient that we frequently adopt it. It is called definition by pattern matching.
Of course, it is very similar to how a computer programmer may define a recursive function
with a body that literally contains recursive calls to itself. However, unlike the programmer, we
are restricted in what sort of recursive calls we can make: in order for such a definition to be

1.11 PROPOSITIONS AS TYPES 39

re-expressible using the recursion principle, the function f being defined can only appear in the
body of f (succ(n)) as part of the composite symbol “ f (n)”. Otherwise, we could write nonsense
functions such as

f (0) :≡ 0

f (succ(n)) :≡ f (succ(succ(n))).

If a programmer wrote such a function, it would simply call itself forever on any positive input,
going into an infinite loop and never returning a value. In mathematics, however, to be worthy
of the name, a function must always associate a unique output value to every input value, so this
would be unacceptable.

This point will be even more important when we introduce more complicated inductive types
in Chapters 5, 6 and 11. Whenever we introduce a new kind of inductive definition, we always
begin by deriving its induction principle. Only then do we introduce an appropriate sort of
“pattern matching” which can be justified as a shorthand for the induction principle.

1.11 Propositions as types

As mentioned in the introduction, to show that a proposition is true in type theory corresponds
to exhibiting an element of the type corresponding to that proposition. We regard the elements
of this type as evidence or witnesses that the proposition is true. (They are sometimes even called
proofs, but this terminology can be misleading, so we generally avoid it.) In general, however, we
will not construct witnesses explicitly; instead we present the proofs in ordinary mathematical
prose, in such a way that they could be translated into an element of a type. This is no different
from reasoning in classical set theory, where we don’t expect to see an explicit derivation using
the rules of predicate logic and the axioms of set theory.

However, the type-theoretic perspective on proofs is nevertheless different in important ways.
The basic principle of the logic of type theory is that a proposition is not merely true or false, but
rather can be seen as the collection of all possible witnesses of its truth. Under this conception,
proofs are not just the means by which mathematics is communicated, but rather are mathemat-
ical objects in their own right, on a par with more familiar objects such as numbers, mappings,
groups, and so on. Thus, since types classify the available mathematical objects and govern how
they interact, propositions are nothing but special types — namely, types whose elements are
proofs.

The basic observation which makes this identification feasible is that we have the following
natural correspondence between logical operations on propositions, expressed in English, and
type-theoretic operations on their corresponding types of witnesses.

English Type Theory

True 1
False 0
A and B A× B
A or B A + B
If A then B A→ B
A if and only if B (A→ B)× (B→ A)

Not A A→ 0

40 CHAPTER 1. TYPE THEORY

The point of the correspondence is that in each case, the rules for constructing and using
elements of the type on the right correspond to the rules for reasoning about the proposition on
the left. For instance, the basic way to prove a statement of the form “A and B” is to prove A and
also prove B, while the basic way to construct an element of A× B is as a pair (a, b), where a is
an element (or witness) of A and b is an element (or witness) of B. And if we want to use “A and
B” to prove something else, we are free to use both A and B in doing so, analogously to how the
induction principle for A× B allows us to construct a function out of it by using elements of A
and of B.

Similarly, the basic way to prove an implication “if A then B” is to assume A and prove B,
while the basic way to construct an element of A→ B is to give an expression which denotes an
element (witness) of B which may involve an unspecified variable element (witness) of type A.
And the basic way to use an implication “if A then B” is deduce B if we know A, analogously
to how we can apply a function f : A → B to an element of A to produce an element of B. We
strongly encourage the reader to do the exercise of verifying that the rules governing the other
type constructors translate sensibly into logic.

Of special note is that the empty type 0 corresponds to falsity. When speaking logically, we
refer to an inhabitant of 0 as a contradiction: thus there is no way to prove a contradiction,9

while from a contradiction anything can be derived. We also define the negation of a type A as

¬A :≡ A→ 0.

Thus, a witness of ¬A is a function A → 0, which we may construct by assuming x : A and
deriving an element of 0. Note that although the logic we obtain is “constructive”, as discussed
in the introduction, this sort of “proof by contradiction” (assume A and derive a contradiction,
concluding ¬A) is perfectly valid constructively: it is simply invoking the meaning of “nega-
tion”. The sort of “proof by contradiction” which is disallowed is to assume ¬A and derive a
contradiction as a way of proving A. Constructively, such an argument would only allow us to
conclude ¬¬A, and the reader can verify that there is no obvious way to get from ¬¬A (that is,
from (A→ 0)→ 0) to A.

The above translation of logical connectives into type-forming operations is referred to as
propositions as types: it gives us a way to translate propositions and their proofs, written in
English, into types and their elements. For example, suppose we want to prove the following
tautology (one of “de Morgan’s laws”):

“If not A and not B, then not (A or B)”. (1.11.1)

An ordinary English proof of this fact might go as follows.

Suppose not A and not B, and also suppose A or B; we will derive a contradiction.
There are two cases. If A holds, then since not A, we have a contradiction. Similarly, if
B holds, then since not B, we also have a contradiction. Thus we have a contradiction
in either case, so not (A or B).

Now, the type corresponding to our tautology (1.11.1), according to the rules given above, is

(A→ 0)× (B→ 0)→ (A + B→ 0) (1.11.2)

9More precisely, there is no basic way to prove a contradiction, i.e. 0 has no constructors. If our type theory were
inconsistent, then there would be some more complicated way to construct an element of 0.

1.11 PROPOSITIONS AS TYPES 41

so we should be able to translate the above proof into an element of this type.
As an example of how such a translation works, let us describe how a mathematician reading

the English proof above might simultaneously construct, in their head, an element of (1.11.2).
The introductory phrase “Suppose not A and not B” translates into defining a function, with
an implicit application of the recursion principle for the cartesian product in its domain (A →
0) × (B → 0). This introduces unnamed variables (hypotheses) of types A → 0 and B → 0.
When translating into type theory, we have to give these variables names; let us call them x and
y. At this point our partial definition of an element of (1.11.2) can be written as

f ((x, y)) :≡ 2 : A + B→ 0

with a “hole” 2 of type A + B → 0 indicating what remains to be done. (We could equivalently
write f :≡ rec(A→0)×(B→0)(A + B → 0, λx. λy.2), using the recursor instead of pattern match-
ing.) The next phrase “also suppose A or B; we will derive a contradiction” indicates filling this
hole by a function definition, introducing another unnamed hypothesis z : A + B, leading to the
proof state:

f ((x, y))(z) :≡ 2 : 0.

Now saying “there are two cases” indicates a case split, i.e. an application of the recursion prin-
ciple for the coproduct A + B. If we write this using the recursor, it would be

f ((x, y))(z) :≡ recA+B(0, λa.2, λb.2, z)

while if we write it using pattern matching, it would be

f ((x, y))(inl(a)) :≡ 2 : 0

f ((x, y))(inr(b)) :≡ 2 : 0.

Note that in both cases we now have two “holes” of type 0 to fill in, corresponding to the two
cases where we have to derive a contradiction. Finally, the conclusion of a contradiction from
a : A and x : A → 0 is simply application of the function x to a, and similarly in the other case.
(Note the convenient coincidence of the phrase “applying a function” with that of “applying a
hypothesis” or theorem.) Thus our eventual definition is

f ((x, y))(inl(a)) :≡ x(a)

f ((x, y))(inr(b)) :≡ y(b).

As an exercise, you should verify the converse tautology “If not (A or B), then (not A) and (not
B)” by exhibiting an element of

((A + B)→ 0)→ (A→ 0)× (B→ 0),

for any types A and B, using the rules we have just introduced.
However, not all classical tautologies hold under this interpretation. For example, the rule

“If not (A and B), then (not A) or (not B)” is not valid: we cannot, in general, construct an element
of the corresponding type

((A× B)→ 0)→ (A→ 0) + (B→ 0).

42 CHAPTER 1. TYPE THEORY

This reflects the fact that the “natural” propositions-as-types logic of type theory is constructive.
This means that it does not include certain classical principles, such as the law of excluded mid-
dle (LEM) or proof by contradiction, and others which depend on them, such as this instance of
de Morgan’s law.

Philosophically, constructive logic is so-called because it confines itself to constructions that
can be carried out effectively, which is to say those with a computational meaning. Without being
too precise, this means there is some sort of algorithm specifying, step-by-step, how to build an
object (and, as a special case, how to see that a theorem is true). This requires omission of LEM,
since there is no effective procedure for deciding whether a proposition is true or false.

The constructivity of type-theoretic logic means it has an intrinsic computational meaning,
which is of interest to computer scientists. It also means that type theory provides axiomatic
freedom. For example, while by default there is no construction witnessing LEM, the logic is still
compatible with the existence of one (see §3.4). Thus, because type theory does not deny LEM,
we may consistently add it as an assumption, and work conventionally without restriction. In
this respect, type theory enriches, rather than constrains, conventional mathematical practice.

We encourage the reader who is unfamiliar with constructive logic to work through some
more examples as a means of getting familiar with it. See Exercises 1.12 and 1.13 for some sug-
gestions.

So far we have discussed only propositional logic. Now we consider predicate logic, where
in addition to logical connectives like “and” and “or” we have quantifiers “there exists” and
“for all”. In this case, types play a dual role: they serve as propositions and also as types in the
conventional sense, i.e., domains we quantify over. A predicate over a type A is represented as a
family P : A→ U , assigning to every element a : A a type P(a) corresponding to the proposition
that P holds for a. We now extend the above translation with an explanation of the quantifiers:

English Type Theory

For all x : A, P(x) holds ∏(x:A) P(x)
There exists x : A such that P(x) ∑(x:A) P(x)

As before, we can show that tautologies of (constructive) predicate logic translate into inhabited
types. For example, If for all x : A, P(x) and Q(x) then (for all x : A, P(x)) and (for all x : A, Q(x))
translates to

(∏(x:A)P(x)×Q(x))→ (∏(x:A)P(x))× (∏(x:A)Q(x)).

An informal proof of this tautology might go as follows:

Suppose for all x, P(x) and Q(x). First, we suppose given x and prove P(x). By
assumption, we have P(x) and Q(x), and hence we have P(x). Second, we suppose
given x and prove Q(x). Again by assumption, we have P(x) and Q(x), and hence
we have Q(x).

The first sentence begins defining an implication as a function, by introducing a witness for its
hypothesis:

f (p) :≡ 2 : (∏(x:A)P(x))× (∏(x:A)Q(x)).

At this point there is an implicit use of the pairing constructor to produce an element of a product
type, which is somewhat signposted in this example by the words “first” and “second”:

f (p) :≡
(
2 : ∏(x:A)P(x) , 2 : ∏(x:A)Q(x)

)
.

1.11 PROPOSITIONS AS TYPES 43

The phrase “we suppose given x and prove P(x)” now indicates defining a dependent function in
the usual way, introducing a variable for its input. Since this is inside a pairing constructor, it is
natural to write it as a λ-abstraction:

f (p) :≡
(

λx.
(
2 : P(x)

)
, 2 : ∏(x:A)Q(x)

)
.

Now “we have P(x) and Q(x)” invokes the hypothesis, obtaining p(x) : P(x) × Q(x), and
“hence we have P(x)” implicitly applies the appropriate projection:

f (p) :≡
(

λx. pr1(p(x)) , 2 : ∏(x:A)Q(x)
)

.

The next two sentences fill the other hole in the obvious way:

f (p) :≡
(

λx. pr1(p(x)) , λx. pr2(p(x))
)

.

Of course, the English proofs we have been using as examples are much more verbose than those
that mathematicians usually use in practice; they are more like the sort of language one uses in
an “introduction to proofs” class. The practicing mathematician has learned to fill in the gaps, so
in practice we can omit plenty of details, and we will generally do so. The criterion of validity for
proofs, however, is always that they can be translated back into the construction of an element
of the corresponding type.

As a more concrete example, consider how to define inequalities of natural numbers. One
natural definition is that n ≤ m if there exists a k : N such that n + k = m. (This uses again the
identity types that we will introduce in the next section, but we will not need very much about
them.) Under the propositions-as-types translation, this would yield:

(n ≤ m) :≡ ∑
k:N

(n + k = m).

The reader is invited to prove the familiar properties of≤ from this definition. For strict inequal-
ity, there are a couple of natural choices, such as

(n < m) :≡ ∑
k:N

(n + succ(k) = m)

or
(n < m) :≡ (n ≤ m)×¬(n = m).

The former is more natural in constructive mathematics, but in this case it is actually equivalent
to the latter, since N has “decidable equality” (see §3.4 and Theorem 7.2.6).

There is also another interpretation of the type ∑(x:A) P(x). Since an inhabitant of it is an
element x : A together with a witness that P(x) holds, instead of regarding ∑(x:A) P(x) as the
proposition “there exists an x : A such that P(x)”, we can regard it as “the type of all elements
x : A such that P(x)”, i.e. as a “subtype” of A.

We will return to this interpretation in §3.5. For now, we note that it allows us to incor-
porate axioms into the definition of types as mathematical structures which we discussed in
§1.6. For example, suppose we want to define a semigroup to be a type A equipped with a
binary operation m : A → A → A (that is, a magma) and such that for all x, y, z : A we have
m(x, m(y, z)) = m(m(x, y), z). This latter proposition is represented by the type

∏
x,y,z:A

m(x, m(y, z)) = m(m(x, y), z),

44 CHAPTER 1. TYPE THEORY

so the type of semigroups is

Semigroup :≡ ∑
(A:U)

∑
(m:A→A→A)

∏
(x,y,z:A)

m(x, m(y, z)) = m(m(x, y), z),

i.e. the subtype of Magma consisting of the semigroups. From an inhabitant of Semigroup we
can extract the carrier A, the operation m, and a witness of the axiom, by applying appropriate
projections. We will return to this example in §2.14.

Note also that we can use the universes in type theory to represent “higher order logic”
— that is, we can quantify over all propositions or over all predicates. For example, we can
represent the proposition for all properties P : A→ U , if P(a) then P(b) as

∏
P:A→U

P(a)→ P(b)

where A : U and a, b : A. However, a priori this proposition lives in a different, higher, universe
than the propositions we are quantifying over; that is(

∏
P:A→Ui

P(a)→ P(b)
)

: Ui+1.

We will return to this issue in §3.5.

We have described here a “proof-relevant” translation of propositions, where the proofs of
disjunctions and existential statements carry some information. For instance, if we have an in-
habitant of A + B, regarded as a witness of “A or B”, then we know whether it came from A or
from B. Similarly, if we have an inhabitant of ∑(x:A) P(x), regarded as a witness of “there exists
x : A such that P(x)”, then we know what the element x is (it is the first projection of the given
inhabitant).

As a consequence of the proof-relevant nature of this logic, we may have “A if and only if
B” (which, recall, means (A → B) × (B → A)), and yet the types A and B exhibit different
behavior. For instance, it is easy to verify that “N if and only if 1”, and yet clearly N and 1 differ
in important ways. The statement “N if and only if 1” tells us only that when regarded as a mere
proposition, the type N represents the same proposition as 1 (in this case, the true proposition).
We sometimes express “A if and only if B” by saying that A and B are logically equivalent. This
is to be distinguished from the stronger notion of equivalence of types to be introduced in §2.4
and Chapter 4: although N and 1 are logically equivalent, they are not equivalent types.

In Chapter 3 we will introduce a class of types called “mere propositions” for which equiv-
alence and logical equivalence coincide. Using these types, we will introduce a modification to
the above-described logic that is sometimes appropriate, in which the additional information
contained in disjunctions and existentials is discarded.

Finally, we note that the propositions-as-types correspondence can be viewed in reverse, al-
lowing us to regard any type A as a proposition, which we prove by exhibiting an element of
A. Sometimes we will state this proposition as “A is inhabited”. That is, when we say that A is
inhabited, we mean that we have given a (particular) element of A, but that we are choosing not
to give a name to that element. Similarly, to say that A is not inhabited is the same as to give an
element of ¬A. In particular, the empty type 0 is obviously not inhabited, since ¬0 ≡ (0→ 0) is
inhabited by id0.10

10This should not be confused with the statement that type theory is consistent, which is the meta-theoretic claim
that it is not possible to obtain an element of 0 by following the rules of type theory.

1.12 IDENTITY TYPES 45

1.12 Identity types

While the previous constructions can be seen as generalizations of standard set theoretic con-
structions, our way of handling identity seems to be specific to type theory. According to the
propositions-as-types conception, the proposition that two elements of the same type a, b : A are
equal must correspond to some type. Since this proposition depends on what a and b are, these
equality types or identity types must be type families dependent on two copies of A.

We may write the family as IdA : A → A → U (not to be mistaken for the identity function
idA), so that IdA(a, b) is the type representing the proposition of equality between a and b. Once
we are familiar with propositions-as-types, however, it is convenient to also use the standard
equality symbol for this; thus “a = b” will also be a notation for the type IdA(a, b) corresponding
to the proposition that a equals b. For clarity, we may also write “a =A b” to specify the type A. If
we have an element of a =A b, we may say that a and b are equal, or sometimes propositionally
equal if we want to emphasize that this is different from the judgmental equality a ≡ b discussed
in §1.1.

Just as we remarked in §1.11 that the propositions-as-types versions of “or” and “there exists”
can include more information than just the fact that the proposition is true, nothing prevents
the type a = b from also including more information. Indeed, this is the cornerstone of the
homotopical interpretation, where we regard witnesses of a = b as paths or equivalences between
a and b in the space A. Just as there can be more than one path between two points of a space,
there can be more than one witness that two objects are equal. Put differently, we may regard
a = b as the type of identifications of a and b, and there may be many different ways in which a
and b can be identified. We will return to the interpretation in Chapter 2; for now we focus on
the basic rules for the identity type. Just like all the other types considered in this chapter, it will
have rules for formation, introduction, elimination, and computation, which behave formally in
exactly the same way.

The formation rule says that given a type A : U and two elements a, b : A, we can form the
type (a =A b) : U in the same universe. The basic way to construct an element of a = b is to
know that a and b are the same. Thus, the introduction rule is a dependent function

refl : ∏
a:A

(a =A a)

called reflexivity, which says that every element of A is equal to itself (in a specified way). We
regard refla as being the constant path at the point a.

In particular, this means that if a and b are judgmentally equal, a ≡ b, then we also have an
element refla : a =A b. This is well-typed because a ≡ b means that also the type a =A b is
judgmentally equal to a =A a, which is the type of refla.

The induction principle (i.e. the elimination rule) for the identity types is one of the most
subtle parts of type theory, and crucial to the homotopy interpretation. We begin by considering
an important consequence of it, the principle that “equals may be substituted for equals”, as
expressed by the following:

Indiscernibility of identicals: For every family

C : A→ U

there is a function
f : ∏

(x,y:A)
∏

(p:x=Ay)
C(x)→ C(y)

46 CHAPTER 1. TYPE THEORY

such that
f (x, x, reflx) :≡ idC(x).

This says that every family of types C respects equality, in the sense that applying C to equal
elements of A also results in a function between the resulting types. The displayed equality
states that the function associated to reflexivity is the identity function (and we shall see that, in
general, the function f (x, y, p) : C(x)→ C(y) is always an equivalence of types).

Indiscernibility of identicals can be regarded as a recursion principle for the identity type,
analogous to those given for booleans and natural numbers above. Just as recN gives a specified
map N→ C for any other type C of a certain sort, indiscernibility of identicals gives a specified
map from x =A y to certain other reflexive, binary relations on A, namely those of the form
C(x) → C(y) for some unary predicate C(x). We could also formulate a more general recursion
principle with respect to reflexive relations of the more general form C(x, y). However, in order
to fully characterize the identity type, we must generalize this recursion principle to an induction
principle, which not only considers maps out of x =A y but also families over it. Put differently,
we consider not only allowing equals to be substituted for equals, but also taking into account
the evidence p for the equality.

1.12.1 Path induction

The induction principle for the identity type is called path induction, in view of the homotopical
interpretation to be explained in the introduction to Chapter 2. It can be seen as stating that the
family of identity types is freely generated by the elements of the form reflx : x = x.

Path induction: Given a family
C : ∏

x,y:A
(x =A y)→ U

and a function
c : ∏

x:A
C(x, x, reflx),

there is a function
f : ∏

(x,y:A)
∏

(p:x=Ay)
C(x, y, p)

such that
f (x, x, reflx) :≡ c(x).

Note that just like the induction principles for products, coproducts, natural numbers, and
so on, path induction allows us to define specified functions which exhibit appropriate computa-
tional behavior. Just as we have the function f : N → C defined by recursion from c0 : C and
cs : N → C → C, which moreover satisfies f (0) ≡ c0 and f (succ(n)) ≡ cs(n, f (n)), we have the
function f : ∏(x,y:A) ∏(p:x=Ay) C(x, y, p) defined by path induction from c : ∏(x:A) C(x, x, reflx),
which moreover satisfies f (x, x, reflx) ≡ c(x).

To understand the meaning of this principle, consider first the simpler case when C does not
depend on p. Then we have C : A→ A→ U , which we may regard as a predicate depending on
two elements of A. We are interested in knowing when the proposition C(x, y) holds for some
pair of elements x, y : A. In this case, the hypothesis of path induction says that we know C(x, x)
holds for all x : A, i.e. that if we evaluate C at the pair x, x, we get a true proposition — so C is a

1.12 IDENTITY TYPES 47

reflexive relation. The conclusion then tells us that C(x, y) holds whenever x = y. This is exactly
the more general recursion principle for reflexive relations mentioned above.

The general, inductive form of the rule allows C to also depend on the witness p : x = y to the
identity between x and y. In the premise, we not only replace x, y by x, x, but also simultaneously
replace p by reflexivity: to prove a property for all elements x, y and paths p : x = y between
them, it suffices to consider all the cases where the elements are x, x and the path is reflx : x = x.
If we were viewing types just as sets, it would be unclear what this buys us, but since there may
be many different identifications p : x = y between x and y, it makes sense to keep track of them
in considering families over the type x =A y. In Chapter 2 we will see that this is very important
to the homotopy interpretation.

If we package up path induction into a single function, it takes the form:

ind=A : ∏
(C:∏(x,y:A)(x=Ay)→U)

(
∏(x:A)C(x, x, reflx)

)
→ ∏

(x,y:A)
∏

(p:x=Ay)
C(x, y, p)

with the equality
ind=A(C, c, x, x, reflx) :≡ c(x).

The function ind=A is traditionally called J. We will show in Lemma 2.3.1 that indiscernibility of
identicals is an instance of path induction, and also give it a new name and notation.

Given a proof p : a = b, path induction requires us to replace both a and b with the same
unknown element x; thus in order to define an element of a family C, for all pairs of equal
elements of A, it suffices to define it on the diagonal. In some proofs, however, it is simpler to
make use of an equation p : a = b by replacing all occurrences of b with a (or vice versa), because
it is sometimes easier to do the remainder of the proof for the specific element a mentioned in the
equality than for a general unknown x. This motivates a second induction principle for identity
types, which says that the family of types a =A x is generated by the element refla : a = a. As we
show below, this second principle is equivalent to the first; it is just sometimes a more convenient
formulation.

Based path induction: Fix an element a : A, and suppose given a family

C : ∏
x:A

(a =A x)→ U

and an element
c : C(a, refla).

Then we obtain a function
f : ∏

(x:A)
∏

(p:a=x)
C(x, p)

such that
f (a, refla) :≡ c.

Here, C(x, p) is a family of types, where x is an element of A and p is an element of the
identity type a =A x, for fixed a in A. The based path induction principle says that to define an
element of this family for all x and p, it suffices to consider just the case where x is a and p is
refla : a = a.

48 CHAPTER 1. TYPE THEORY

Packaged as a function, based path induction becomes:

ind′=A
: ∏
(a:A)

∏
(C:∏(x:A)(a=Ax)→U)

C(a, refla)→ ∏
(x:A)

∏
(p:a=Ax)

C(x, p)

with the equality
ind′=A

(a, C, c, a, refla) :≡ c.

Below, we show that path induction and based path induction are equivalent. Because of this,
we will sometimes be sloppy and also refer to based path induction simply as “path induction”,
relying on the reader to infer which principle is meant from the form of the proof.

Remark 1.12.1. Intuitively, the induction principle for the natural numbers expresses the fact that
every natural number is either 0 or of the form succ(n) for some natural number n, so that if we
prove a property for these cases (with induction hypothesis in the second case), then we have
proved it for all natural numbers. Similarly, the induction principle for A + B expresses the fact
that every element of A + B is either of the form inl(a) or inr(b), and so on. Applying this same
reading to path induction, we might say that path induction expresses the fact that every path is
of the form refla, so that if we prove a property for reflexivity paths, then we have proved it for
all paths.

However, this reading is quite confusing in the context of the homotopy interpretation of
paths, where there may be many different ways in which two elements a and b can be identified,
and therefore many different elements of the identity type! How can there be many different
paths, but at the same time we have an induction principle asserting that the only path is reflex-
ivity?

The key observation is that it is not the identity type that is inductively defined, but the
identity family. In particular, path induction says that the family of types (x =A y), as x, y vary
over all elements of A, is inductively defined by the elements of the form reflx. This means
that to give an element of any other family C(x, y, p) dependent on a generic element (x, y, p)
of the identity family, it suffices to consider the cases of the form (x, x, reflx). In the homotopy
interpretation, this says that the type of triples (x, y, p), where x and y are the endpoints of the
path p (in other words, the Σ-type ∑(x,y:A)(x = y)), is inductively generated by the constant
loops at each point x. As we will see in Chapter 2, in homotopy theory the space corresponding
to ∑(x,y:A)(x = y) is the free path space — the space of paths in A whose endpoints may vary —
and it is in fact the case that any point of this space is homotopic to the constant loop at some
point, since we can simply retract one of its endpoints along the given path. The analogous fact
is also true in type theory: we can prove by path induction on p : x = y that (x, y, p) =∑(x,y:A)(x=y)

(x, x, reflx).
Similarly, based path induction says that for a fixed a : A, the family of types (a =A y), as y

varies over all elements of A, is inductively defined by the element refla. Thus, to give an element
of any other family C(y, p) dependent on a generic element (y, p) of this family, it suffices to
consider the case (a, refla). Homotopically, this expresses the fact that the space of paths starting
at some chosen point (the based path space at that point, which type-theoretically is ∑(y:A)(a = y))
is contractible to the constant loop on the chosen point. Again, the corresponding fact is also true
in type theory: we can prove by based path induction on p : a = y that (y, p) =∑(y:A)(a=y) (a, refla).
Note also that according to the interpretation of Σ-types as subtypes mentioned in §1.11, the type
∑(y:A)(a = y) can be regarded as “the type of all elements of A which are equal to a”, a type-
theoretic version of the “singleton subset” {a}.

1.12 IDENTITY TYPES 49

Neither path induction nor based path induction provides a way to give an element of a
family C(p) where p has two fixed endpoints a and b. In particular, for a family C : (a =A a) → U
dependent on a loop, we cannot apply path induction and consider only the case for C(refla),
and consequently, we cannot prove that all loops are reflexivity. Thus, inductively defining the
identity family does not prohibit non-reflexivity paths in specific instances of the identity type.
In other words, a path p : x = x may be not equal to reflexivity as an element of (x = x), but the
pair (x, p) will nevertheless be equal to the pair (x, reflx) as elements of ∑(y:A)(x = y).

As a topological example, consider a loop in the punctured disc
{
(x, y)

∣∣ 0 < x2 + y2 < 2
}

which starts at (1, 0) and goes around the hole at (0, 0) once before returning back to (1, 0). If
we hold both endpoints fixed at (1, 0), this loop cannot be deformed into a constant path while
staying within the punctured disc, just as a rope looped around a pole cannot be pulled in if we
keep hold of both ends. However, the loop can be contracted back to a constant if we allow one
endpoint to vary, just as we can always gather in a rope if we only hold onto one end.

1.12.2 Equivalence of path induction and based path induction

The two induction principles for the identity type introduced above are equivalent. It is easy to
see that path induction follows from the based path induction principle. Indeed, let us assume
the premises of path induction:

C : ∏
x,y:A

(x =A y)→ U ,

c : ∏
x:A

C(x, x, reflx).

Now, given an element x : A, we can instantiate both of the above, obtaining

C′ : ∏
y:A

(x =A y)→ U ,

C′ :≡ C(x),

c′ : C′(x, reflx),

c′ :≡ c(x).

Clearly, C′ and c′ match the premises of based path induction and hence we can construct

g : ∏
(y:A)

∏
(p:x=y)

C′(y, p)

with the defining equality
g(x, reflx) :≡ c′.

Now we observe that g’s codomain is equal to C(x, y, p). Thus, discharging our assumption
x : A, we can derive a function

f : ∏
(x,y:A)

∏
(p:x=Ay)

C(x, y, p)

with the required judgmental equality f (x, x, reflx) ≡ g(x, reflx) :≡ c′ :≡ c(x).
Another proof of this fact is to observe that any such f can be obtained as an instance of

ind=A , so it suffices to define ind=A in terms of ind′=A
as

ind=A(C, c, x, y, p) :≡ ind′=A
(x, C(x), c(x), y, p).

50 CHAPTER 1. TYPE THEORY

The other direction is a bit trickier; it is not clear how we can use a particular instance of path
induction to derive a particular instance of based path induction. What we can do instead is to
construct one instance of path induction which shows all possible instantiations of based path
induction at once. Define

D : ∏
x,y:A

(x =A y)→ U ,

D(x, y, p) :≡ ∏
C:∏(z:A)(x=Az)→U

C(x, reflx)→ C(y, p).

Then we can construct the function

d : ∏
x:A

D(x, x, reflx),

d :≡ λx. λC. λ(c : C(x, reflx)). c

and hence using path induction obtain

f : ∏
(x,y:A)

∏
(p:x=Ay)

D(x, y, p)

with f (x, x, reflx) :≡ d(x). Unfolding the definition of D, we can expand the type of f :

f : ∏
(x,y:A)

∏
(p:x=Ay)

∏
(C:∏(z:A)(x=Az)→U)

C(x, reflx)→ C(y, p).

Now given a : A along with x : A and p : a =A x, we can derive the conclusion of based path
induction:

f (a, x, p, C, c) : C(x, p).

Notice that we also obtain the correct definitional equality.
Another proof is to observe that any use of based path induction is an instance of ind′=A

and
to define

ind′=A
(a, C, c, x, p) :≡ ind=A

((
λx, y. λp. ∏(C:∏(z:A)(x=Az)→U)C(x, reflx)→ C(y, p)

)
,

(λx. λC. λd. d), a, x, p
)
(C, c).

Note that the construction given above uses universes. That is, if we want to model ind′=A

with C : ∏(x:A)(a =A x)→ Ui, we need to use ind=A with

D : ∏
x,y:A

(x =A y)→ Ui+1

since D quantifies over all C of the given type. While this is compatible with our definition of
universes, it is also possible to derive ind′=A

without using universes: we can show that ind=A

entails Lemmas 2.3.1 and 3.11.8, and that these two principles imply ind′=A
directly. We leave the

details to the reader as Exercise 1.7.
We can use either of the foregoing formulations of identity types to establish that equality

is an equivalence relation, that every function preserves equality and that every family respects
equality. We leave the details to the next chapter, where this will be derived and explained in the
context of homotopy type theory.

CHAPTER 1 NOTES 51

Remark 1.12.2. We emphasize that despite having some unfamiliar features, propositional equal-
ity is the equality of mathematics in homotopy type theory. This distinction does not belong to
judgmental equality, which is rather a metatheoretic feature of the rules of type theory. For in-
stance, the associativity of addition for natural numbers proven in §1.9 is a propositional equality,
not a judgmental one. The same is true of the commutative law (Exercise 1.16). Even the very
simple commutativity n + 1 = 1 + n is not a judgmental equality for a generic n (though it is
judgmental for any specific n, e.g. 3 + 1 ≡ 1 + 3, since both are judgmentally equal to 4 by the
computation rules defining +). We can only prove such facts by using the identity type, since
we can only apply the induction principle for N with a type as output (not a judgment).

1.12.3 Disequality

Finally, let us also say something about disequality, which is negation of equality:11

(x ̸=A y) :≡ ¬(x =A y).

If x ̸= y, we say that x and y are unequal or not equal. Just like negation, disequality plays a
less important role here than it does in classical mathematics. For example, we cannot prove that
two things are equal by proving that they are not unequal: that would be an application of the
classical law of double negation, see §3.4.

Sometimes it is useful to phrase disequality in a positive way. For example, in Theorem 11.2.4
we shall prove that a real number x has an inverse if, and only if, its distance from 0 is positive,
which is a stronger requirement than x ̸= 0.

Notes

The type theory presented here is a version of Martin-Löf’s intuitionistic type theory [ML98,
ML75, ML82, ML84], which itself is based on and influenced by the foundational work of Brouwer
[Bee85], Heyting [Hey66], Scott [Sco70], de Bruijn [dB73], Howard [How80], Tait [Tai67, Tai68],
and Lawvere [Law06]. Three principal variants of Martin-Löf’s type theory underlie the NUPRL
[CAB+86], COQ [Coq12], and AGDA [Nor07] computer implementations of type theory. The the-
ory given here differs from these formulations in a number of respects, some of which are critical
to the homotopy interpretation, while others are technical conveniences or involve concepts that
have not yet been studied in the homotopical setting.

Most significantly, the type theory described here is derived from the intensional version of
Martin-Löf’s type theory [ML75], rather than the extensional version [ML82]. Whereas the ex-
tensional theory makes no distinction between judgmental and propositional equality, the inten-
sional theory regards judgmental equality as purely definitional, and admits a much broader,
proof-relevant interpretation of the identity type that is central to the homotopy interpretation.
From the homotopical perspective, extensional type theory confines itself to homotopically dis-
crete sets (see §3.1), whereas the intensional theory admits types with higher-dimensional struc-
ture. The NUPRL system [CAB+86] is extensional, whereas both COQ [Coq12] and AGDA [Nor07]
are intensional. Among intensional type theories, there are a number of variants that differ in
the structure of identity proofs. The most liberal interpretation, on which we rely here, admits
a proof-relevant interpretation of equality, whereas more restricted variants impose restrictions

11We use “inequality” to refer to < and ≤. Also, note that this is negation of the propositional identity type. Of
course, it makes no sense to negate judgmental equality ≡, because judgments are not subject to logical operations.

52 CHAPTER 1. TYPE THEORY

such as uniqueness of identity proofs (UIP) [Str93], stating that any two proofs of equality are judg-
mentally equal, and Axiom K [Str93], stating that the only proof of equality is reflexivity (up to
judgmental equality). These additional requirements may be selectively imposed in the COQ

and AGDA systems.
Another point of variation among intensional theories is the strength of judgmental equal-

ity, particularly as regards objects of function type. Here we include the uniqueness principle
(η-conversion) f ≡ λx. f (x), as a principle of judgmental equality. This principle is used, for
example, in §4.9, to show that univalence implies propositional function extensionality. Unique-
ness principles are sometimes considered for other types. For instance, the uniqueness principle
for the cartesian product A × B would be a judgmental version of the propositional equality
uniqA×B which we constructed in §1.5, saying that u ≡ (pr1(u), pr2(u)). This and the correspond-
ing version for dependent pairs would be reasonable choices (which we did not make), but we
cannot include all such rules, because the corresponding uniqueness principle for identity types
would trivialize all the higher homotopical structure. So we are forced to leave it out, and the
question then becomes where to draw the line. With regards to inductive types, we discuss these
points further in §5.5.

It is important for our purposes that (propositional) equality of functions is taken to be exten-
sional (in a different sense than that used above!). This is not a consequence of the rules in this
chapter; it will be expressed by Axiom 2.9.3. This decision is significant for our purposes, be-
cause it specifies that equality of functions is as expected in mathematics. Although we include
Axiom 2.9.3 as an axiom, it may be derived from the univalence axiom and the uniqueness prin-
ciple for functions (see §4.9), as well as from the existence of an interval type (see Lemma 6.3.2).

Regarding inductive types such as products, Σ-types, coproducts, natural numbers, and so
on (see Chapter 5), there are additional choices regarding the formulation of induction and re-
cursion. We have taken induction principles as basic and pattern matching as derived from them,
but one may also do the other; see Appendix A. Usually in the latter case one allows also deep
pattern matching; see [Coq92b]. There are several reasons for our choice. One reason is that
induction principles are what we obtain naturally in categorical semantics. Another is that spec-
ifying the allowable kinds of (deep) pattern matching is quite tricky; for instance, AGDA’s pattern
matching can prove Axiom K by default, although a flag --without-K prevents this [CDP14].
Finally, deep pattern matching is not well-understood for higher inductive types (see Chapter 6).
Therefore, we will only use pattern matches such as those described in §1.10, which are directly
equivalent to the application of an induction principle.

Unlike the type theory of COQ, we do not include a primitive type of propositions. Instead, as
discussed in §1.11, we embrace the propositions-as-types (PAT) principle, identifying propositions
with types. This was suggested originally by de Bruijn [dB73], Howard [How80], Tait [Tai68],
and Martin-Löf [ML98]. (Our decision is explained more fully in §§3.2 and 3.3.)

We do, however, include a full cumulative hierarchy of universes, so that the type formation
and equality judgments become instances of the membership and equality judgments for a uni-
verse. As a convenience, we regard objects of a universe as types, rather than as codes for types;
in the terminology of [ML84], this means we use “Russell-style universes” rather than “Tarski-
style universes”. An alternative would be to use Tarski-style universes, with an explicit coercion
function required to make an element A : U of a universe into a type El(A), and just say that the
coercion is omitted when working informally.

We also treat the universe hierarchy as cumulative, in that every type in Ui is also in Uj for
each j ≥ i. There are different ways to implement cumulativity formally: the simplest is just
to include a rule that if A : Ui then A : Uj. However, this has the annoying consequence that

CHAPTER 1 EXERCISES 53

for a type family B : A → Ui we cannot conclude B : A → Uj, although we can conclude
λa. B(a) : A → Uj. A more sophisticated approach that solves this problem is to introduce a
judgmental subtyping relation <: generated by Ui <: Uj, but this makes the type theory more
complicated to study. Another alternative would be to include an explicit coercion function
↑: Ui → Uj, which could be omitted when working informally.

It is also not necessary that the universes be indexed by natural numbers and linearly or-
dered. For some purposes, it is more appropriate to assume only that every universe is an ele-
ment of some larger universe, together with a “directedness” property that any two universes
are jointly contained in some larger one. There are many other possible variations, such as in-
cluding a universe “Uω” that contains all Ui (or even higher “large cardinal” type universes), or
by internalizing the hierarchy into a type family λi.Ui. The latter is in fact done in AGDA.

The path induction principle for identity types was formulated by Martin-Löf [ML75]. The
based path induction rule in the setting of Martin-Löf type theory is due to Paulin-Mohring
[PM93]; it can be seen as an intensional generalization of the concept of “pointwise functionality”
for hypothetical judgments from NUPRL [CAB+86, Section 8.1]. The fact that Martin-Löf’s rule
implies Paulin-Mohring’s was proved by Streicher using Axiom K (see §7.2), by Altenkirch and
Goguen as in §1.12, and finally by Hofmann without universes (as in Exercise 1.7); see [Str93,
§1.3 and Addendum].

Exercises

Exercise 1.1. Given functions f : A → B and g : B → C, define their composite g ◦ f : A → C.
Show that we have h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f .

Exercise 1.2. Derive the recursion principle for products recA×B using only the projections, and
verify that the definitional equalities are valid. Do the same for Σ-types.

Exercise 1.3. Derive the induction principle for products indA×B, using only the projections and
the propositional uniqueness principle uniqA×B. Verify that the definitional equalities are valid.
Generalize uniqA×B to Σ-types, and do the same for Σ-types. (This requires concepts from Chapter 2.)

Exercise 1.4. Assuming as given only the iterator for natural numbers

iter : ∏
C:U

C → (C → C)→N→ C

with the defining equations

iter(C, c0, cs, 0) :≡ c0,

iter(C, c0, cs, succ(n)) :≡ cs(iter(C, c0, cs, n)),

derive a function having the type of the recursor recN. Show that the defining equations of the
recursor hold propositionally for this function, using the induction principle for N.

Exercise 1.5. Show that if we define A + B :≡ ∑(x:2) rec2(U , A, B, x), then we can give a definition
of indA+B for which the definitional equalities stated in §1.7 hold.

Exercise 1.6. Show that if we define A× B :≡ ∏(x:2) rec2(U , A, B, x), then we can give a defini-
tion of indA×B for which the definitional equalities stated in §1.5 hold propositionally (i.e. using
equality types). (This requires the function extensionality axiom, which is introduced in §2.9.)

Exercise 1.7. Give an alternative derivation of ind′=A
from ind=A which avoids the use of universes.

(This is easiest using concepts from later chapters.)

54 CHAPTER 1. TYPE THEORY

Exercise 1.8. Define multiplication and exponentiation using recN. Verify that (N,+, 0,×, 1) is
a semiring using only indN. You will probably also need to use symmetry and transitivity of
equality, Lemmas 2.1.1 and 2.1.2.

Exercise 1.9. Define the type family Fin : N→ U mentioned at the end of §1.3, and the dependent
function fmax : ∏(n:N) Fin(n + 1) mentioned in §1.4.

Exercise 1.10. Show that the Ackermann function ack : N → N → N is definable using only
recN satisfying the following equations:

ack(0, n) ≡ succ(n),

ack(succ(m), 0) ≡ ack(m, 1),

ack(succ(m), succ(n)) ≡ ack(m, ack(succ(m), n)).

Exercise 1.11. Show that for any type A, we have ¬¬¬A→ ¬A.

Exercise 1.12. Using the propositions as types interpretation, derive the following tautologies.

(i) If A, then (if B then A).
(ii) If A, then not (not A).

(iii) If (not A or not B), then not (A and B).

Exercise 1.13. Using propositions-as-types, derive the double negation of the principle of ex-
cluded middle, i.e. prove not (not (P or not P)).

Exercise 1.14. Why do the induction principles for identity types not allow us to construct a
function f : ∏(x:A) ∏(p:x=x)(p = reflx) with the defining equation

f (x, reflx) :≡ reflreflx ?

Exercise 1.15. Show that indiscernibility of identicals follows from path induction.

Exercise 1.16. Show that addition of natural numbers is commutative: ∏(i,j:N)(i + j = j + i).

Chapter 2

Homotopy type theory

The central new idea in homotopy type theory is that types can be regarded as spaces in homo-
topy theory, or higher-dimensional groupoids in category theory.

We begin with a brief summary of the connection between homotopy theory and higher-
dimensional category theory. In classical homotopy theory, a space X is a set of points equipped
with a topology, and a path between points x and y is represented by a continuous map p :
[0, 1]→ X, where p(0) = x and p(1) = y. This function can be thought of as giving a point in X
at each “moment in time”. For many purposes, strict equality of paths (meaning, pointwise equal
functions) is too fine a notion. For example, one can define operations of path concatenation (if
p is a path from x to y and q is a path from y to z, then the concatenation p � q is a path from x to
z) and inverses (p−1 is a path from y to x). However, there are natural equations between these
operations that do not hold for strict equality: for example, the path p � p−1 (which walks from
x to y, and then back along the same route, as time goes from 0 to 1) is not strictly equal to the
identity path (which stays still at x at all times).

The remedy is to consider a coarser notion of equality of paths called homotopy. A homotopy
between a pair of continuous maps f : X1 → X2 and g : X1 → X2 is a continuous map H :
X1× [0, 1]→ X2 satisfying H(x, 0) = f (x) and H(x, 1) = g(x). In the specific case of paths p and
q from x to y, a homotopy is a continuous map H : [0, 1]× [0, 1] → X such that H(s, 0) = p(s)
and H(s, 1) = q(s) for all s ∈ [0, 1]. In this case we require also that H(0, t) = x and H(1, t) = y
for all t ∈ [0, 1], so that for each t the function H(–, t) is again a path from x to y; a homotopy
of this sort is said to be endpoint-preserving or rel endpoints. In simple cases, we can think of the
image of the square [0, 1]× [0, 1] under H as “filling the space” between p and q, although for
general X this doesn’t really make sense; it is better to think of H as a continuous deformation of
p into q that doesn’t move the endpoints. Since [0, 1]× [0, 1] is 2-dimensional, we also speak of
H as a 2-dimensional path between paths.

For example, because p � p−1 walks out and back along the same route, you know that you can
continuously shrink p � p−1 down to the identity path—it won’t, for example, get snagged around
a hole in the space. Homotopy is an equivalence relation, and operations such as concatenation,
inverses, etc., respect it. Moreover, the homotopy equivalence classes of loops at some point x0

(where two loops p and q are equated when there is a based homotopy between them, which
is a homotopy H as above that additionally satisfies H(0, t) = H(1, t) = x0 for all t) form a
group called the fundamental group. This group is an algebraic invariant of a space, which can
be used to investigate whether two spaces are homotopy equivalent (there are continuous maps
back and forth whose composites are homotopic to the identity), because equivalent spaces have

56 CHAPTER 2. HOMOTOPY TYPE THEORY

isomorphic fundamental groups.
Because homotopies are themselves a kind of 2-dimensional path, there is a natural notion of

3-dimensional homotopy between homotopies, and then homotopy between homotopies between homo-
topies, and so on. This infinite tower of points, paths, homotopies, homotopies between homo-
topies, . . . , equipped with algebraic operations such as the fundamental group, is an instance of
an algebraic structure called a (weak) ∞-groupoid. An ∞-groupoid consists of a collection of ob-
jects, and then a collection of morphisms between objects, and then morphisms between morphisms,
and so on, equipped with some complex algebraic structure; a morphism at level k is called a k-
morphism. Morphisms at each level have identity, composition, and inverse operations, which
are weak in the sense that they satisfy the groupoid laws (associativity of composition, identity is
a unit for composition, inverses cancel) only up to morphisms at the next level, and this weakness
gives rise to further structure. For example, because associativity of composition of morphisms
p � (q � r) = (p � q) � r is itself a higher-dimensional morphism, one needs an additional opera-
tion relating various proofs of associativity: the various ways to reassociate p � (q � (r � s)) into
((p � q) � r) � s give rise to Mac Lane’s pentagon. Weakness also creates non-trivial interactions
between levels.

Every topological space X has a fundamental ∞-groupoid whose k-morphisms are the k-dimen-
sional paths in X. The weakness of the ∞-groupoid corresponds directly to the fact that paths
form a group only up to homotopy, with the (k+ 1)-paths serving as the homotopies between the
k-paths. Moreover, the view of a space as an ∞-groupoid preserves enough aspects of the space
to do homotopy theory: the fundamental ∞-groupoid construction is adjoint to the geometric
realization of an ∞-groupoid as a space, and this adjunction preserves homotopy theory (this is
called the homotopy hypothesis/theorem, because whether it is a hypothesis or theorem depends
on how you define ∞-groupoid). For example, you can easily define the fundamental group of
an ∞-groupoid, and if you calculate the fundamental group of the fundamental ∞-groupoid of
a space, it will agree with the classical definition of fundamental group of that space. Because of
this correspondence, homotopy theory and higher-dimensional category theory are intimately
related.

Now, in homotopy type theory each type can be seen to have the structure of an ∞-groupoid.
Recall that for any type A, and any x, y : A, we have an identity type x =A y, also written
IdA(x, y) or just x = y. Logically, we may think of elements of x = y as evidence that x and
y are equal, or as identifications of x with y. Furthermore, type theory (unlike, say, first-order
logic) allows us to consider such elements of x =A y also as individuals which may be the
subjects of further propositions. Therefore, we can iterate the identity type: we can form the type
p =(x=Ay) q of identifications between identifications p, q, and the type r =(p=(x=Ay)q) s, and so
on. The structure of this tower of identity types corresponds precisely to that of the continuous
paths and (higher) homotopies between them in a space, or an ∞-groupoid.

Thus, we will frequently refer to an element p : x =A y as a path from x to y; we call x its
start point and y its end point. Two paths p, q : x =A y with the same start and end point are
said to be parallel, in which case an element r : p =(x=Ay) q can be thought of as a homotopy, or
a morphism between morphisms; we will often refer to it as a 2-path or a 2-dimensional path.
Similarly, r =(p=(x=Ay)q) s is the type of 3-dimensional paths between two parallel 2-dimensional
paths, and so on. If the type A is “set-like”, such as N, these iterated identity types will be
uninteresting (see §3.1), but in the general case they can model non-trivial homotopy types.

An important difference between homotopy type theory and classical homotopy theory is
that homotopy type theory provides a synthetic description of spaces, in the following sense.

57

Synthetic geometry is geometry in the style of Euclid [EucBC]: one starts from some basic no-
tions (points and lines), constructions (a line connecting any two points), and axioms (all right
angles are equal), and deduces consequences logically. This is in contrast with analytic geometry,
where notions such as points and lines are represented concretely using cartesian coordinates in
Rn—lines are sets of points—and the basic constructions and axioms are derived from this rep-
resentation. While classical homotopy theory is analytic (spaces and paths are made of points),
homotopy type theory is synthetic: points, paths, and paths between paths are basic, indivisible,
primitive notions.

Moreover, one of the amazing things about homotopy type theory is that all of the basic
constructions and axioms—all of the higher groupoid structure—arises automatically from the
induction principle for identity types. Recall from §1.12 that this says that if

• for every x, y : A and every p : x =A y we have a type D(x, y, p), and
• for every a : A we have an element d(a) : D(a, a, refla),

then

• there exists an element ind=A(D, d, x, y, p) : D(x, y, p) for every two elements x, y : A and
p : x =A y, such that ind=A(D, d, a, a, refla) ≡ d(a).

In other words, given dependent functions

D : ∏
x,y:A

(x = y)→ U

d : ∏
a:A

D(a, a, refla)

there is a dependent function

ind=A(D, d) : ∏
(x,y:A)

∏
(p:x=y)

D(x, y, p)

such that
ind=A(D, d, a, a, refla) ≡ d(a) (2.0.1)

for every a : A. Usually, every time we apply this induction rule we will either not care about
the specific function being defined, or we will immediately give it a different name.

Informally, the induction principle for identity types says that if we want to construct an
object (or prove a statement) which depends on an inhabitant p : x =A y of an identity type,
then it suffices to perform the construction (or the proof) in the special case when x and y are the
same (judgmentally) and p is the reflexivity element reflx : x = x (judgmentally). When writing
informally, we may express this with a phrase such as “by induction, it suffices to assume. . . ”.
This reduction to the “reflexivity case” is analogous to the reduction to the “base case” and
“inductive step” in an ordinary proof by induction on the natural numbers, and also to the “left
case” and “right case” in a proof by case analysis on a disjoint union or disjunction.

The “conversion rule” (2.0.1) is less familiar in the context of proof by induction on natural
numbers, but there is an analogous notion in the related concept of definition by recursion. If a
sequence (an)n∈N is defined by giving a0 and specifying an+1 in terms of an, then in fact the 0th

term of the resulting sequence is the given one, and the given recurrence relation relating an+1

to an holds for the resulting sequence. (This may seem so obvious as to not be worth saying, but
if we view a definition by recursion as an algorithm for calculating values of a sequence, then

58 CHAPTER 2. HOMOTOPY TYPE THEORY

it is precisely the process of executing that algorithm.) The rule (2.0.1) is analogous: it says that
if we define an object f (p) for all p : x = y by specifying what the value should be when p is
reflx : x = x, then the value we specified is in fact the value of f (reflx).

This induction principle endows each type with the structure of an ∞-groupoid, and each
function between two types with the structure of an ∞-functor between two such groupoids.
This is interesting from a mathematical point of view, because it gives a new way to work with ∞-
groupoids. It is interesting from a type-theoretic point of view, because it reveals new operations
that are associated with each type and function. In the remainder of this chapter, we begin to
explore this structure.

2.1 Types are higher groupoids

We now derive from the induction principle the beginnings of the structure of a higher groupoid.
We begin with symmetry of equality, which, in topological language, means that “paths can be
reversed”.

Lemma 2.1.1. For every type A and every x, y : A there is a function

(x = y)→ (y = x)

denoted p 7→ p−1, such that reflx
−1 ≡ reflx for each x : A. We call p−1 the inverse of p.

Since this is our first time stating something as a “Lemma” or “Theorem”, let us pause to
consider what that means. Recall that propositions (statements susceptible to proof) are identi-
fied with types, whereas lemmas and theorems (statements that have been proven) are identified
with inhabited types. Thus, the statement of a lemma or theorem should be translated into a type,
as in §1.11, and its proof translated into an inhabitant of that type. According to the interpreta-
tion of the universal quantifier “for every”, the type corresponding to Lemma 2.1.1 is

∏
(A:U)

∏
(x,y:A)

(x = y)→ (y = x).

The proof of Lemma 2.1.1 will consist of constructing an element of this type, i.e. deriving the
judgment f : ∏(A:U) ∏(x,y:A)(x = y)→ (y = x) for some f . We then introduce the notation (–)−1

for this element f , in which the arguments A, x, and y are omitted and inferred from context. (As
remarked in §1.1, the secondary statement “reflx

−1 ≡ reflx for each x : A” should be regarded as
a separate judgment.)

First proof. Assume given A : U , and let D : ∏(x,y:A)(x = y) → U be the type family defined by
D(x, y, p) :≡ (y = x). In other words, D is a function assigning to any x, y : A and p : x = y a
type, namely the type y = x. Then we have an element

d :≡ λx. reflx : ∏
x:A

D(x, x, reflx).

Thus, the induction principle for identity types gives us an element ind=A(D, d, x, y, p) : (y = x)
for each p : (x = y). We can now define the desired function (–)−1 to be λp. ind=A(D, d, x, y, p),
i.e. we set p−1 :≡ ind=A(D, d, x, y, p). The conversion rule (2.0.1) gives reflx

−1 ≡ reflx, as required.

2.1 TYPES ARE HIGHER GROUPOIDS 59

We have written out this proof in a very formal style, which may be helpful while the induc-
tion rule on identity types is unfamiliar. To be even more formal, we could say that Lemma 2.1.1
and its proof together consist of the judgment

λA. λx. λy. λp. ind=A((λx. λy. λp. (y = x)), (λx. reflx), x, y, p) : ∏
(A:U)

∏
(x,y:A)

(x = y)→ (y = x)

(along with an additional equality judgment). However, eventually we prefer to use more natu-
ral language, such as in the following equivalent proof.

Second proof. We want to construct, for each x, y : A and p : x = y, an element p−1 : y = x. By
induction, it suffices to do this in the case when y is x and p is reflx. But in this case, the type
x = y of p and the type y = x in which we are trying to construct p−1 are both simply x = x.
Thus, in the “reflexivity case”, we can define reflx

−1 to be simply reflx. The general case then
follows by the induction principle, and the conversion rule reflx

−1 ≡ reflx is precisely the proof
in the reflexivity case that we gave.

We will write out the next few proofs in both styles, to help the reader become accustomed to
the latter one. Next we prove the transitivity of equality, or equivalently we “concatenate paths”.

Lemma 2.1.2. For every type A and every x, y, z : A there is a function

(x = y)→ (y = z)→ (x = z),

written p 7→ q 7→ p � q, such that reflx � reflx ≡ reflx for any x : A. We call p � q the concatenation or
composite of p and q.

Note that we choose to notate path concatenation in the opposite order from function com-
position: from p : x = y and q : y = z we get p � q : x = z, whereas from f : A→ B and g : B→ C
we get g ◦ f : A→ C (see Exercise 1.1).

First proof. The desired function has type ∏(x,y,z:A)(x = y) → (y = z) → (x = z). We will
instead define a function with the equivalent type ∏(x,y:A)(x = y) → ∏(z:A)(y = z) → (x = z),
which allows us to apply path induction twice. Let D : ∏(x,y:A)(x = y)→ U be the type family

D(x, y, p) :≡ ∏
(z:A)

∏
(q:y=z)

(x = z).

Note that D(x, x, reflx) ≡ ∏(z:A) ∏(q:x=z)(x = z). Thus, in order to apply the induction principle
for identity types to this D, we need a function of type

∏
x:A

D(x, x, reflx) (2.1.3)

which is to say, of type

∏
(x,z:A)

∏
(q:x=z)

(x = z).

Now let E : ∏(x,z:A) ∏(q:x=z) U be the type family E(x, z, q) :≡ (x = z). Note that E(x, x, reflx) ≡
(x = x). Thus, we have the function

e(x) :≡ reflx : E(x, x, reflx).

60 CHAPTER 2. HOMOTOPY TYPE THEORY

By the induction principle for identity types applied to E, we obtain a function

d : ∏
(x,z:A)

∏
(q:x=z)

E(x, z, q).

But E(x, z, q) ≡ (x = z), so the type of d is (2.1.3). Thus, we can use this function d and apply the
induction principle for identity types to D, to obtain our desired function of type

∏
x,y:A

(x = y)→∏
z:A

(y = z)→ (x = z)

and hence ∏(x,y,z:A)(y = z) → (x = y) → (x = z). The conversion rules for the two induction
principles give us reflx � reflx ≡ reflx for any x : A.

Second proof. We want to construct, for every x, y, z : A and every p : x = y and q : y = z, an
element of x = z. By induction on p, it suffices to assume that y is x and p is reflx. In this case,
the type y = z of q is x = z. Now by induction on q, it suffices to assume also that z is x and q is
reflx. But in this case, x = z is x = x, and we have reflx : (x = x).

The reader may well feel that we have given an overly convoluted proof of this lemma. In
fact, we could stop after the induction on p, since at that point what we want to produce is an
equality x = z, and we already have such an equality, namely q. Why do we go on to do another
induction on q?

The answer is that, as described in the introduction, we are doing proof-relevant mathematics.
When we prove a lemma, we are defining an inhabitant of some type, and it can matter what
specific element we defined in the course of the proof, not merely the type inhabited by that
element (that is, the statement of the lemma). Lemma 2.1.2 has three obvious proofs: we could do
induction over p, induction over q, or induction over both of them. If we proved it three different
ways, we would have three different elements of the same type. It’s not hard to show that these
three elements are equal (see Exercise 2.1), but as they are not definitionally equal, there can still
be reasons to prefer one over another.

In the case of Lemma 2.1.2, the difference hinges on the computation rule. If we proved
the lemma using a single induction over p, then we would end up with a computation rule of
the form refly � q ≡ q. If we proved it with a single induction over q, we would have instead
p � refly ≡ p, while proving it with a double induction (as we did) gives only reflx � reflx ≡ reflx.

The asymmetrical computation rules can sometimes be convenient when doing formalized
mathematics, as they allow the computer to simplify more things automatically. However, in
informal mathematics, and arguably even in the formalized case, it can be confusing to have a
concatenation operation which behaves asymmetrically and to have to remember which side is
the “special” one. Treating both sides symmetrically makes for more robust proofs; this is why
we have given the proof that we did. (However, this is admittedly a stylistic choice.)

The table below summarizes the “equality”, “homotopical”, and “higher-groupoid” points
of view on what we have done so far.

Equality Homotopy ∞-Groupoid

reflexivity constant path identity morphism
symmetry inversion of paths inverse morphism
transitivity concatenation of paths composition of morphisms

2.1 TYPES ARE HIGHER GROUPOIDS 61

In practice, transitivity is often applied to prove an equality by a chain of intermediate steps.
We will use the common notation for this such as a = b = c = d. If the intermediate expressions
are long, or we want to specify the witness of each equality, we may write

a = b (by p)

= c (by q)

= d (by r).

In either case, the notation indicates construction of the element (p � q) � r : (a = d). (We choose
left-associativity for concreteness, although in view of Lemma 2.1.4(iv) below it makes little dif-
ference.) If it should happen that b and c, say, are judgmentally equal, then we may write

a = b (by p)

≡ c

= d (by r)

to indicate construction of p � r : (a = d). We also follow common mathematical practice in
not requiring the justifications in this notation (“by p” and “by r”) to supply the exact witness
needed; instead we allow them to simply mention the most important (or least obvious) ingre-
dient in constructing that witness. For instance, if “Lemma A” states that for all x and y we have
f (x) = g(y), then we may write “by Lemma A” as a justification for the step f (a) = g(b), trust-
ing the reader to deduce that we apply Lemma A with x :≡ a and y :≡ b. We may also omit a
justification entirely if we trust the reader to be able to guess it.

Now, because of proof-relevance, we can’t stop after proving “symmetry” and “transitivity”
of equality: we need to know that these operations on equalities are well-behaved. (This issue
is invisible in set theory, where symmetry and transitivity are mere properties of equality, rather
than structure on paths.) From the homotopy-theoretic point of view, concatenation and inver-
sion are just the “first level” of higher groupoid structure — we also need coherence laws on these
operations, and analogous operations at higher dimensions. For instance, we need to know that
concatenation is associative, and that inversion provides inverses with respect to concatenation.

Lemma 2.1.4. Suppose A : U , that x, y, z, w : A and that p : x = y and q : y = z and r : z = w. We
have the following:

(i) p = p � refly and p = reflx � p.

(ii) p−1 � p = refly and p � p−1 = reflx.

(iii) (p−1)
−1

= p.

(iv) p � (q � r) = (p � q) � r.

Note, in particular, that (i)–(iv) are themselves propositional equalities, living in the identity
types of identity types, such as p =x=y q for p, q : x = y. Topologically, they are paths of paths, i.e.
homotopies. It is a familiar fact in topology that when we concatenate a path p with the reversed
path p−1, we don’t literally obtain a constant path (which corresponds to the equality refl in type
theory) — instead we have a homotopy, or higher path, from p � p−1 to the constant path.

Proof of Lemma 2.1.4. All the proofs use the induction principle for equalities.

62 CHAPTER 2. HOMOTOPY TYPE THEORY

(i) First proof: let D : ∏(x,y:A)(x = y)→ U be the type family given by

D(x, y, p) :≡ (p = p � refly).

Then D(x, x, reflx) is reflx = reflx � reflx. Since reflx � reflx ≡ reflx, it follows that D(x, x, reflx) ≡
(reflx = reflx). Thus, there is a function

d :≡ λx. reflreflx : ∏
x:A

D(x, x, reflx).

Now the induction principle for identity types gives an element ind=A(D, d, x, y, p) : (p =

p � refly) for each p : x = y. The other equality is proven similarly.

Second proof: by induction on p, it suffices to assume that y is x and that p is reflx. But in
this case, we have reflx � reflx ≡ reflx.

(ii) First proof: let D : ∏(x,y:A)(x = y)→ U be the type family given by

D(x, y, p) :≡ (p−1 � p = refly).

Then D(x, x, reflx) is reflx
−1 � reflx = reflx. Since reflx

−1 ≡ reflx and reflx � reflx ≡ reflx, we get
that D(x, x, reflx) ≡ (reflx = reflx). Hence we find the function

d :≡ λx. reflreflx : ∏
x:A

D(x, x, reflx).

Now path induction gives an element ind=A(D, d, x, y, p) : p−1 � p = refly for each p : x = y
in A. The other equality is similar.

Second proof: by induction, it suffices to assume p is reflx. But in this case, we have p−1 � p ≡
reflx

−1 � reflx ≡ reflx.
(iii) First proof: let D : ∏(x,y:A)(x = y)→ U be the type family given by

D(x, y, p) :≡ ((p−1)
−1

= p).

Then D(x, x, reflx) is the type ((reflx
−1)
−1

= reflx). But since reflx
−1 ≡ reflx for each x : A,

we have (reflx
−1)
−1 ≡ reflx

−1 ≡ reflx, and thus D(x, x, reflx) ≡ (reflx = reflx). Hence we
find the function

d :≡ λx. reflreflx : ∏
x:A

D(x, x, reflx).

Now path induction gives an element ind=A(D, d, x, y, p) : (p−1)
−1

= p for each p : x = y.

Second proof: by induction, it suffices to assume p is reflx. But in this case, we have (p−1)
−1 ≡

(reflx
−1)
−1 ≡ reflx.

(iv) First proof: let D1 : ∏(x,y:A)(x = y)→ U be the type family given by

D1(x, y, p) :≡ ∏
(z,w:A)

∏
(q:y=z)

∏
(r:z=w)

(
p � (q � r) = (p � q) � r

)
.

Then D1(x, x, reflx) is

∏
(z,w:A)

∏
(q:x=z)

∏
(r:z=w)

(
reflx � (q � r) = (reflx � q) � r

)
.

2.1 TYPES ARE HIGHER GROUPOIDS 63

To construct an element of this type, let D2 : ∏(x,z:A)(x = z)→ U be the type family

D2(x, z, q) :≡ ∏
(w:A)

∏
(r:z=w)

(
reflx � (q � r) = (reflx � q) � r

)
.

Then D2(x, x, reflx) is

∏
(w:A)

∏
(r:x=w)

(
reflx � (reflx � r) = (reflx � reflx) � r

)
.

To construct an element of this type, let D3 : ∏(x,w:A)(x = w)→ U be the type family

D3(x, w, r) :≡
(
reflx � (reflx � r) = (reflx � reflx) � r

)
.

Then D3(x, x, reflx) is (
reflx � (reflx � reflx) = (reflx � reflx) � reflx

)
which is definitionally equal to the type (reflx = reflx), and is therefore inhabited by reflreflx .
Applying the path induction rule three times, therefore, we obtain an element of the overall
desired type.

Second proof: by induction, it suffices to assume p, q, and r are all reflx. But in this case, we
have

p � (q � r) ≡ reflx � (reflx � reflx)

≡ reflx

≡ (reflx � reflx) � reflx

≡ (p � q) � r.

Thus, we have reflreflx inhabiting this type.

Remark 2.1.5. There are other ways to define these higher paths. For instance, in Lemma 2.1.4(iv)
we might do induction only over one or two paths rather than all three. Each possibility will
produce a definitionally different proof, but they will all be equal to each other. Such an equality
between any two particular proofs can, again, be proven by induction, reducing all the paths in
question to reflexivities and then observing that both proofs reduce themselves to reflexivities.

In view of Lemma 2.1.4(iv), we will often write p � q � r for (p � q) � r, and similarly p � q � r � s
for ((p � q) � r) � s and so on. We choose left-associativity for definiteness, but it makes no real
difference. We generally trust the reader to insert instances of Lemma 2.1.4(iv) to reassociate
such expressions as necessary.

We are still not really done with the higher groupoid structure: the paths (i)–(iv) must also
satisfy their own higher coherence laws, which are themselves higher paths, and so on “all the
way up to infinity” (this can be made precise using e.g. the notion of a globular operad). How-
ever, for most purposes it is unnecessary to make the whole infinite-dimensional structure ex-
plicit. One of the nice things about homotopy type theory is that all of this structure can be proven
starting from only the inductive property of identity types, so we can make explicit as much or
as little of it as we need.

In particular, in this book we will not need any of the complicated combinatorics involved in
making precise notions such as “coherent structure at all higher levels”. In addition to ordinary

64 CHAPTER 2. HOMOTOPY TYPE THEORY

paths, we will use paths of paths (i.e. elements of a type p =x=Ay q), which as remarked previ-
ously we call 2-paths or 2-dimensional paths, and perhaps occasionally paths of paths of paths (i.e.
elements of a type r =p=x=Ayq s), which we call 3-paths or 3-dimensional paths. It is possible to
define a general notion of n-dimensional path (see Exercise 2.4), but we will not need it.

We will, however, use one particularly important and simple case of higher paths, which
is when the start and end points are the same. In set theory, the proposition a = a is entirely
uninteresting, but in homotopy theory, paths from a point to itself are called loops and carry lots
of interesting higher structure. Thus, given a type A with a point a : A, we define its loop space
Ω(A, a) to be the type a =A a. We may sometimes write simply ΩA if the point a is understood
from context.

Since any two elements of ΩA are paths with the same start and end points, they can be
concatenated; thus we have an operation ΩA×ΩA→ ΩA. More generally, the higher groupoid
structure of A gives ΩA the analogous structure of a “higher group”.

It can also be useful to consider the loop space of the loop space of A, which is the space
of 2-dimensional loops on the identity loop at a. This is written Ω2(A, a) and represented in
type theory by the type refla =(a=Aa) refla. While Ω2(A, a), as a loop space, is again a “higher
group”, it now also has some additional structure resulting from the fact that its elements are
2-dimensional loops between 1-dimensional loops.

Theorem 2.1.6 (Eckmann–Hilton). The composition operation on the second loop space

Ω2(A)×Ω2(A)→ Ω2(A)

is commutative: α � β = β � α, for any α, β : Ω2(A).

Proof. First, observe that the composition of 1-loops ΩA×ΩA→ ΩA induces an operation

⋆ : Ω2(A)×Ω2(A)→ Ω2(A)

as follows: consider elements a, b, c : A and 1- and 2-paths,

p : a = b, r : b = c

q : a = b, s : b = c

α : p = q, β : r = s

as depicted in the following diagram (with paths drawn as arrows).

a

p

��

q

??�� α b

r

��

s

??�� β c

Composing the upper and lower 1-paths, respectively, we get two paths p � r, q � s : a = c, and
there is then a “horizontal composition”

α ⋆ β : p � r = q � s

2.1 TYPES ARE HIGHER GROUPOIDS 65

between them, defined as follows. First, we define α �
r r : p � r = q � r by path induction on r, so

that
α �

r reflb ≡ rup
−1 � α � ruq

where rup : p = p � reflb is the right unit law from Lemma 2.1.4(i). We could similarly define �
r

by induction on α, or on all paths in sight, resulting in different judgmental equalities, but for
present purposes the definition by induction on r will make things simpler. Similarly, we define
q �l β : q � r = q � s by induction on q, so that

reflb �l β ≡ lur
−1 � β � lus

where lur denotes the left unit law. The operations �
l and �

r are called whiskering. Next, since
α �

r r and q �l β are composable 2-paths, we can define the horizontal composition by:

α ⋆ β :≡ (α �
r r) � (q �l β).

Now suppose that a ≡ b ≡ c, so that all the 1-paths p, q, r, and s are elements of Ω(A, a), and
assume moreover that p ≡ q ≡ r ≡ s ≡ refla, so that α : refla = refla and β : refla = refla are
composable in both orders. In that case, we have

α ⋆ β ≡ (α �
r refla) � (refla �l β)

= rurefla
−1 � α � rurefla

� lurefla
−1 � β � lurefla

≡ reflrefla
−1 � α � reflrefla

� reflrefla
−1 � β � reflrefla

= α � β.

(Recall that rurefla ≡ lurefla ≡ reflrefla , by the computation rule for path induction.) On the other
hand, we can define another horizontal composition analogously by

α ⋆′ β :≡ (p �l β) � (α �
r s)

and we similarly learn that
α ⋆′ β = β � α.

But, in general, the two ways of defining horizontal composition agree, α ⋆ β = α ⋆′ β, as we
can see by induction on α and β and then on the two remaining 1-paths, to reduce everything to
reflexivity. Thus we have

α � β = α ⋆ β = α ⋆′ β = β � α.

The foregoing fact, which is known as the Eckmann–Hilton argument, comes from classical
homotopy theory, and indeed it is used in Chapter 8 below to show that the higher homotopy
groups of a type are always abelian groups. The whiskering and horizontal composition oper-
ations defined in the proof are also a general part of the ∞-groupoid structure of types. They
satisfy their own laws (up to higher homotopy), such as

α �
r (p � q) = (α �

r p) �r q

and so on. From now on, we trust the reader to apply path induction whenever needed to define
further operations of this sort and verify their properties.

As this example suggests, the algebra of higher path types is much more intricate than just
the groupoid-like structure at each level; the levels interact to give many further operations and
laws, as in the study of iterated loop spaces in homotopy theory. Indeed, as in classical homotopy
theory, we can make the following general definitions:

66 CHAPTER 2. HOMOTOPY TYPE THEORY

Definition 2.1.7. A pointed type (A, a) is a type A : U together with a point a : A, called its
basepoint. We write U• :≡ ∑(A:U) A for the type of pointed types in the universe U .

Definition 2.1.8. Given a pointed type (A, a), we define the loop space of (A, a) to be the follow-
ing pointed type:

Ω(A, a) :≡ ((a =A a), refla).

An element of it will be called a loop at a. For n : N, the n-fold iterated loop space Ωn(A, a) of
a pointed type (A, a) is defined recursively by:

Ω0(A, a) :≡ (A, a)

Ωn+1(A, a) :≡ Ωn(Ω(A, a)).

An element of it will be called an n-loop or an n-dimensional loop at a.

We will return to iterated loop spaces in Chapters 6 to 8.

2.2 Functions are functors

Now we wish to establish that functions f : A → B behave functorially on paths. In traditional
type theory, this is equivalently the statement that functions respect equality. Topologically, this
corresponds to saying that every function is “continuous”, i.e. preserves paths.

Lemma 2.2.1. Suppose that f : A→ B is a function. Then for any x, y : A there is an operation

ap f : (x =A y)→ (f (x) =B f (y)).

Moreover, for each x : A we have ap f (reflx) ≡ refl f (x).

The notation ap f can be read either as the application of f to a path, or as the action on paths
of f .

First proof. Let D : ∏(x,y:A)(x = y)→ U be the type family defined by

D(x, y, p) :≡ (f (x) = f (y)).

Then we have
d :≡ λx. refl f (x) : ∏

x:A
D(x, x, reflx).

By path induction, we obtain ap f : ∏(x,y:A)(x = y) → (f (x) = f (y)). The computation rule
implies ap f (reflx) ≡ refl f (x) for each x : A.

Second proof. To define ap f (p) for all p : x = y, it suffices, by induction, to assume p is reflx. In
this case, we may define ap f (p) :≡ refl f (x) : f (x) = f (x).

We will often write ap f (p) as simply f (p). This is strictly speaking ambiguous, but generally
no confusion arises. It matches the common convention in category theory of using the same
symbol for the application of a functor to objects and to morphisms.

We note that ap behaves functorially, in all the ways that one might expect.

Lemma 2.2.2. For functions f : A→ B and g : B→ C and paths p : x =A y and q : y =A z, we have:

2.3 TYPE FAMILIES ARE FIBRATIONS 67

(i) ap f (p � q) = ap f (p) � ap f (q).

(ii) ap f (p−1) = ap f (p)−1.
(iii) apg(ap f (p)) = apg◦ f (p).
(iv) apidA

(p) = p.

Proof. Left to the reader.

As was the case for the equalities in Lemma 2.1.4, those in Lemma 2.2.2 are themselves paths,
which satisfy their own coherence laws (which can be proved in the same way), and so on.

2.3 Type families are fibrations

Since dependently typed functions are essential in type theory, we will also need a version of
Lemma 2.2.1 for these. However, this is not quite so simple to state, because if f : ∏(x:A) B(x)
and p : x = y, then f (x) : B(x) and f (y) : B(y) are elements of distinct types, so that a priori we
cannot even ask whether they are equal. The missing ingredient is that p itself gives us a way to
relate the types B(x) and B(y).

We have already seen this in section 1.12, where we called it “indiscernibility of identicals”.
We now introduce a different name and notation for it that we will use from now on.

Lemma 2.3.1 (Transport). Suppose that P is a type family over A and that p : x =A y. Then there is a
function p∗ : P(x)→ P(y).

First proof. Let D : ∏(x,y:A)(x = y)→ U be the type family defined by

D(x, y, p) :≡ P(x)→ P(y).

Then we have the function
d :≡ λx. idP(x) : ∏

x:A
D(x, x, reflx),

so that the induction principle gives us ind=A(D, d, x, y, p) : P(x)→ P(y) for p : x = y, which we
define to be p∗.

Second proof. By induction, it suffices to assume p is reflx. But in this case, we can take (reflx)∗ :
P(x)→ P(x) to be the identity function.

Sometimes, it is necessary to notate the type family P in which the transport operation hap-
pens. In this case, we may write

transportP(p, –) : P(x)→ P(y).

Recall that a type family P over a type A can be seen as a property of elements of A, which
holds at x in A if P(x) is inhabited. Then the transportation lemma says that P respects equality,
in the sense that if x is equal to y, then P(x) holds if and only if P(y) holds. In fact, we will see
later on that if x = y then actually P(x) and P(y) are equivalent.

Topologically, the transportation lemma can be viewed as a “path lifting” operation in a fi-
bration. We think of a type family P : A → U as a fibration with base space A, with P(x) being
the fiber over x, and with ∑(x:A) P(x) being the total space of the fibration, with first projection
∑(x:A)(P(x)) → A. The defining property of a fibration is that given a path p : x = y in the base
space A and a point u : P(x) in the fiber over x, we may lift the path p to a path in the total space
starting at u (and this lifting can be done continuously). The point p∗(u) can be thought of as the
other endpoint of this lifted path. We can also define the path itself in type theory:

68 CHAPTER 2. HOMOTOPY TYPE THEORY

Lemma 2.3.2 (Path lifting property). Let P : A → U be a type family over A and assume we have
u : P(x) for some x : A. Then for any p : x = y, we have

lift(u, p) : (x, u) = (y, p∗(u))

in ∑(x:A) P(x), such that pr1(lift(u, p)) = p.

Proof. Left to the reader. We will prove a more general theorem in §2.7.

In classical homotopy theory, a fibration is defined as a map for which there exist liftings of
paths; while in contrast, we have just shown that in type theory, every type family comes with
a specified “path-lifting function”. This accords with the philosophy of constructive mathemat-
ics, according to which we cannot show that something exists except by exhibiting it. It also
ensures automatically that the path liftings are chosen “continuously”, since as we have seen, all
functions in type theory are “continuous”.

Remark 2.3.3. Although we may think of a type family P : A→ U as like a fibration, it is generally
not a good idea to say things like “the fibration P : A→ U”, since this sounds like we are talking
about a fibration with base U and total space A. To repeat, when a type family P : A → U is
regarded as a fibration, the base is A and the total space is ∑(x:A) P(x).

We may also occasionally use other topological terminology when speaking about type fam-
ilies. For instance, we may refer to a dependent function f : ∏(x:A) P(x) as a section of the
fibration P, and we may say that something happens fiberwise if it happens for each P(x). For
instance, a section f : ∏(x:A) P(x) shows that P is “fiberwise inhabited”.

Now we can prove the dependent version of Lemma 2.2.1. The topological intuition is that
given f : ∏(x:A) P(x) and a path p : x =A y, we ought to be able to apply f to p and obtain a path
in the total space of P which “lies over” p, as shown below.

A

∑(x:A) P(x)

pr1

x y
p

f (x) f (y)
f (p)

We can obtain such a thing from Lemma 2.2.1. Given f : ∏(x:A) P(x), we can define a non-
dependent function f ′ : A → ∑(x:A) P(x) by setting f ′(x) :≡ (x, f (x)), and then consider f ′(p) :
f ′(x) = f ′(y). Since pr1 ◦ f ′ ≡ idA, by Lemma 2.2.2 we have pr1(f ′(p)) = p; thus f ′(p) does
“lie over” p in this sense. However, it is not obvious from the type of f ′(p) that it lies over any
specific path in A (in this case, p), which is sometimes important.

The solution is to use the transport lemma. By Lemma 2.3.2 we have a canonical path lift(u, p)
from (x, u) to (y, p∗(u)) which lies over p. Thus, any path from u : P(x) to v : P(y) lying over
p should factor through lift(u, p), essentially uniquely, by a path from p∗(u) to v lying entirely
in the fiber P(y). Thus, up to equivalence, it makes sense to define “a path from u to v lying
over p : x = y” to mean a path p∗(u) = v in P(y). And, indeed, we can show that dependent
functions produce such paths.

2.3 TYPE FAMILIES ARE FIBRATIONS 69

Lemma 2.3.4 (Dependent map). Suppose f : ∏(x:A) P(x); then we have a map

apd f : ∏
p:x=y

(
p∗(f (x)) =P(y) f (y)

)
.

First proof. Let D : ∏(x,y:A)(x = y)→ U be the type family defined by

D(x, y, p) :≡ p∗(f (x)) = f (y).

Then D(x, x, reflx) is (reflx)∗(f (x)) = f (x). But since (reflx)∗(f (x)) ≡ f (x), we get that D(x, x, reflx) ≡
(f (x) = f (x)). Thus, we find the function

d :≡ λx. refl f (x) : ∏
x:A

D(x, x, reflx)

and now path induction gives us apd f (p) : p∗(f (x)) = f (y) for each p : x = y.

Second proof. By induction, it suffices to assume p is reflx. But in this case, the desired equation is
(reflx)∗(f (x)) = f (x), which holds judgmentally.

We will refer generally to paths which “lie over other paths” in this sense as dependent paths.
They will play an increasingly important role starting in Chapter 6. In §2.5 we will see that
for a few particular kinds of type families, there are equivalent ways to represent the notion of
dependent paths that are sometimes more convenient.

Now recall from §1.4 that a non-dependently typed function f : A→ B is just the special case
of a dependently typed function f : ∏(x:A) P(x) when P is a constant type family, P(x) :≡ B. In
this case, apd f and ap f are closely related, because of the following lemma:

Lemma 2.3.5. If P : A → U is defined by P(x) :≡ B for a fixed B : U , then for any x, y : A and
p : x = y and b : B we have a path

transportconstB
p (b) : transportP(p, b) = b.

First proof. Fix a b : B, and let D : ∏(x,y:A)(x = y)→ U be the type family defined by

D(x, y, p) :≡ (transportP(p, b) = b).

Then D(x, x, reflx) is (transportP(reflx, b) = b), which is judgmentally equal to (b = b) by the
computation rule for transporting. Thus, we have the function

d :≡ λx. reflb : ∏
x:A

D(x, x, reflx).

Now path induction gives us an element of ∏(x,y:A) ∏(p:x=y)(transport
P(p, b) = b), as desired.

Second proof. By induction, it suffices to assume y is x and p is reflx. But transportP(reflx, b) ≡ b,
so in this case what we have to prove is b = b, and we have reflb for this.

Thus, for any x, y : A and p : x = y and f : A→ B, by concatenating with transportconstB
p (f (x))

and its inverse, respectively, we obtain functions(
f (x) = f (y)

)
→
(

p∗(f (x)) = f (y)
)

and (2.3.6)(
p∗(f (x)) = f (y)

)
→
(

f (x) = f (y)
)
. (2.3.7)

In fact, these functions are inverse equivalences (in the sense to be introduced in §2.4), and they
relate ap f (p) to apd f (p).

70 CHAPTER 2. HOMOTOPY TYPE THEORY

Lemma 2.3.8. For f : A→ B and p : x =A y, we have

apd f (p) = transportconstB
p (f (x)) � ap f (p).

First proof. Let D : ∏(x,y:A)(x = y)→ U be the type family defined by

D(x, y, p) :≡
(
apd f (p) = transportconstB

p (f (x)) � ap f (p)
)
.

Thus, we have

D(x, x, reflx) ≡
(
apd f (reflx) = transportconstB

reflx
(f (x)) � ap f (reflx)

)
.

But by definition, all three paths appearing in this type are refl f (x), so we have

reflrefl f (x) : D(x, x, reflx).

Thus, path induction gives us an element of ∏(x,y:A) ∏(p:x=y) D(x, y, p), which is what we wanted.

Second proof. By induction, it suffices to assume y is x and p is reflx. In this case, what we have to
prove is refl f (x) = refl f (x)

� refl f (x), which is true judgmentally.

Because the types of apd f and ap f are different, it is often clearer to use different notations for
them.

At this point, we hope the reader is starting to get a feel for proofs by induction on identity
types. From now on we stop giving both styles of proofs, allowing ourselves to use whatever is
most clear and convenient (and often the second, more concise one). Here are a few other useful
lemmas about transport; we leave it to the reader to give the proofs (in either style).

Lemma 2.3.9. Given P : A→ U with p : x =A y and q : y =A z while u : P(x), we have

q∗(p∗(u)) = (p � q)∗(u).

Lemma 2.3.10. For a function f : A → B and a type family P : B → U , and any p : x =A y and
u : P(f (x)), we have

transportP◦ f (p, u) = transportP(ap f (p), u).

Lemma 2.3.11. For P, Q : A → U and a family of functions f : ∏(x:A) P(x) → Q(x), and any
p : x =A y and u : P(x), we have

transportQ(p, fx(u)) = fy(transport
P(p, u)).

2.4 Homotopies and equivalences

So far, we have seen how the identity type x =A y can be regarded as a type of identifications,
paths, or equivalences between two elements x and y of a type A. Now we investigate the appro-
priate notions of “identification” or “sameness” between functions and between types. In §§2.9
and 2.10, we will see that homotopy type theory allows us to identify these with instances of the
identity type, but before we can do that we need to understand them in their own right.

Traditionally, we regard two functions as the same if they take equal values on all inputs. Un-
der the propositions-as-types interpretation, this suggests that two functions f and g (perhaps

2.4 HOMOTOPIES AND EQUIVALENCES 71

dependently typed) should be the same if the type ∏(x:A)(f (x) = g(x)) is inhabited. Under the
homotopical interpretation, this dependent function type consists of continuous paths or functo-
rial equivalences, and thus may be regarded as the type of homotopies or of natural isomorphisms.
We will adopt the topological terminology for this.

Definition 2.4.1. Let f , g : ∏(x:A) P(x) be two sections of a type family P : A → U . A homotopy
from f to g is a dependent function of type

(f ∼ g) :≡∏
x:A

(f (x) = g(x)).

Note that a homotopy is not the same as an identification (f = g). However, in §2.9 we will
introduce an axiom making homotopies and identifications “equivalent”.

The following proofs are left to the reader.

Lemma 2.4.2. Homotopy is an equivalence relation on each dependent function type ∏(x:A) P(x). That
is, we have elements of the types

∏
f :∏(x:A) P(x)

(f ∼ f)

∏
f ,g:∏(x:A) P(x)

(f ∼ g)→ (g ∼ f)

∏
f ,g,h:∏(x:A) P(x)

(f ∼ g)→ (g ∼ h)→ (f ∼ h).

Just as functions in type theory are automatically “functors”, homotopies are automatically
“natural transformations”. We will state and prove this only for non-dependent functions f , g :
A→ B; in Exercise 2.18 we ask the reader to generalize it to dependent functions.

Recall that for f : A→ B and p : x =A y, we may write f (p) to mean ap f (p).

Lemma 2.4.3. Suppose H : f ∼ g is a homotopy between functions f , g : A → B and let p : x =A y.
Then we have

H(x) � g(p) = f (p) � H(y).

We may also draw this as a commutative diagram:

f (x)
f (p)

H(x)

f (y)

H(y)

g(x)
g(p)

g(y)

Proof. By induction, we may assume p is reflx. Since ap f and apg compute on reflexivity, in this
case what we must show is

H(x) � reflg(x) = refl f (x)
� H(x).

But this follows since both sides are equal to H(x).

Corollary 2.4.4. Let H : f ∼ idA be a homotopy, with f : A→ A. Then for any x : A we have

H(f (x)) = f (H(x)).

72 CHAPTER 2. HOMOTOPY TYPE THEORY

Here f (x) denotes the ordinary application of f to x, while f (H(x)) denotes ap f (H(x)).

Proof. By naturality of H, the following diagram of paths commutes:

f f x
f (Hx)

H(f x)

f x

Hx

f x
Hx

x

That is, f (Hx) � Hx = H(f x) � Hx. We can now whisker by (Hx)−1 to cancel Hx, obtaining

f (Hx) = f (Hx) � Hx � (Hx)−1 = H(f x) � Hx � (Hx)−1 = H(f x)

as desired (with some associativity paths suppressed).

Of course, like the functoriality of functions (Lemma 2.2.2), the equality in Lemma 2.4.3 is a
path which satisfies its own coherence laws, and so on.

Moving on to types, from a traditional perspective one may say that a function f : A → B
is an isomorphism if there is a function g : B → A such that both composites f ◦ g and g ◦ f
are pointwise equal to the identity, i.e. such that f ◦ g ∼ idB and g ◦ f ∼ idA. A homotopical
perspective suggests that this should be called a homotopy equivalence, and from a categorical
one, it should be called an equivalence of (higher) groupoids. However, when doing proof-relevant
mathematics, the corresponding type

∑
g:B→A

(
(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

)
(2.4.5)

is poorly behaved. For instance, for a single function f : A → B there may be multiple unequal
inhabitants of (2.4.5). (This is closely related to the observation in higher category theory that
often one needs to consider adjoint equivalences rather than plain equivalences.) For this rea-
son, we give (2.4.5) the following historically accurate, but slightly derogatory-sounding name
instead.

Definition 2.4.6. For a function f : A → B, a quasi-inverse of f is a triple (g, α, β) consisting of
a function g : B→ A and homotopies α : f ◦ g ∼ idB and β : g ◦ f ∼ idA.

Thus, (2.4.5) is the type of quasi-inverses of f ; we may denote it by qinv(f).

Example 2.4.7. The identity function idA : A→ A has a quasi-inverse given by idA itself, together
with homotopies defined by α(y) :≡ refly and β(x) :≡ reflx.

Example 2.4.8. For any p : x =A y and z : A, the functions

(p � –) : (y =A z)→ (x =A z) and

(– � p) : (z =A x)→ (z =A y)

have quasi-inverses given by (p−1 � –) and (– � p−1), respectively; see Exercise 2.6.

Example 2.4.9. For any p : x =A y and P : A→ U , the function

transportP(p, –) : P(x)→ P(y)

has a quasi-inverse given by transportP(p−1, –); this follows from Lemma 2.3.9.

2.4 HOMOTOPIES AND EQUIVALENCES 73

In general, we will only use the word isomorphism (and similar words such as bijection, and
the associated notation A ∼= B) in the special case when the types A and B “behave like sets” (see
§3.1). In this case, the type (2.4.5) is unproblematic. We will reserve the word equivalence for an
improved notion isequiv(f) with the following properties:

(i) For each f : A→ B there is a function qinv(f)→ isequiv(f).
(ii) Similarly, for each f we have isequiv(f) → qinv(f); thus the two are logically equivalent

(see §1.11).
(iii) For any two inhabitants e1, e2 : isequiv(f) we have e1 = e2.

In Chapter 4 we will see that there are many different definitions of isequiv(f) which satisfy these
three properties, but that all of them are equivalent. For now, to convince the reader that such
things exist, we mention only the easiest such definition:

isequiv(f) :≡
(

∑
g:B→A

(f ◦ g ∼ idB)
)
×
(

∑
h:B→A

(h ◦ f ∼ idA)
)

. (2.4.10)

We can show (i) and (ii) for this definition now. A function qinv(f)→ isequiv(f) is easy to define
by taking (g, α, β) to (g, α, g, β). In the other direction, given (g, α, h, β), let γ be the composite
homotopy

g
β∼ h ◦ f ◦ g α∼ h,

meaning that γ(x) :≡ β(g(x))−1 � h(α(x)). Now define β′ : g ◦ f ∼ idA by β′(x) :≡ γ(f (x)) � β(x).
Then (g, α, β′) : qinv(f).

Property (iii) for this definition is not too hard to prove either, but it requires identifying the
identity types of cartesian products and dependent pair types, which we will discuss in §§2.6
and 2.7. Thus, we postpone it as well; see §4.3. At this point, the main thing to take away is
that there is a well-behaved type which we can pronounce as “ f is an equivalence”, and that we
can prove f to be an equivalence by exhibiting a quasi-inverse to it. In practice, this is the most
common way to prove that a function is an equivalence.

In accord with the proof-relevant philosophy, an equivalence from A to B is defined to be a
function f : A→ B together with an inhabitant of isequiv(f), i.e. a proof that it is an equivalence.
We write (A ≃ B) for the type of equivalences from A to B, i.e. the type

(A ≃ B) :≡ ∑
f :A→B

isequiv(f). (2.4.11)

Property (iii) above will ensure that if two equivalences are equal as functions (that is, the under-
lying elements of A→ B are equal), then they are also equal as equivalences (see §2.7). Thus, we
often abuse notation and blur the distinction between equivalences and their underlying func-
tions. For instance, if we have a function f : A → B and we know that e : isequiv(f), we may
write f : A ≃ B, rather than (f , e). Or conversely, if we have an equivalence g : A ≃ B, we may
write g(a) when given a : A, rather than (pr1g)(a).

We conclude by observing:

Lemma 2.4.12. Type equivalence is an equivalence relation on U . More specifically:

(i) For any A, the identity function idA is an equivalence; hence A ≃ A.
(ii) For any f : A ≃ B, we have an equivalence f−1 : B ≃ A.

(iii) For any f : A ≃ B and g : B ≃ C, we have g ◦ f : A ≃ C.

74 CHAPTER 2. HOMOTOPY TYPE THEORY

Proof. The identity function is clearly its own quasi-inverse; hence it is an equivalence.
If f : A → B is an equivalence, then it has a quasi-inverse, say f−1 : B → A. Then f is also a

quasi-inverse of f−1, so f−1 is an equivalence B→ A.
Finally, given f : A ≃ B and g : B ≃ C with quasi-inverses f−1 and g−1, say, then for any

a : A we have f−1g−1g f a = f−1 f a = a, and for any c : C we have g f f−1g−1c = gg−1c = c. Thus
f−1 ◦ g−1 is a quasi-inverse to g ◦ f , hence the latter is an equivalence.

2.5 The higher groupoid structure of type formers

In Chapter 1, we introduced many ways to form new types: cartesian products, disjoint unions,
dependent products, dependent sums, etc. In §§2.1–2.3, we saw that all types in homotopy type
theory behave like spaces or higher groupoids. Our goal in the rest of the chapter is to make
explicit how this higher structure behaves in the case of the particular types defined in Chapter 1.

It turns out that for many types A, the equality types x =A y can be characterized, up to
equivalence, in terms of whatever data was used to construct A. For example, if A is a cartesian
product B× C, and x ≡ (b, c) and y ≡ (b′, c′), then we have an equivalence(

(b, c) = (b′, c′)
)
≃
(
(b = b′)× (c = c′)

)
. (2.5.1)

In more traditional language, two ordered pairs are equal just when their components are equal
(but the equivalence (2.5.1) says rather more than this). The higher structure of the identity types
can also be expressed in terms of these equivalences; for instance, concatenating two equalities
between pairs corresponds to pairwise concatenation.

Similarly, when a type family P : A → U is built up fiberwise using the type forming rules
from Chapter 1, the operation transportP(p, –) can be characterized, up to homotopy, in terms of
the corresponding operations on the data that went into P. For instance, if P(x) ≡ B(x)× C(x),
then we have

transportP(p, (b, c)) =
(
transportB(p, b), transportC(p, c)

)
.

Finally, the type forming rules are also functorial, and if a function f is built from this functo-
riality, then the operations ap f and apd f can be computed based on the corresponding ones on the
data going into f . For instance, if g : B→ B′ and h : C → C′ and we define f : B×C → B′×C′ by
f (b, c) :≡ (g(b), h(c)), then modulo the equivalence (2.5.1), we can identify ap f with “(apg, aph)”.

The next few sections (§§2.6–2.13) will be devoted to stating and proving theorems of this
sort for all the basic type forming rules, with one section for each basic type former. Here we
encounter a certain apparent deficiency in currently available type theories; as will become clear
in later chapters, it would seem to be more convenient and intuitive if these characterizations of
identity types, transport, and so on were judgmental equalities. However, in the theory presented
in Chapter 1, the identity types are defined uniformly for all types by their induction principle,
so we cannot “redefine” them to be different things at different types. Thus, the characterizations
for particular types to be discussed in this chapter are, for the most part, theorems which we have
to discover and prove, if possible.

Actually, the type theory of Chapter 1 is insufficient to prove the desired theorems for two of
the type formers: Π-types and universes. For this reason, we are forced to introduce axioms into
our type theory, in order to make those “theorems” true. Type-theoretically, an axiom (c.f. §1.1)
is an “atomic” element that is declared to inhabit some specified type, without there being any
rules governing its behavior other than those pertaining to the type it inhabits.

2.6 CARTESIAN PRODUCT TYPES 75

The axiom for Π-types (§2.9) is familiar to type theorists: it is called function extensionality,
and states (roughly) that if two functions are homotopic in the sense of §2.4, then they are equal.
The axiom for universes (§2.10), however, is a new contribution of homotopy type theory due
to Voevodsky: it is called the univalence axiom, and states (roughly) that if two types are equiv-
alent in the sense of §2.4, then they are equal. We have already remarked on this axiom in the
introduction; it will play a very important role in this book.1

It is important to note that not all identity types can be “determined” by induction over
the construction of types. Counterexamples include most nontrivial higher inductive types (see
Chapters 6 and 8). For instance, calculating the identity types of the types Sn (see §6.4) is equiva-
lent to calculating the higher homotopy groups of spheres, a deep and important field of research
in algebraic topology.

2.6 Cartesian product types

Given types A and B, consider the cartesian product type A× B. For any elements x, y : A× B
and a path p : x =A×B y, by functoriality we can extract paths pr1(p) : pr1(x) =A pr1(y) and
pr2(p) : pr2(x) =B pr2(y). Thus, we have a function

(x =A×B y)→ (pr1(x) =A pr1(y))× (pr2(x) =B pr2(y)). (2.6.1)

Theorem 2.6.2. For any x and y, the function (2.6.1) is an equivalence.

Read logically, this says that two pairs are equal just if they are equal componentwise. Read
category-theoretically, this says that the morphisms in a product groupoid are pairs of mor-
phisms. Read homotopy-theoretically, this says that the paths in a product space are pairs of
paths.

Proof. We need a function in the other direction:

(pr1(x) =A pr1(y))× (pr2(x) =B pr2(y))→ (x =A×B y). (2.6.3)

By the induction rule for cartesian products, we may assume that x and y are both pairs, i.e.
x ≡ (a, b) and y ≡ (a′, b′) for some a, a′ : A and b, b′ : B. In this case, what we want is a function

(a =A a′)× (b =B b′)→
(
(a, b) =A×B (a′, b′)

)
.

Now by induction for the cartesian product in its domain, we may assume given p : a = a′ and
q : b = b′. And by two path inductions, we may assume that a ≡ a′ and b ≡ b′ and both p and q
are reflexivity. But in this case, we have (a, b) ≡ (a′, b′) and so we can take the output to also be
reflexivity.

It remains to prove that (2.6.3) is quasi-inverse to (2.6.1). This is a simple sequence of induc-
tions, but they have to be done in the right order.

In one direction, let us start with r : x =A×B y. We first do a path induction on r in order
to assume that x ≡ y and r is reflexivity. In this case, since appr1

and appr2
are defined by path

induction, (2.6.1) takes r ≡ reflx to the pair (reflpr1x, reflpr2x). Now by induction on x, we may
assume x ≡ (a, b), so that this is (refla, reflb). Thus, (2.6.3) takes it by definition to refl(a,b), which
(under our current assumptions) is r.

1We have chosen to introduce these principles as axioms, but there are potentially other ways to formulate a type
theory in which they hold. See the Notes to this chapter.

76 CHAPTER 2. HOMOTOPY TYPE THEORY

In the other direction, if we start with s : (pr1(x) =A pr1(y))× (pr2(x) =B pr2(y)), then we
first do induction on x and y to assume that they are pairs (a, b) and (a′, b′), and then induction
on s : (a =A a′)× (b =B b′) to reduce it to a pair (p, q) where p : a = a′ and q : b = b′. Now
by induction on p and q, we may assume they are reflexivities refla and reflb, in which case (2.6.3)
yields refl(a,b) and then (2.6.1) returns us to (refla, reflb) ≡ (p, q) ≡ s.

In particular, we have shown that (2.6.1) has an inverse (2.6.3), which we may denote by

pair= : (pr1(x) = pr1(y))× (pr2(x) = pr2(y))→ (x = y).

Note that a special case of this yields the propositional uniqueness principle for products: z =

(pr1(z), pr2(z)).
It can be helpful to view pair= as a constructor or introduction rule for x = y, analogous to the

“pairing” constructor of A× B itself, which introduces the pair (a, b) given a : A and b : B. From
this perspective, the two components of (2.6.1):

appr1
: (x = y)→ (pr1(x) = pr1(y))

appr2
: (x = y)→ (pr2(x) = pr2(y))

are elimination rules. Similarly, the two homotopies which witness (2.6.3) as quasi-inverse to (2.6.1)
consist, respectively, of propositional computation rules:

appr1
(pair=(p, q)) = p

appr2
(pair=(p, q)) = q

for p : pr1x = pr1y and q : pr2x = pr2y, and a propositional uniqueness principle:

r = pair=(appr1
(r), appr2

(r)) for r : x =A×B y.

We can also characterize the reflexivity, inverses, and composition of paths in A× B compo-
nentwise:

refl(z:A×B) = pair=(reflpr1z, reflpr2z)

p−1 = pair=
(
appr1

(p)−1, appr2
(p)−1)

p � q = pair=
(
appr1

(p) � appr1
(q), appr2

(p) � appr2
(q)
)
.

Or, written differently:

appri
(refl(z:A×B)) = reflpriz (i = 1, 2)

pair=(p−1, q−1) = pair=(p, q)−1

pair=(p � q, p′ � q′) = pair=(p, p′) � pair=(q, q′).

All of these equations can be derived by using path induction on the given paths and then re-
turning reflexivity. The same is true for the rest of the higher groupoid structure considered in
§2.1, although it begins to get tedious to insert enough other coherence paths to yield an equa-
tion that will typecheck. For instance, if we denote the inverse of the path in Lemma 2.1.4(iv) by

2.7 Σ-TYPES 77

assoc(p, q, r) and the last path displayed above by pair
� (p, q, p′, q′), then for any u, v, z, w : A× B

and p, q, r, p′, q′, r′ of appropriate types we have

pair
� (p � q, r, p′ � q′, r′)

� (pair � (p, q, p′, q′) �r pair=(r, r′))
� assoc(pair=(p, p′), pair=(q, q′), pair=(r, r′))
= appair=(pair

=(assoc(p, q, r), assoc(p′, q′, r′)))
� pair � (p, q � r, p′, q′ � r′)
� (pair=(p, p′) �l pair

� (q, r, q′, r′)).

Fortunately, we will never have to use any such higher-dimensional coherences.
We now consider transport in a pointwise product of type families. Given type families

A, B : Z → U , we abusively write A× B : Z → U for the type family defined by (A× B)(z) :≡
A(z)× B(z). Now given p : z =Z w and x : A(z)× B(z), we can transport x along p to obtain an
element of A(w)× B(w).

Theorem 2.6.4. In the above situation, we have

transportA×B(p, x) =A(w)×B(w) (transport
A(p, pr1x), transportB(p, pr2x)).

Proof. By path induction, we may assume p is reflexivity, in which case we have

transportA×B(p, x) ≡ x

transportA(p, pr1x) ≡ pr1x

transportB(p, pr2x) ≡ pr2x.

Thus, it remains to show x = (pr1x, pr2x). But this is the propositional uniqueness principle for
product types, which, as we remarked above, follows from Theorem 2.6.2.

Finally, we consider the functoriality of ap under cartesian products. Suppose given types
A, B, A′, B′ and functions g : A→ A′ and h : B→ B′; then we can define a function f : A× B→
A′ × B′ by f (x) :≡ (g(pr1x), h(pr2x)).

Theorem 2.6.5. In the above situation, given x, y : A× B and p : pr1x = pr1y and q : pr2x = pr2y, we
have

f (pair=(p, q)) =(f (x)= f (y)) pair
=(g(p), h(q)).

Proof. Note first that the above equation is well-typed. On the one hand, since pair=(p, q) : x =

y we have f (pair=(p, q)) : f (x) = f (y). On the other hand, since pr1(f (x)) ≡ g(pr1x) and
pr2(f (x)) ≡ h(pr2x), we also have pair=(g(p), h(q)) : f (x) = f (y).

Now, by induction, we may assume x ≡ (a, b) and y ≡ (a′, b′), in which case we have
p : a = a′ and q : b = b′. Thus, by path induction, we may assume p and q are reflexivity, in
which case the desired equation holds judgmentally.

2.7 Σ-types

Let A be a type and P : A → U a type family. Recall that the Σ-type, or dependent pair type,
∑(x:A) P(x) is a generalization of the cartesian product type. Thus, we expect its higher groupoid

78 CHAPTER 2. HOMOTOPY TYPE THEORY

structure to also be a generalization of the previous section. In particular, its paths should be
pairs of paths, but it takes a little thought to give the correct types of these paths.

Suppose that we have a path p : w = w′ in ∑(x:A) P(x). Then we get pr1(p) : pr1(w) =

pr1(w′). However, we cannot directly ask whether pr2(w) is identical to pr2(w′) since they don’t
have to be in the same type. But we can transport pr2(w) along the path pr1(p), and this does
give us an element of the same type as pr2(w′). By path induction, we do in fact obtain a path
pr1(p)∗(pr2(w)) = pr2(w′).

Recall from the discussion preceding Lemma 2.3.4 that pr1(p)∗(pr2(w)) = pr2(w′) can be
regarded as the type of paths from pr2(w) to pr2(w′) which lie over the path pr1(p) in A. Thus,
we are saying that a path w = w′ in the total space determines (and is determined by) a path
p : pr1(w) = pr1(w′) in A together with a path from pr2(w) to pr2(w′) lying over p, which seems
sensible.

Remark 2.7.1. Note that if we have x : A and u, v : P(x) such that (x, u) = (x, v), it does not
follow that u = v. All we can conclude is that there exists p : x = x such that p∗(u) = v. This
is a well-known source of confusion for newcomers to type theory, but it makes sense from a
topological viewpoint: the existence of a path (x, u) = (x, v) in the total space of a fibration
between two points that happen to lie in the same fiber does not imply the existence of a path
u = v lying entirely within that fiber.

The next theorem states that we can also reverse this process. Since it is a direct generalization
of Theorem 2.6.2, we will be more concise.

Theorem 2.7.2. Suppose that P : A → U is a type family over a type A and let w, w′ : ∑(x:A) P(x).
Then there is an equivalence

(w = w′) ≃ ∑
(p:pr1(w)=pr1(w′))

p∗(pr2(w)) = pr2(w
′).

Proof. We define a function

f : ∏
w,w′ :∑(x:A) P(x)

(w = w′)→ ∑
(p:pr1(w)=pr1(w′))

p∗(pr2(w)) = pr2(w
′)

by path induction, with
f (w, w, reflw) :≡ (reflpr1(w), reflpr2(w)).

We want to show that f is an equivalence.
In the reverse direction, we define

g : ∏
w,w′ :∑(x:A) P(x)

(
∑

p:pr1(w)=pr1(w′)
p∗(pr2(w)) = pr2(w

′)
)
→ (w = w′)

by first inducting on w and w′, which splits them into (w1, w2) and (w′1, w′2) respectively, so it
suffices to show (

∑
p:w1=w′1

p∗(w2) = w′2
)
→ ((w1, w2) = (w′1, w′2)).

Next, given a pair ∑(p:w1=w′1)
p∗(w2) = w′2, we can use Σ-induction to get p : w1 = w′1 and

q : p∗(w2) = w′2. Inducting on p, we have q : (reflw1)∗(w2) = w′2, and it suffices to show
(w1, w2) = (w1, w′2). But (reflw1)∗(w2) ≡ w2, so inducting on q reduces the goal to (w1, w2) =

(w1, w2), which we can prove with refl(w1,w2).

2.7 Σ-TYPES 79

Next we show that f (g(r)) = r for all w, w′ and r, where r has type

∑
(p:pr1(w)=pr1(w′))

(p∗(pr2(w)) = pr2(w
′)).

First, we break apart the pairs w, w′, and r by pair induction, as in the definition of g, and then
use two path inductions to reduce both components of r to refl. Then it suffices to show that
f (g(reflw1 , reflw2)) = (reflw1 , reflw2), which is true by definition.

Similarly, to show that g(f (p)) = p for all w, w′, and p : w = w′, we can do path induction
on p, and then pair induction to split w, at which point it suffices to show that g(f (refl(w1,w2))) =

refl(w1,w2), which is true by definition.
Thus, f has a quasi-inverse, and is therefore an equivalence.

As we did in the case of cartesian products, we can deduce a propositional uniqueness prin-
ciple as a special case.

Corollary 2.7.3. For z : ∑(x:A) P(x), we have z = (pr1(z), pr2(z)).

Proof. We have reflpr1(z) : pr1(z) = pr1(pr1(z), pr2(z)), so by Theorem 2.7.2 it will suffice to exhibit
a path (reflpr1(z))∗(pr2(z)) = pr2(pr1(z), pr2(z)). But both sides are judgmentally equal to pr2(z).

Like with binary cartesian products, we can think of the backward direction of Theorem 2.7.2
as an introduction form (pair=), the forward direction as elimination forms (appr1

and appr2
), and

the equivalence as giving a propositional computation rule and uniqueness principle for these.
Note that the lifted path lift(u, p) of p : x = y at u : P(x) defined in Lemma 2.3.2 may be

identified with the special case of the introduction form

pair=(p, reflp∗(u)) : (x, u) = (y, p∗(u)).

This appears in the statement of action of transport on Σ-types, which is also a generalization of
the action for binary cartesian products:

Theorem 2.7.4. Suppose we have type families

P : A→ U and Q :
(
∑
x:A

P(x)
)
→ U .

Then we can construct the type family over A defined by

x 7→ ∑
u:P(x)

Q(x, u).

For any path p : x = y and any (u, z) : ∑(u:P(x)) Q(x, u) we have

p∗(u, z) =
(

p∗(u), pair=(p, reflp∗(u))∗(z)
)
.

Proof. Immediate by path induction.

We leave it to the reader to state and prove a generalization of Theorem 2.6.5 (see Exercise 2.7),
and to characterize the reflexivity, inverses, and composition of Σ-types componentwise.

80 CHAPTER 2. HOMOTOPY TYPE THEORY

2.8 The unit type

Trivial cases are sometimes important, so we mention briefly the case of the unit type 1.

Theorem 2.8.1. For any x, y : 1, we have (x = y) ≃ 1.

It may be tempting to begin this proof by 1-induction on x and y, reducing the problem to
(⋆ = ⋆) ≃ 1. However, at this point we would be stuck, since we would be unable to perform a
path induction on p : ⋆ = ⋆. Thus, we instead work with a general x and y as much as possible,
reducing them to ⋆ by induction only at the last moment.

Proof. A function (x = y) → 1 is easy to define by sending everything to ⋆. Conversely, for any
x, y : 1 we may assume by induction that x ≡ ⋆ ≡ y. In this case we have refl⋆ : x = y, yielding a
constant function 1→ (x = y).

To show that these are inverses, consider first an element u : 1. We may assume that u ≡ ⋆,
but this is also the result of the composite 1→ (x = y)→ 1.

On the other hand, suppose given p : x = y. By path induction, we may assume x ≡ y and
p is reflx. We may then assume that x is ⋆, in which case the composite (x = y) → 1 → (x = y)
takes p to reflx, i.e. to p.

In particular, any two elements of 1 are equal. We leave it to the reader to formulate this
equivalence in terms of introduction, elimination, computation, and uniqueness rules. The trans-
port lemma for 1 is simply the transport lemma for constant type families (Lemma 2.3.5).

2.9 Π-types and the function extensionality axiom

Given a type A and a type family B : A→ U , consider the dependent function type ∏(x:A) B(x).
We expect the type f = g of paths from f to g in ∏(x:A) B(x) to be equivalent to the type of
pointwise paths:

(f = g) ≃
(
∏
x:A

(f (x) =B(x) g(x))
)

. (2.9.1)

From a traditional perspective, this would say that two functions which are equal at each point
are equal as functions. From a topological perspective, it would say that a path in a function
space is the same as a continuous homotopy. And from a categorical perspective, it would say
that an isomorphism in a functor category is a natural family of isomorphisms.

Unlike the case in the previous sections, however, the basic type theory presented in Chap-
ter 1 is insufficient to prove (2.9.1). All we can say is that there is a certain function

happly : (f = g)→∏
x:A

(f (x) =B(x) g(x)) (2.9.2)

which is easily defined by path induction. For the moment, therefore, we will assume:

Axiom 2.9.3 (Function extensionality). For any A, B, f , and g, the function (2.9.2) is an equivalence.

We will see in later chapters that this axiom follows both from univalence (see §§2.10 and 4.9)
and from an interval type (see §6.3 and Exercise 6.10).

In particular, Axiom 2.9.3 implies that (2.9.2) has a quasi-inverse

funext :
(
∏
x:A

(f (x) = g(x))
)
→ (f = g).

2.9 Π-TYPES AND THE FUNCTION EXTENSIONALITY AXIOM 81

This function is also referred to as “function extensionality”. As we did with pair= in §2.6, we
can regard funext as an introduction rule for the type f = g. From this point of view, happly is
the elimination rule, while the homotopies witnessing funext as quasi-inverse to happly become a
propositional computation rule

happly(funext(h), x) = h(x) for h : ∏
x:A

(f (x) = g(x))

and a propositional uniqueness principle:

p = funext(x 7→ happly(p, x)) for p : f = g.

We can also compute the identity, inverses, and composition in Π-types; they are simply
given by pointwise operations:

refl f = funext(x 7→ refl f (x))

α−1 = funext(x 7→ happly(α, x)−1)

α � β = funext(x 7→ happly(α, x) � happly(β, x)).

The first of these equalities follows from the definition of happly, while the second and third are
easy path inductions.

Since the non-dependent function type A → B is a special case of the dependent function
type ∏(x:A) B(x) when B is independent of x, everything we have said above applies in non-
dependent cases as well. The rules for transport, however, are somewhat simpler in the non-
dependent case. Given a type X, a path p : x1 =X x2, type families A, B : X → U , and a function
f : A(x1)→ B(x1), we have

transportA→B(p, f) =
(

x 7→ transportB(p, f (transportA(p−1, x)))
)

(2.9.4)

where A→ B denotes abusively the type family X → U defined by

(A→ B)(x) :≡ (A(x)→ B(x)).

In other words, when we transport a function f : A(x1) → B(x1) along a path p : x1 = x2, we
obtain the function A(x2) → B(x2) which transports its argument backwards along p (in the
type family A), applies f , and then transports the result forwards along p (in the type family B).
This can be proven easily by path induction.

Transporting dependent functions is similar, but more complicated. Suppose given X and p
as before, type families A : X → U and B : ∏(x:X)(A(x) → U), and also a dependent function
f : ∏(a:A(x1)) B(x1, a). Then for a : A(x2), we have

transportΠA(B)(p, f)(a) = transportB̂
(
(pair=(p−1, reflp−1

∗(a)))
−1

, f (transportA(p−1, a))
)

where ΠA(B) and B̂ denote respectively the type families

ΠA(B) :≡
(
x 7→ ∏(a:A(x)) B(x, a)

)
: X → U

B̂ :≡
(
w 7→ B(pr1w, pr2w)

)
:
(

∑(x:X) A(x)
)
→ U .

(2.9.5)

If these formulas look a bit intimidating, don’t worry about the details. The basic idea is just the
same as for the non-dependent function type: we transport the argument backwards, apply the
function, and then transport the result forwards again.

82 CHAPTER 2. HOMOTOPY TYPE THEORY

Now recall that for a general type family P : X → U , in §2.2 we defined the type of dependent
paths over p : x =X y from u : P(x) to v : P(y) to be p∗(u) =P(y) v. When P is a family of function
types, there is an equivalent way to represent this which is often more convenient.

Lemma 2.9.6. Given type families A, B : X → U and p : x =X y, and also f : A(x) → B(x) and
g : A(y)→ B(y), we have an equivalence(

p∗(f) = g
)
≃ ∏

a:A(x)
(p∗(f (a)) = g(p∗(a))).

Moreover, if q : p∗(f) = g corresponds under this equivalence to q̂, then for a : A(x), the path

happly(q, p∗(a)) : (p∗(f))(p∗(a)) = g(p∗(a))

is equal to the concatenated path i � j � k, where

• i : (p∗(f))(p∗(a)) = p∗
(

f (p−1
∗(p∗(a)))

)
comes from (2.9.4),

• j : p∗
(

f (p−1
∗(p∗(a)))

)
= p∗(f (a)) comes from Lemmas 2.1.4 and 2.3.9, and

• k : p∗(f (a)) = g(p∗(a)) is q̂(a).

Proof. By path induction, we may assume p is reflexivity, in which case the desired equivalence
reduces to function extensionality. The second statement then follows by the computation rule
for function extensionality.

In general, it happens quite frequently that we want to consider a concatenation of paths
each of which arises from some previously proven lemmas or hypothesized objects, and it can
be rather tedious to describe this by giving a name to each path in the concatenation as we did in
the second statement above. Thus, we adopt a convention of writing such concatenations in the
familiar mathematical style of “chains of equalities with reasons”, and allow ourselves to omit
reasons that the reader can easily fill in. For instance, the path i � j � k from Lemma 2.9.6 would
be written like this:

(p∗(f))(p∗(a)) = p∗
(

f (p−1
∗(p∗(a)))

)
(by (2.9.4))

= p∗(f (a))

= g(p∗(a)). (by q̂)

In ordinary mathematics, such a chain of equalities would be merely proving that two things are
equal. We are enhancing this by using it to describe a particular path between them.

As usual, there is a version of Lemma 2.9.6 for dependent functions that is similar, but more
complicated.

Lemma 2.9.7. Given type families A : X → U and B : ∏(x:X) A(x) → U and p : x =X y, and also
f : ∏(a:A(x)) B(x, a) and g : ∏(a:A(y)) B(y, a), we have an equivalence

(
p∗(f) = g

)
≃
(

∏
a:A(x)

transportB̂(pair=(p, reflp∗(a)), f (a)) = g(p∗(a))
)

with B̂ as in (2.9.5).

We leave it to the reader to prove this and to formulate a suitable computation rule.

2.10 UNIVERSES AND THE UNIVALENCE AXIOM 83

2.10 Universes and the univalence axiom

Given two types A and B, we may consider them as elements of some universe type U , and
thereby form the identity type A =U B. As mentioned in the introduction, univalence is the
identification of A =U B with the type (A ≃ B) of equivalences from A to B, which we described
in §2.4. We perform this identification by way of the following canonical function.

Lemma 2.10.1. For types A, B : U , there is a certain function,

idtoeqv : (A =U B)→ (A ≃ B), (2.10.2)

defined in the proof.

Proof. We could construct this directly by induction on equality, but the following description is
more convenient. Note that the identity function idU : U → U may be regarded as a type family
indexed by the universe U ; it assigns to each type X : U the type X itself. (When regarded as a
fibration, its total space is the type ∑(A:U) A of “pointed types”; see also §4.8.) Thus, given a path
p : A =U B, we have a transport function p∗ : A → B. We claim that p∗ is an equivalence. But
by induction, it suffices to assume that p is reflA, in which case p∗ ≡ idA, which is an equivalence
by Example 2.4.7. Thus, we can define idtoeqv(p) to be p∗ (together with the above proof that it
is an equivalence).

We would like to say that idtoeqv is an equivalence. However, as with happly for function
types, the type theory described in Chapter 1 is insufficient to guarantee this. Thus, as we did for
function extensionality, we formulate this property as an axiom: Voevodsky’s univalence axiom.

Axiom 2.10.3 (Univalence). For any A, B : U , the function (2.10.2) is an equivalence.

In particular, therefore, we have

(A =U B) ≃ (A ≃ B).

Technically, the univalence axiom is a statement about a particular universe type U . If a
universe U satisfies this axiom, we say that it is univalent. Except when otherwise noted (e.g. in
§4.9) we will assume that all universes are univalent.

Remark 2.10.4. It is important for the univalence axiom that we defined A ≃ B using a “good”
version of isequiv as described in §2.4, rather than (say) as ∑(f :A→B) qinv(f). See Exercise 4.6.

In particular, univalence means that equivalent types may be identified. As we did in previous
sections, it is useful to break this equivalence into:

• An introduction rule for (A =U B), denoted ua for “univalence axiom”:

ua : (A ≃ B)→ (A =U B).

• The elimination rule, which is idtoeqv,

idtoeqv ≡ transportX 7→X : (A =U B)→ (A ≃ B).

• The propositional computation rule,

transportX 7→X(ua(f), x) = f (x).

84 CHAPTER 2. HOMOTOPY TYPE THEORY

• The propositional uniqueness principle: for any p : A = B,

p = ua(transportX 7→X(p)).

We can also identify the reflexivity, concatenation, and inverses of equalities in the universe with
the corresponding operations on equivalences:

reflA = ua(idA)

ua(f) � ua(g) = ua(g ◦ f)

ua(f)−1 = ua(f−1).

The first of these follows because idA = idtoeqv(reflA) by definition of idtoeqv, and ua is the
inverse of idtoeqv. For the second, if we define p :≡ ua(f) and q :≡ ua(g), then we have

ua(g ◦ f) = ua(idtoeqv(q) ◦ idtoeqv(p)) = ua(idtoeqv(p � q)) = p � q

using Lemma 2.3.9 and the definition of idtoeqv. The third is similar.
The following observation, which is a special case of Lemma 2.3.10, is often useful when

applying the univalence axiom.

Lemma 2.10.5. For any type family B : A → U and x, y : A with a path p : x = y and u : B(x), we
have

transportB(p, u) = transportX 7→X(apB(p), u)

= idtoeqv(apB(p))(u).

2.11 Identity type

Just as the type a =A a′ is characterized up to isomorphism, with a separate “definition” for each
A, there is no simple characterization of the type p =a=Aa′ q of paths between paths p, q : a =A a′.
However, our other general classes of theorems do extend to identity types, such as the fact that
they respect equivalence.

Theorem 2.11.1. If f : A→ B is an equivalence, then for all a, a′ : A, so is

ap f : (a =A a′)→ (f (a) =B f (a′)).

Proof. Let f−1 be a quasi-inverse of f , with homotopies

α : ∏
b:B

(f (f−1(b)) = b) and β : ∏
a:A

(f−1(f (a)) = a).

The quasi-inverse of ap f is, essentially,

ap f−1 : (f (a) = f (a′))→ (f−1(f (a)) = f−1(f (a′))).

However, in order to obtain an element of a =A a′ from ap f−1(q), we must concatenate with the
paths βa

−1 and βa′ on either side. To show that this gives a quasi-inverse of ap f , on one hand we
must show that for any p : a =A a′ we have

βa
−1 � ap f−1(ap f (p)) � βa′ = p.

2.11 IDENTITY TYPE 85

This follows from the functoriality of ap and the naturality of homotopies, Lemmas 2.2.2 and 2.4.3.
On the other hand, we must show that for any q : f (a) =B f (a′) we have

ap f
(

βa
−1 � ap f−1(q) � βa′

)
= q.

The proof of this is a little more involved, but each step is again an application of Lemmas 2.2.2
and 2.4.3 (or simply canceling inverse paths):

ap f
(

βa
−1 � ap f−1(q) � βa′

)
= α f (a)

−1 � α f (a)
� ap f

(
βa
−1 � ap f−1(q) � βa′

)
� α f (a′)

−1 � α f (a′)

= α f (a)
−1 � ap f

(
ap f−1

(
ap f
(

βa
−1 � ap f−1(q) � βa′

)))
� α f (a′)

= α f (a)
−1 � ap f

(
βa � βa

−1 � ap f−1(q) � βa′ � βa′
−1) � α f (a′)

= α f (a)
−1 � ap f (ap f−1(q)) � α f (a′)

= q.

Thus, if for some type A we have a full characterization of a =A a′, the type p =a=Aa′ q is
determined as well. For example:

• Paths p = q, where p, q : w =A×B w′, are equivalent to pairs of paths

appr1
p =pr1w=Apr1w′ appr1

q and appr2
p =pr2w=Bpr2w′ appr2

q.

• Paths p = q, where p, q : f =∏(x:A) B(x) g, are equivalent to homotopies

∏
x:A

(happly(p)(x) = f (x)=g(x) happly(q)(x)).

Next we consider transport in families of paths, i.e. transport in C : A→ U where each C(x)
is an identity type. The simplest case is when C(x) is a type of paths in A itself, perhaps with
one endpoint fixed.

Lemma 2.11.2. For any A and a : A, with p : x1 = x2, we have

transportx 7→(a=x)(p, q) = q � p for q : a = x1,

transportx 7→(x=a)(p, q) = p−1 � q for q : x1 = a,

transportx 7→(x=x)(p, q) = p−1 � q � p for q : x1 = x1.

Proof. Path induction on p, followed by the unit laws for composition.

In other words, transporting with x 7→ c = x is post-composition, and transporting with
x 7→ x = c is contravariant pre-composition. These may be familiar as the functorial actions
of the covariant and contravariant hom-functors hom(c, –) and hom(–, c) in category theory.

Similarly, we can prove the following more general form of Lemma 2.11.2, which is related
to Lemma 2.3.10.

Theorem 2.11.3. For f , g : A→ B, with p : a =A a′ and q : f (a) =B g(a), we have

transportx 7→ f (x)=Bg(x)(p, q) = f (a′)=g(a′) (ap f p)−1 � q � apg p.

Because ap(x 7→x) is the identity function and ap(x 7→c) (where c is a constant) is p 7→ reflc,
Lemma 2.11.2 is a special case. A yet more general version is when B can be a family of types
indexed on A:

86 CHAPTER 2. HOMOTOPY TYPE THEORY

Theorem 2.11.4. Let B : A → U and f , g : ∏(x:A) B(x), with p : a =A a′ and q : f (a) =B(a) g(a).
Then we have

transportx 7→ f (x)=B(x)g(x)(p, q) = (apd f (p))−1 � ap(transportB p)(q) � apdg(p).

Finally, as in §2.9, for families of identity types there is another equivalent characterization
of dependent paths.

Theorem 2.11.5. For p : a =A a′ with q : a = a and r : a′ = a′, we have(
transportx 7→(x=x)(p, q) = r

)
≃
(
q � p = p � r

)
.

Proof. Path induction on p, followed by the fact that composing with the unit equalities q � 1 = q
and r = 1 � r is an equivalence.

There are more general equivalences involving the application of functions, akin to Theo-
rems 2.11.3 and 2.11.4.

2.12 Coproducts

So far, most of the type formers we have considered have been what are called negative. Intu-
itively, this means that their elements are determined by their behavior under the elimination
rules: a (dependent) pair is determined by its projections, and a (dependent) function is deter-
mined by its values. The identity types of negative types can almost always be characterized
straightforwardly, along with all of their higher structure, as we have done in §§2.6–2.9. The uni-
verse is not exactly a negative type, but its identity types behave similarly: we have a straight-
forward characterization (univalence) and a description of the higher structure. Identity types
themselves, of course, are a special case.

We now consider our first example of a positive type former. Again informally, a positive type
is one which is “presented” by certain constructors, with the universal property of a presentation
being expressed by its elimination rule. (Categorically speaking, a positive type has a “mapping
out” universal property, while a negative type has a “mapping in” universal property.) Because
computing with presentations is, in general, an uncomputable problem, for positive types we
cannot always expect a straightforward characterization of the identity type. However, in many
particular cases, a characterization or partial characterization does exist, and can be obtained by
the general method that we introduce with this example.

(Technically, our chosen presentation of cartesian products and Σ-types is also positive. How-
ever, because these types also admit a negative presentation which differs only slightly, their
identity types have a direct characterization that does not require the method to be described
here.)

Consider the coproduct type A + B, which is “presented” by the injections inl : A → A + B
and inr : B→ A+ B. Intuitively, we expect that A+ B contains exact copies of A and B disjointly,
so that we should have

(inl(a1) = inl(a2)) ≃ (a1 = a2) (2.12.1)

(inr(b1) = inr(b2)) ≃ (b1 = b2) (2.12.2)

(inl(a) = inr(b)) ≃ 0. (2.12.3)

2.12 COPRODUCTS 87

We prove this as follows. Fix an element a0 : A; we will characterize the type family

(x 7→ (inl(a0) = x)) : A + B→ U . (2.12.4)

A similar argument would characterize the analogous family x 7→ (x = inr(b0)) for any b0 : B.
Together, these characterizations imply (2.12.1)–(2.12.3).

In order to characterize (2.12.4), we will define a type family code : A + B → U and show
that ∏(x:A+B)((inl(a0) = x) ≃ code(x)). Since we want to conclude (2.12.1) from this, we should
have code(inl(a)) = (a0 = a), and since we also want to conclude (2.12.3), we should have
code(inr(b)) = 0. The essential insight is that we can use the recursion principle of A + B to
define code : A + B→ U by these two equations:

code(inl(a)) :≡ (a0 = a),

code(inr(b)) :≡ 0.

This is a very simple example of a proof technique that is used quite a bit when doing homotopy
theory in homotopy type theory; see e.g. §§8.1 and 8.9. We can now show:

Theorem 2.12.5. For all x : A + B we have (inl(a0) = x) ≃ code(x).

Proof. The key to the following proof is that we do it for all points x together, enabling us to use
the elimination principle for the coproduct. We first define a function

encode : ∏
(x:A+B)

∏
(p:inl(a0)=x)

code(x)

by transporting reflexivity along p:

encode(x, p) :≡ transportcode(p, refla0).

Note that refla0 : code(inl(a0)), since code(inl(a0)) ≡ (a0 = a0) by definition of code. Next, we
define a function

decode : ∏
(x:A+B)

∏
(c:code(x))

(inl(a0) = x).

To define decode(x, c), we may first use the elimination principle of A + B to divide into cases
based on whether x is of the form inl(a) or the form inr(b).

In the first case, where x ≡ inl(a), then code(x) ≡ (a0 = a), so that c is an identification
between a0 and a. Thus, apinl(c) : (inl(a0) = inl(a)) so we can define this to be decode(inl(a), c).

In the second case, where x ≡ inr(b), then code(x) ≡ 0, so that c inhabits the empty type.
Thus, the elimination rule of 0 yields a value for decode(inr(b), c).

This completes the definition of decode; we now show that encode(x, –) and decode(x, –) are
quasi-inverses for all x. On the one hand, suppose given x : A + B and p : inl(a0) = x; we want
to show decode(x, encode(x, p)) = p. But now by (based) path induction, it suffices to consider
x ≡ inl(a0) and p ≡ reflinl(a0):

decode(x, encode(x, p)) ≡ decode(inl(a0), encode(inl(a0), reflinl(a0)))

≡ decode(inl(a0), transportcode(reflinl(a0), refla0))

≡ decode(inl(a0), refla0)

≡ apinl(refla0)

≡ reflinl(a0)

≡ p.

88 CHAPTER 2. HOMOTOPY TYPE THEORY

On the other hand, let x : A+ B and c : code(x); we want to show encode(x, decode(x, c)) = c. We
may again divide into cases based on x. If x ≡ inl(a), then c : a0 = a and decode(x, c) ≡ apinl(c),
so that

encode(x, decode(x, c)) ≡ transportcode(apinl(c), refla0)

= transporta 7→(a0=a)(c, refla0) (by Lemma 2.3.10)

= refla0
� c (by Lemma 2.11.2)

= c.

Finally, if x ≡ inr(b), then c : 0, so we may conclude anything we wish.

Of course, there is a corresponding theorem if we fix b0 : B instead of a0 : A.
In particular, Theorem 2.12.5 implies that for any a : A and b : B there are functions

encode(inl(a), –) : (inl(a0) = inl(a))→ (a0 = a)

and
encode(inr(b), –) : (inl(a0) = inr(b))→ 0.

The second of these states “inl(a0) is not equal to inr(b)”, i.e. the images of inl and inr are disjoint.
The traditional reading of the first one, where identity types are viewed as propositions, is just
injectivity of inl. The full homotopical statement of Theorem 2.12.5 gives more information: the
types inl(a0) = inl(a) and a0 = a are actually equivalent, as are inr(b0) = inr(b) and b0 = b.

Remark 2.12.6. In particular, since the two-element type 2 is equivalent to 1 + 1, we have 02 ̸= 12.

This proof illustrates a general method for describing path spaces, which we will use often.
To characterize a path space, the first step is to define a comparison fibration “code” that provides
a more explicit description of the paths. There are several different methods for proving that such
a comparison fibration is equivalent to the paths (we show a few different proofs of the same
result in §8.1). The one we have used here is called the encode-decode method: the key idea is
to define decode generally for all instances of the fibration (i.e. as a function ∏(x:A+B) code(x) →
(inl(a0) = x)), so that path induction can be used to analyze decode(x, encode(x, p)).

As usual, we can also characterize the action of transport in coproduct types. Given a type X,
a path p : x1 =X x2, and type families A, B : X → U , we have

transportA+B(p, inl(a)) = inl(transportA(p, a)),

transportA+B(p, inr(b)) = inr(transportB(p, b)),

where as usual, A + B in the superscript denotes abusively the type family x 7→ A(x) + B(x).
The proof is an easy path induction.

2.13 Natural numbers

We use the encode-decode method to characterize the path space of the natural numbers, which
are also a positive type. In this case, rather than fixing one endpoint, we characterize the two-
sided path space all at once. Thus, the codes for identities are a type family

code : N→N→ U ,

2.13 NATURAL NUMBERS 89

defined by double recursion over N as follows:

code(0, 0) :≡ 1

code(succ(m), 0) :≡ 0

code(0, succ(n)) :≡ 0

code(succ(m), succ(n)) :≡ code(m, n).

We also define by recursion a dependent function r : ∏(n:N) code(n, n), with

r(0) :≡ ⋆

r(succ(n)) :≡ r(n).

Theorem 2.13.1. For all m, n : N we have (m = n) ≃ code(m, n).

Proof. We define

encode : ∏
m,n:N

(m = n)→ code(m, n)

by transporting, encode(m, n, p) :≡ transportcode(m, –)(p, r(m)). (We could also define encode di-
rectly by path induction, but the definition in terms of transport often makes subsequent com-
putations easier.) And we define

decode : ∏
m,n:N

code(m, n)→ (m = n)

by double induction on m, n. When m and n are both 0, we need a function 1 → (0 = 0), which
we define to send everything to refl0. When m is a successor and n is 0 or vice versa, the domain
code(m, n) is 0, so the eliminator for 0 suffices. And when both are successors, we can define
decode(succ(m), succ(n)) to be the composite

code(succ(m), succ(n)) ≡ code(m, n)
decode(m,n)−−−−−−→ (m = n)

apsucc−−−→ (succ(m) = succ(n)).

Next we show that encode(m, n) and decode(m, n) are quasi-inverses for all m, n.
On one hand, if we start with p : m = n, then by induction on p it suffices to show

decode(n, n, encode(n, n, refln)) = refln.

But encode(n, n, refln) ≡ r(n), so it suffices to show that decode(n, n, r(n)) = refln. We can prove
this by induction on n. If n ≡ 0, then decode(0, 0, r(0)) = refl0 by definition of decode. And in the
case of a successor, by the inductive hypothesis we have decode(n, n, r(n)) = refln, so it suffices
to observe that apsucc(refln) ≡ reflsucc(n).

On the other hand, if we start with c : code(m, n), then we proceed by double induction on
m and n. If both are 0, then decode(0, 0, c) ≡ refl0, while encode(0, 0, refl0) ≡ r(0) ≡ ⋆. Thus, it
suffices to recall from §2.8 that every inhabitant of 1 is equal to ⋆. If m is 0 but n is a successor, or

90 CHAPTER 2. HOMOTOPY TYPE THEORY

vice versa, then c : 0, so we are done. And in the case of two successors, we have

encode(succ(m), succ(n), decode(succ(m), succ(n), c))

= encode(succ(m), succ(n), apsucc(decode(m, n, c)))

= transportcode(succ(m), –)(apsucc(decode(m, n, c)), r(succ(m)))

= transportcode(succ(m),succ(–))(decode(m, n, c), r(succ(m)))

= transportcode(m, –)(decode(m, n, c), r(m))

= encode(m, n, decode(m, n, c))

= c

using the inductive hypothesis. (In fact this proof is longer than necessary; see Exercise 3.24.)

In particular, we have

encode(succ(m), 0) : (succ(m) = 0)→ 0 (2.13.2)

which shows that “0 is not the successor of any natural number”. We also have the composite

(succ(m) = succ(n)) encode−−−→ code(succ(m), succ(n)) ≡ code(m, n) decode−−−→ (m = n) (2.13.3)

which shows that the function succ is injective.
We will study more general positive types in Chapters 5 and 6. In Chapter 8, we will see that

the same technique used here to characterize the identity types of coproducts and N can also be
used to calculate homotopy groups of spheres.

2.14 Example: equality of structures

We now consider one example to illustrate the interaction between the groupoid structure on
a type and the type formers. In the introduction we remarked that one of the advantages of
univalence is that two isomorphic things are interchangeable, in the sense that every property
or construction involving one also applies to the other. Common “abuses of notation” become
formally true. Univalence itself says that equivalent types are equal, and therefore interchange-
able, which includes e.g. the common practice of identifying isomorphic sets. Moreover, when
we define other mathematical objects as sets, or even general types, equipped with structure
or properties, we can derive the correct notion of equality for them from univalence. We will
illustrate this point with a significant example in Chapter 9, where we define the basic notions
of category theory in such a way that equality of categories is equivalence, equality of functors
is natural isomorphism, etc. See in particular §9.8. In this section, we describe a very simple
example, coming from algebra.

For simplicity, we use semigroups as our example, where a semigroup is a type equipped with
an associative “multiplication” operation. The same ideas apply to other algebraic structures,
such as monoids, groups, and rings. Recall from §§1.6 and 1.11 that the definition of a kind of
mathematical structure should be interpreted as defining the type of such structures as a certain
iterated Σ-type. In the case of semigroups this yields the following.

Definition 2.14.1. Given a type A, the type SemigroupStr(A) of semigroup structures with carrier
A is defined by

SemigroupStr(A) :≡ ∑
(m:A→A→A)

∏
(x,y,z:A)

m(x, m(y, z)) = m(m(x, y), z).

2.14 EXAMPLE: EQUALITY OF STRUCTURES 91

A semigroup is a type together with such a structure:

Semigroup :≡ ∑
A:U

SemigroupStr(A)

In the next two subsections, we describe two ways in which univalence makes it easier to work
with such semigroups.

2.14.1 Lifting equivalences

When working loosely, one might say that a bijection between sets A and B “obviously” induces
an isomorphism between semigroup structures on A and semigroup structures on B. With uni-
valence, this is indeed obvious, because given an equivalence between types A and B, we can
automatically derive a semigroup structure on B from one on A, and moreover show that this
derivation is an equivalence of semigroup structures. The reason is that SemigroupStr is a family
of types, and therefore has an action on paths between types given by transport:

transportSemigroupStr(ua(e)) : SemigroupStr(A)→ SemigroupStr(B).

Moreover, this map is an equivalence, because transportC(α) is always an equivalence with in-
verse transportC(α−1), see Lemmas 2.1.4 and 2.3.9.

While the univalence axiom ensures that this map exists, we need to use facts about transport
proven in the preceding sections to calculate what it actually does. Let (m, a) be a semigroup
structure on A, and we investigate the induced semigroup structure on B given by

transportSemigroupStr(ua(e), (m, a)).

First, because SemigroupStr(X) is defined to be a Σ-type, by Theorem 2.7.4,

transportSemigroupStr(ua(e), (m, a)) = (m′, a′)

where m′ is an induced multiplication operation on B

m′ : B→ B→ B

m′(b1, b2) :≡ transportX 7→(X→X→X)(ua(e), m)(b1, b2)

and a′ an induced proof that m′ is associative. We have, again by Theorem 2.7.4,

a′ : Assoc(B, m′)

a′ :≡ transport(X,m) 7→Assoc(X,m)((pair=(ua(e), reflm′)), a),
(2.14.2)

where Assoc(X, m) is the type ∏(x,y,z:X) m(x, m(y, z)) = m(m(x, y), z). By function extensionality,
it suffices to investigate the behavior of m′ when applied to arguments b1, b2 : B. By applying
(2.9.4) twice, we have that m′(b1, b2) is equal to

transportX 7→X(ua(e), m(transportX 7→X(ua(e)−1, b1), transportX 7→X(ua(e)−1, b2))
)
.

Then, because ua is quasi-inverse to transportX 7→X, this is equal to

e(m(e−1(b1), e−1(b2))).

92 CHAPTER 2. HOMOTOPY TYPE THEORY

Thus, given two elements of B, the induced multiplication m′ sends them to A using the equiva-
lence e, multiplies them in A, and then brings the result back to B by e, just as one would expect.

Moreover, though we do not show the proof, one can calculate that the induced proof that
m′ is associative (see (2.14.2)) is equal to a function sending b1, b2, b3 : B to a path given by the
following steps:

m′(m′(b1, b2), b3) = e(m(e−1(m′(b1, b2)), e−1(b3)))

= e(m(e−1(e(m(e−1(b1), e−1(b2)))), e−1(b3)))

= e(m(m(e−1(b1), e−1(b2)), e−1(b3)))

= e(m(e−1(b1), m(e−1(b2), e−1(b3))))

= e(m(e−1(b1), e−1(e(m(e−1(b2), e−1(b3))))))

= e(m(e−1(b1), e−1(m′(b2, b3))))

= m′(b1, m′(b2, b3)).

(2.14.3)

These steps use the proof a that m is associative and the inverse laws for e. From an algebra per-
spective, it may seem strange to investigate the identity of a proof that an operation is associative,
but this makes sense if we think of A and B as general spaces, with non-trivial homotopies be-
tween paths. In Chapter 3, we will introduce the notion of a set, which is a type with only trivial
homotopies, and if we consider semigroup structures on sets, then any two such associativity
proofs are automatically equal.

2.14.2 Equality of semigroups

Using the equations for path spaces discussed in the previous sections, we can investigate when
two semigroups are equal. Given semigroups (A, m, a) and (B, m′, a′), by Theorem 2.7.2, the type
of paths (A, m, a) =Semigroup (B, m′, a′) is equal to the type of pairs

p1 : A =U B and

p2 : transportSemigroupStr(p1, (m, a)) = (m′, a′).

By univalence, p1 is ua(e) for some equivalence e. By Theorem 2.7.2, function extensionality,
and the above analysis of transport in the type family SemigroupStr, p2 is equivalent to a pair of
proofs, the first of which shows that

∏
y1,y2:B

e(m(e−1(y1), e−1(y2))) = m′(y1, y2) (2.14.4)

and the second of which shows that a′ is equal to the induced associativity proof constructed
from a in (2.14.3). But by cancellation of inverses (2.14.4) is equivalent to

∏
x1,x2 :A

e(m(x1, x2)) = m′(e(x1), e(x2)).

This says that e commutes with the binary operation, in the sense that it takes multiplication in
A (i.e. m) to multiplication in B (i.e. m′). A similar rearrangement is possible for the equation
relating a and a′. Thus, an equality of semigroups consists exactly of an equivalence on the
carrier types that commutes with the semigroup structure.

For general types, the proof of associativity is thought of as part of the structure of a semi-
group. However, if we restrict to set-like types (again, see Chapter 3), the equation relating a and

2.15 UNIVERSAL PROPERTIES 93

a′ is trivially true. Moreover, in this case, an equivalence between sets is exactly a bijection. Thus,
we have arrived at a standard definition of a semigroup isomorphism: a bijection on the carrier sets
that preserves the multiplication operation. It is also possible to use the category-theoretic def-
inition of isomorphism, by defining a semigroup homomorphism to be a map that preserves the
multiplication, and arrive at the conclusion that equality of semigroups is the same as two mu-
tually inverse homomorphisms; but we will not show the details here; see §9.8.

The conclusion is that, thanks to univalence, semigroups are equal precisely when they are
isomorphic as algebraic structures. As we will see in §9.8, the conclusion applies more gener-
ally: in homotopy type theory, all constructions of mathematical structures automatically respect
isomorphisms, without any tedious proofs or abuse of notation.

2.15 Universal properties

By combining the path computation rules described in the preceding sections, we can show
that various type forming operations satisfy the expected universal properties, interpreted in a
homotopical way as equivalences. For instance, given types X, A, B, we have a function

(X → A× B)→ (X → A)× (X → B) (2.15.1)

defined by f 7→ (pr1 ◦ f , pr2 ◦ f).

Theorem 2.15.2. (2.15.1) is an equivalence.

Proof. We define the quasi-inverse by sending (g, h) to λx. (g(x), h(x)). (Technically, we have
used the induction principle for the cartesian product (X → A)× (X → B), to reduce to the case
of a pair. From now on we will often apply this principle without explicit mention.)

Now given f : X → A× B, the round-trip composite yields the function

λx. (pr1(f (x)), pr2(f (x))). (2.15.3)

By Theorem 2.6.2, for any x : X we have (pr1(f (x)), pr2(f (x))) = f (x). Thus, by function exten-
sionality, the function (2.15.3) is equal to f .

On the other hand, given (g, h), the round-trip composite yields the pair (λx. g(x), λx. h(x)).
By the uniqueness principle for functions, this is (judgmentally) equal to (g, h).

In fact, we also have a dependently typed version of this universal property. Suppose given
a type X and type families A, B : X → U . Then we have a function(

∏
x:X

(A(x)× B(x))
)
→
(
∏
x:X

A(x)
)
×
(
∏
x:X

B(x)
)

(2.15.4)

defined as before by f 7→ (pr1 ◦ f , pr2 ◦ f).

Theorem 2.15.5. (2.15.4) is an equivalence.

Proof. Left to the reader.

Just as Σ-types are a generalization of cartesian products, they satisfy a generalized version
of this universal property. Jumping right to the dependently typed version, suppose we have a
type X and type families A : X → U and P : ∏(x:X) A(x)→ U . Then we have a function(

∏
x:X

∑
(a:A(x))

P(x, a)
)
→
(

∑
(g:∏(x:X) A(x))

∏
(x:X)

P(x, g(x))
)

. (2.15.6)

Note that if we have P(x, a) :≡ B(x) for some B : X → U , then (2.15.6) reduces to (2.15.4).

94 CHAPTER 2. HOMOTOPY TYPE THEORY

Theorem 2.15.7. (2.15.6) is an equivalence.

Proof. As before, we define a quasi-inverse to send (g, h) to the function λx. (g(x), h(x)). Now
given f : ∏(x:X) ∑(a:A(x)) P(x, a), the round-trip composite yields the function

λx. (pr1(f (x)), pr2(f (x))). (2.15.8)

Now for any x : X, by Corollary 2.7.3 (the uniqueness principle for Σ-types) we have

(pr1(f (x)), pr2(f (x))) = f (x).

Thus, by function extensionality, (2.15.8) is equal to f . On the other hand, given (g, h), the round-
trip composite yields (λx. g(x), λx. h(x)), which is judgmentally equal to (g, h) as before.

This is noteworthy because the propositions-as-types interpretation of (2.15.6) is “the axiom
of choice”. If we read Σ as “there exists” and Π (sometimes) as “for all”, we can pronounce:

• ∏(x:X) ∑(a:A(x)) P(x, a) as “for all x : X there exists an a : A(x) such that P(x, a)”, and
• ∑(g:∏(x:X) A(x)) ∏(x:X) P(x, g(x)) as “there exists a choice function g : ∏(x:X) A(x) such that

for all x : X we have P(x, g(x))”.

Thus, Theorem 2.15.7 says that not only is the axiom of choice “true”, its antecedent is actu-
ally equivalent to its conclusion. (On the other hand, the classical mathematician may find
that (2.15.6) does not carry the usual meaning of the axiom of choice, since we have already
specified the values of g, and there are no choices left to be made. We will return to this point in
§3.8.)

The above universal property for pair types is for “mapping in”, which is familiar from
the category-theoretic notion of products. However, pair types also have a universal property
for “mapping out”, which may look less familiar. In the case of cartesian products, the non-
dependent version simply expresses the cartesian closure adjunction:(

(A× B)→ C
)
≃
(

A→ (B→ C)
)
.

The dependent version of this is formulated for a type family C : A× B→ U :(
∏

w:A×B
C(w)

)
≃
(

∏
(x:A)

∏
(y:B)

C(x, y)
)

.

Here the right-to-left function is simply the induction principle for A× B, while the left-to-right
is evaluation at a pair. We leave it to the reader to prove that these are quasi-inverses. There is
also a version for Σ-types:(

∏
w:∑(x:A) B(x)

C(w)
)
≃
(

∏
(x:A)

∏
(y:B(x))

C(x, y)
)

. (2.15.9)

Again, the right-to-left function is the induction principle.
Some other induction principles are also part of universal properties of this sort. For instance,

path induction is the right-to-left direction of an equivalence as follows:(
∏
(x:A)

∏
(p:a=x)

B(x, p)
)
≃ B(a, refla) (2.15.10)

CHAPTER 2 NOTES 95

for any a : A and type family B : ∏(x:A)(a = x) → U . However, inductive types with recursion,
such as the natural numbers, have more complicated universal properties; see Chapter 5.

Since Theorem 2.15.2 expresses the usual universal property of a cartesian product (in an
appropriate homotopy-theoretic sense), the categorically inclined reader may well wonder about
other limits and colimits of types. In Exercise 2.9 we ask the reader to show that the coproduct
type A + B also has the expected universal property, and the nullary cases of 1 (the terminal
object) and 0 (the initial object) are easy.

For pullbacks, the expected explicit construction works: given f : A → C and g : B → C, we
define

A×C B :≡ ∑
(a:A)

∑
(b:B)

(f (a) = g(b)). (2.15.11)

In Exercise 2.11 we ask the reader to verify this. Some more general homotopy limits can be
constructed in a similar way, but for colimits we will need a new ingredient; see Chapter 6.

Notes

The definition of identity types, with their induction principle, is due to Martin-Löf [ML75]. As
mentioned in the notes to Chapter 1, our identity types are those that belong to intensional type
theory, rather than extensional type theory. In general, a notion of equality is said to be “inten-
sional” if it distinguishes objects based on their particular definitions, and “extensional” if it does
not distinguish between objects that have the same “extension” or “observable behavior”. In the
terminology of Frege, an intensional equality compares sense, while an extensional one compares
only reference. We may also speak of one equality being “more” or “less” extensional than an-
other, meaning that it takes account of fewer or more intensional aspects of objects, respectively.

Intensional type theory is so named because its judgmental equality, x ≡ y, is a very intensional
equality: it says essentially that x and y “have the same definition”, after we expand the defining
equations of functions. By contrast, the propositional equality type x = y is more extensional,
even in the axiom-free intensional type theory of Chapter 1: for instance, we can prove by induc-
tion that n + m = m + n for all m, n : N, but we cannot say that n + m ≡ m + n for all m, n : N,
since the definition of addition treats its arguments asymmetrically. We can make the identity
type of intensional type theory even more extensional by adding axioms such as function ex-
tensionality (two functions are equal if they have the same behavior on all inputs, regardless
of how they are defined) and univalence (which can be regarded as an extensionality property
for the universe: two types are equal if they behave the same in all contexts). The axioms of
function extensionality, and univalence in the special case of mere propositions (“propositional
extensionality”), appeared already in the first type theories of Russell and Church.

As mentioned before, extensional type theory includes also a “reflection rule” saying that if
p : x = y, then in fact x ≡ y. Thus extensional type theory is so named because it does not
admit any purely intensional equality: the reflection rule forces the judgmental equality to coin-
cide with the more extensional identity type. Moreover, from the reflection rule one may deduce
function extensionality (at least in the presence of a judgmental uniqueness principle for func-
tions). However, the reflection rule also implies that all the higher groupoid structure collapses
(see Exercise 2.14), and hence is inconsistent with the univalence axiom (see Example 3.1.9).
Therefore, regarding univalence as an extensionality property, one may say that intensional type
theory permits identity types that are “more extensional” than extensional type theory does.

96 CHAPTER 2. HOMOTOPY TYPE THEORY

The proofs of symmetry (inversion) and transitivity (concatenation) for equalities are well-
known in type theory. The fact that these make each type into a 1-groupoid (up to homotopy)
was exploited in [HS98] to give the first “homotopy” style semantics for type theory.

The actual homotopical interpretation, with identity types as path spaces, and type families
as fibrations, is due to [AW09], who used the formalism of Quillen model categories. An inter-
pretation in (strict) ∞-groupoids was also given in the thesis [War08]. For a construction of all the
higher operations and coherences of an ∞-groupoid in type theory, see [Lum10] and [vdBG11].

Operations such as transportP(p, –) and ap f , and one good notion of equivalence, were first
studied extensively in type theory by Voevodsky, using the proof assistant COQ. Subsequently,
many other equivalent definitions of equivalence have been found, which are compared in Chap-
ter 4.

The “computational” interpretation of identity types, transport, and so on described in §2.5
has been emphasized by [LH12]. They also described a “1-truncated” type theory (see Chap-
ter 7) in which these rules are judgmental equalities. The possibility of extending this to the full
untruncated theory is a subject of current research.

The naive form of function extensionality which says that “if two functions are pointwise
equal, then they are equal” is a common axiom in type theory, going all the way back to [WR27].
Some stronger forms of function extensionality were considered in [Gar09]. The version we have
used, which identifies the identity types of function types up to equivalence, was first studied
by Voevodsky, who also proved that it is implied by the naive version (and by univalence; see
§4.9).

The univalence axiom is also due to Voevodsky. It was originally motivated by semantic con-
siderations in the simplicial set model; see [KLV12]. A similar axiom motivated by the groupoid
model was proposed by Hofmann and Streicher [HS98] under the name “universe extension-
ality”. It used quasi-inverses (2.4.5) rather than a good notion of “equivalence”, and hence is
correct (and equivalent to univalence) only for a universe of 1-types (see Definition 3.1.7).

In the type theory we are using in this book, function extensionality and univalence have
to be assumed as axioms, i.e. elements asserted to belong to some type but not constructed ac-
cording to the rules for that type. While serviceable, this has a few drawbacks. For instance,
type theory is formally better-behaved if we can base it entirely on rules rather than asserting
axioms. It is also sometimes inconvenient that the theorems of §§2.6–2.13 are only propositional
equalities (paths) or equivalences, since then we must explicitly mention whenever we pass back
and forth across them. One direction of current research in homotopy type theory is to describe
a type system in which these rules are judgmental equalities, solving both of these problems at
once. So far this has only been done in some simple cases, although preliminary results such
as [LH12] are promising. There are also other potential ways to introduce univalence and func-
tion extensionality into a type theory, such as having a sufficiently powerful notion of “higher
quotients” or “higher inductive-recursive types”.

The simple conclusions in §§2.12–2.13 such as “inl and inr are injective and disjoint” are well-
known in type theory, and the construction of the function encode is the usual way to prove them.
The more refined approach we have described, which characterizes the entire identity type of a
positive type (up to equivalence), is a more recent development; see e.g. [LS13].

The type-theoretic axiom of choice (2.15.6) was noticed in William Howard’s original pa-
per [How80] on the propositions-as-types correspondence, and was studied further by Martin-
Löf with the introduction of his dependent type theory. It is mentioned as a “distributivity law”
in Bourbaki’s set theory [Bou68].

For a more comprehensive (and formalized) discussion of pullbacks and more general ho-

CHAPTER 2 EXERCISES 97

motopy limits in homotopy type theory, see [AKL13]. Limits of diagrams over directed graphs
are the easiest general sort of limit to formalize; the problem with diagrams over categories (or
more generally (∞, 1)-categories) is that in general, infinitely many coherence conditions are in-
volved in the notion of (homotopy coherent) diagram. Resolving this problem is an important
open question in homotopy type theory.

Exercises

Exercise 2.1. Show that the three obvious proofs of Lemma 2.1.2 are pairwise equal.

Exercise 2.2. Show that the three equalities of proofs constructed in the previous exercise form a
commutative triangle. In other words, if the three definitions of concatenation are denoted by
(p �1 q), (p �2 q), and (p �3 q), then the concatenated equality

(p �1 q) = (p �2 q) = (p �3 q)

is equal to the equality (p �1 q) = (p �3 q).

Exercise 2.3. Give a fourth, different, proof of Lemma 2.1.2, and prove that it is equal to the others.

Exercise 2.4. Define, by induction on n, a general notion of n-dimensional path in a type A,
simultaneously with the type of boundaries for such paths.

Exercise 2.5. Prove that the functions (2.3.6) and (2.3.7) are inverse equivalences.

Exercise 2.6. Prove that if p : x = y, then the function (p � –) : (y = z) → (x = z) is an
equivalence.

Exercise 2.7. State and prove a generalization of Theorem 2.6.5 from cartesian products to Σ-
types.

Exercise 2.8. State and prove an analogue of Theorem 2.6.5 for coproducts.

Exercise 2.9. Prove that coproducts have the expected universal property,

(A + B→ X) ≃ (A→ X)× (B→ X).

Can you generalize this to an equivalence involving dependent functions?

Exercise 2.10. Prove that Σ-types are “associative”, in that for any A : U and families B : A → U
and C : (∑(x:A) B(x))→ U , we have(

∑
(x:A)

∑
(y:B(x))

C((x, y))
)
≃
(

∑
p:∑(x:A) B(x)

C(p)
)

.

Exercise 2.11. A (homotopy) commutative square

P h //

k
��

A

f
��

B g
// C

consists of functions f , g, h, and k as shown, together with a path f ◦ h = g ◦ k. Note that
this is exactly an element of the pullback (P → A) ×P→C (P → B) as defined in (2.15.11). A
commutative square is called a (homotopy) pullback square if for any X, the induced map

(X → P)→ (X → A)×(X→C) (X → B)

98 CHAPTER 2. HOMOTOPY TYPE THEORY

is an equivalence. Prove that the pullback P :≡ A ×C B defined in (2.15.11) is the corner of a
pullback square.

Exercise 2.12. Suppose given two commutative squares

A //

��

C //

��

E

��

B // D // F

and suppose that the right-hand square is a pullback square. Prove that the left-hand square is a
pullback square if and only if the outer rectangle is a pullback square.

Exercise 2.13. Show that (2 ≃ 2) ≃ 2.

Exercise 2.14. Suppose we add to type theory the equality reflection rule which says that if there is
an element p : x = y, then in fact x ≡ y. Prove that for any p : x = x we have p ≡ reflx. (This
implies that every type is a set in the sense to be introduced in §3.1; see §7.2.)

Exercise 2.15. Show that Lemma 2.10.5 can be strengthened to

transportB(p, –) =B(x)→B(y) idtoeqv(apB(p))

without using function extensionality. (In this and other similar cases, the apparently weaker
formulation has been chosen for readability and consistency.)

Exercise 2.16. Suppose that rather than function extensionality (Axiom 2.9.3), we suppose only
the existence of an element

funext : ∏
(A:U)

∏
(B:A→U)

∏
(f ,g:∏(x:A) B(x))

(f ∼ g)→ (f = g)

(with no relationship to happly assumed). Prove that in fact, this is sufficient to imply the whole
function extensionality axiom (that happly is an equivalence). This is due to Voevodsky; its proof
is tricky and may require concepts from later chapters.

Exercise 2.17.

(i) Show that if A ≃ A′ and B ≃ B′, then (A× B) ≃ (A′ × B′).
(ii) Give two proofs of this fact, one using univalence and one not using it, and show that the

two proofs are equal.
(iii) Formulate and prove analogous results for the other type formers: Σ,→, Π, and +.

Exercise 2.18. State and prove a version of Lemma 2.4.3 for dependent functions.

Chapter 3

Sets and logic

Type theory, formal or informal, is a collection of rules for manipulating types and their elements.
But when writing mathematics informally in natural language, we generally use familiar words,
particularly logical connectives such as “and” and “or”, and logical quantifiers such as “for all”
and “there exists”. In contrast to set theory, type theory offers us more than one way to regard
these English phrases as operations on types. This potential ambiguity needs to be resolved, by
setting out local or global conventions, by introducing new annotations to informal mathematics,
or both. This requires some getting used to, but is offset by the fact that because type theory
permits this finer analysis of logic, we can represent mathematics more faithfully, with fewer
“abuses of language” than in set-theoretic foundations. In this chapter we will explain the issues
involved, and justify the choices we have made.

3.1 Sets and n-types

In order to explain the connection between the logic of type theory and the logic of set theory,
it is helpful to have a notion of set in type theory. While types in general behave like spaces
or higher groupoids, there is a subclass of them that behave more like the sets in a traditional
set-theoretic system. Categorically, we may consider discrete groupoids, which are determined
by a set of objects and only identity morphisms as higher morphisms; while topologically, we
may consider spaces having the discrete topology. More generally, we may consider groupoids
or spaces that are equivalent to ones of this sort; since everything we do in type theory is up to
homotopy, we can’t expect to tell the difference.

Intuitively, we would expect a type to “be a set” in this sense if it has no higher homotopical
information: any two parallel paths are equal (up to homotopy), and similarly for parallel higher
paths at all dimensions. Fortunately, because everything in homotopy type theory is automati-
cally functorial/continuous, it turns out to be sufficient to ask this at the bottom level.

Definition 3.1.1. A type A is a set if for all x, y : A and all p, q : x = y, we have p = q.

More precisely, the proposition isSet(A) is defined to be the type

isSet(A) :≡ ∏
(x,y:A)

∏
(p,q:x=y)

(p = q).

As mentioned in §1.1, the sets in homotopy type theory are not like the sets in ZF set theory, in
that there is no global “membership predicate” ∈. They are more like the sets used in structural

100 CHAPTER 3. SETS AND LOGIC

mathematics and in category theory, whose elements are “abstract points” to which we give
structure with functions and relations. This is all we need in order to use them as a foundational
system for most set-based mathematics; we will see some examples in Chapter 10.

Which types are sets? In Chapter 7 we will study a more general form of this question in
depth, but for now we can observe some easy examples.

Example 3.1.2. The type 1 is a set. For by Theorem 2.8.1, for any x, y : 1 the type (x = y) is
equivalent to 1. Since any two elements of 1 are equal, this implies that any two elements of
x = y are equal.

Example 3.1.3. The type 0 is a set, for given any x, y : 0 we may deduce anything we like, by the
induction principle of 0.

Example 3.1.4. The type N of natural numbers is also a set. This follows from Theorem 2.13.1,
since all equality types x =N y are equivalent to either 1 or 0, and any two inhabitants of 1 or 0
are equal. We will see another proof of this fact in Chapter 7.

Most of the type forming operations we have considered so far also preserve sets.

Example 3.1.5. If A and B are sets, then so is A × B. For given x, y : A × B and p, q : x = y,
by Theorem 2.6.2 we have p = pair=(appr1

(p), appr2
(p)) and q = pair=(appr1

(q), appr2
(q)). But

appr1
(p) = appr1

(q) since A is a set, and appr2
(p) = appr2

(q) since B is a set; hence p = q.
Similarly, if A is a set and B : A→ U is such that each B(x) is a set, then ∑(x:A) B(x) is a set.

Example 3.1.6. If A is any type and B : A → U is such that each B(x) is a set, then the type
∏(x:A) B(x) is a set. For suppose f , g : ∏(x:A) B(x) and p, q : f = g. By function extensionality,
we have

p = funext(x 7→ happly(p, x)) and q = funext(x 7→ happly(q, x)).

But for any x : A, we have

happly(p, x) : f (x) = g(x) and happly(q, x) : f (x) = g(x),

so since B(x) is a set we have happly(p, x) = happly(q, x). Now using function extensionality
again, the dependent functions (x 7→ happly(p, x)) and (x 7→ happly(q, x)) are equal, and hence
(applying apfunext) so are p and q.

For more examples, see Exercises 3.2 and 3.3. For a more systematic investigation of the
subsystem (category) of all sets in homotopy type theory, see Chapter 10.

Sets are just the first rung on a ladder of what are called homotopy n-types. The next rung
consists of 1-types, which are analogous to 1-groupoids in category theory. The defining property
of a set (which we may also call a 0-type) is that it has no non-trivial paths. Similarly, the defining
property of a 1-type is that it has no non-trivial paths between paths:

Definition 3.1.7. A type A is a 1-type if for all x, y : A and p, q : x = y and r, s : p = q, we have
r = s.

Similarly, we can define 2-types, 3-types, and so on. We will define the general notion of n-
type inductively in Chapter 7, and study the relationships between n-types for different values
of n.

However, for now it is useful to have two facts in mind. First, the levels are upward-closed:
if A is an n-type then A is an (n + 1)-type. For example:

Lemma 3.1.8. If A is a set (that is, isSet(A) is inhabited), then A is a 1-type.

3.2 PROPOSITIONS AS TYPES? 101

Proof. Suppose f : isSet(A); then for any x, y : A and p, q : x = y we have f (x, y, p, q) : p = q.
Fix x, y, and p, and define g : ∏(q:x=y)(p = q) by g(q) :≡ f (x, y, p, q). Then for any r : q = q′, we
have apdg(r) : r∗(g(q)) = g(q′). By Lemma 2.11.2, therefore, we have g(q) � r = g(q′).

In particular, suppose given x, y, p, q and r, s : p = q, as in Definition 3.1.7, and define g as
above. Then g(p) � r = g(q) and also g(p) � s = g(q), hence by cancellation r = s.

Second, this stratification of types by level is not degenerate, in the sense that not all types
are sets:

Example 3.1.9. The universe U is not a set. To prove this, it suffices to exhibit a type A and a path
p : A = A which is not equal to reflA. Take A = 2, and let f : A → A be defined by f (02) :≡ 12

and f (12) :≡ 02. Then f (f (x)) = x for all x (by an easy case analysis), so f is an equivalence.
Hence, by univalence, f gives rise to a path p : A = A.

If p were equal to reflA, then (again by univalence) f would equal the identity function of A.
But this would imply that 02 = 12, contradicting Remark 2.12.6.

In Chapters 6 and 8 we will show that for any n, there are types which are not n-types.
Note that A is a 1-type exactly when for any x, y : A, the identity type x =A y is a set. (Thus,

Lemma 3.1.8 could equivalently be read as saying that the identity types of a set are also sets.)
This will be the basis of the recursive definition of n-types we will give in Chapter 7.

We can also extend this characterization “downwards” from sets. That is, a type A is a set
just when for any x, y : A, any two elements of x =A y are equal. Since sets are equivalently
0-types, it is natural to call a type a (−1)-type if it has this latter property (any two elements of
it are equal). Such types may be regarded as propositions in a narrow sense, and their study is just
what is usually called “logic”; it will occupy us for the rest of this chapter.

3.2 Propositions as types?

Until now, we have been following the straightforward “propositions as types” philosophy de-
scribed in §1.11, according to which English phrases such as “there exists an x : A such that
P(x)” are interpreted by corresponding types such as ∑(x:A) P(x), with the proof of a statement
being regarded as judging some specific element to inhabit that type. However, we have also
seen some ways in which the “logic” resulting from this reading seems unfamiliar to a classical
mathematician. For instance, in Theorem 2.15.7 we saw that the statement

“If for all x : X there exists an a : A(x) such that P(x, a), then there exists a function
g : ∏(x:X) A(x) such that for all x : X we have P(x, g(x))”, (3.2.1)

which looks like the classical axiom of choice, is always true under this reading. This is a note-
worthy, and often useful, feature of the propositions-as-types logic, but it also illustrates how
significantly it differs from the classical interpretation of logic, under which the axiom of choice
is not a logical truth, but an additional “axiom”.

On the other hand, we can now also show that corresponding statements looking like the
classical law of double negation and law of excluded middle are incompatible with the univalence
axiom.

Theorem 3.2.2. It is not the case that for all A : U we have ¬(¬A)→ A.

Proof. Recall that ¬A ≡ (A → 0). We also read “it is not the case that . . . ” as the operator ¬.
Thus, in order to prove this statement, it suffices to assume given some f : ∏(A:U)(¬¬A → A)

and construct an element of 0.

102 CHAPTER 3. SETS AND LOGIC

The idea of the following proof is to observe that f , like any function in type theory, is “con-
tinuous”. By univalence, this implies that f is natural with respect to equivalences of types. From
this, and a fixed-point-free autoequivalence, we will be able to extract a contradiction.

Let e : 2 ≃ 2 be the equivalence defined by e(12) :≡ 02 and e(02) :≡ 12, as in Example 3.1.9.
Let p : 2 = 2 be the path corresponding to e by univalence, i.e. p :≡ ua(e). Then we have
f (2) : ¬¬2→ 2 and

apd f (p) : transportA 7→(¬¬A→A)(p, f (2)) = f (2).

Hence, for any u : ¬¬2, we have

happly(apd f (p), u) : transportA 7→(¬¬A→A)(p, f (2))(u) = f (2)(u).

Now by (2.9.4), transporting f (2) : ¬¬2 → 2 along p in the type family A 7→ (¬¬A→ A)

is equal to the function which transports its argument along p−1 in the type family A 7→ ¬¬A,
applies f (2), then transports the result along p in the type family A 7→ A:

transportA 7→(¬¬A→A)(p, f (2))(u) = transportA 7→A(p, f (2)(transportA 7→¬¬A(p−1, u))).

However, any two points u, v : ¬¬2 are equal by function extensionality, since for any x : ¬2 we
have u(x) : 0 and thus we can derive any conclusion, in particular u(x) = v(x). Thus, we have
transportA 7→¬¬A(p−1, u) = u, and so from happly(apd f (p), u) we obtain an equality

transportA 7→A(p, f (2)(u)) = f (2)(u).

Finally, as discussed in §2.10, transporting in the type family A 7→ A along the path p ≡ ua(e) is
equivalent to applying the equivalence e; thus we have

e(f (2)(u)) = f (2)(u). (3.2.3)

However, we can also prove that
∏
x:2
¬(e(x) = x). (3.2.4)

This follows from a case analysis on x: both cases are immediate from the definition of e and
the fact that 02 ̸= 12 (Remark 2.12.6). Thus, applying (3.2.4) to f (2)(u) and (3.2.3), we obtain an
element of 0.

Remark 3.2.5. In particular, this implies that there can be no Hilbert-style “choice operator” which
selects an element of every nonempty type. The point is that no such operator can be natural,
and under the univalence axiom, all functions acting on types must be natural with respect to
equivalences.

Remark 3.2.6. It is, however, still the case that ¬¬¬A→ ¬A for any A; see Exercise 1.11.

Corollary 3.2.7. It is not the case that for all A : U we have A + (¬A).

Proof. Suppose we had g : ∏(A:U)(A + (¬A)). We will show that then ∏(A:U)(¬¬A → A), so
that we can apply Theorem 3.2.2. Thus, suppose A : U and u : ¬¬A; we want to construct an
element of A.

Now g(A) : A + (¬A), so by case analysis, we may assume either g(A) ≡ inl(a) for some
a : A, or g(A) ≡ inr(w) for some w : ¬A. In the first case, we have a : A, while in the second
case we have u(w) : 0 and so we can obtain anything we wish (such as A). Thus, in both cases
we have an element of A, as desired.

3.3 MERE PROPOSITIONS 103

Thus, if we want to assume the univalence axiom (which, of course, we do) and still leave
ourselves the option of classical reasoning (which is also desirable), we cannot use the unmod-
ified propositions-as-types principle to interpret all informal mathematical statements into type
theory, since then the law of excluded middle would be false. However, neither do we want
to discard propositions-as-types entirely, because of its many good properties (such as simplic-
ity, constructivity, and computability). We now discuss a modification of propositions-as-types
which resolves these problems; in §3.10 we will return to the question of which logic to use when.

3.3 Mere propositions

We have seen that the propositions-as-types logic has both good and bad properties. Both have a
common cause: when types are viewed as propositions, they can contain more information than
mere truth or falsity, and all “logical” constructions on them must respect this additional infor-
mation. This suggests that we could obtain a more conventional logic by restricting attention to
types that do not contain any more information than a truth value, and only regarding these as
logical propositions.

Such a type A will be “true” if it is inhabited, and “false” if its inhabitation yields a con-
tradiction (i.e. if ¬A ≡ (A → 0) is inhabited). What we want to avoid, in order to obtain a
more traditional sort of logic, is treating as logical propositions those types for which giving an
element of them gives more information than simply knowing that the type is inhabited. For
instance, if we are given an element of 2, then we receive more information than the mere fact
that 2 contains some element. Indeed, we receive exactly one bit more information: we know
which element of 2 we were given. By contrast, if we are given an element of 1, then we receive
no more information than the mere fact that 1 contains an element, since any two elements of 1
are equal to each other. This suggests the following definition.

Definition 3.3.1. A type P is a mere proposition if for all x, y : P we have x = y.

Note that since we are still doing mathematics in type theory, this is a definition in type
theory, which means it is a type — or, rather, a type family. Specifically, for any P : U , the type
isProp(P) is defined to be

isProp(P) :≡ ∏
x,y:P

(x = y).

Thus, to assert that “P is a mere proposition” means to exhibit an inhabitant of isProp(P), which
is a dependent function connecting any two elements of P by a path. The continuity/naturality
of this function implies that not only are any two elements of P equal, but P contains no higher
homotopy either.

Lemma 3.3.2. If P is a mere proposition and x0 : P, then P ≃ 1.

Proof. Define f : P → 1 by f (x) :≡ ⋆, and g : 1 → P by g(u) :≡ x0. The claim follows from the
next lemma, and the observation that 1 is a mere proposition by Theorem 2.8.1.

Lemma 3.3.3. If P and Q are mere propositions such that P→ Q and Q→ P, then P ≃ Q.

Proof. Suppose given f : P→ Q and g : Q→ P. Then for any x : P, we have g(f (x)) = x since P
is a mere proposition. Similarly, for any y : Q we have f (g(y)) = y since Q is a mere proposition;
thus f and g are quasi-inverses.

104 CHAPTER 3. SETS AND LOGIC

That is, as promised in §1.11, if two mere propositions are logically equivalent, then they are
equivalent.

In homotopy theory, a space that is homotopy equivalent to 1 is said to be contractible. Thus,
any mere proposition which is inhabited is contractible (see also §3.11). On the other hand, the
uninhabited type 0 is also (vacuously) a mere proposition. In classical mathematics, at least,
these are the only two possibilities.

Mere propositions are also called subterminal objects (if thinking categorically), subsingletons
(if thinking set-theoretically), or h-propositions. The discussion in §3.1 suggests we should also
call them (−1)-types; we will return to this in Chapter 7. The adjective “mere” emphasizes that
although any type may be regarded as a proposition (which we prove by giving an inhabitant of
it), a type that is a mere proposition cannot usefully be regarded as any more than a proposition:
there is no additional information contained in a witness of its truth.

Note that a type A is a set if and only if for all x, y : A, the identity type x =A y is a mere
proposition. On the other hand, by copying and simplifying the proof of Lemma 3.1.8, we have:

Lemma 3.3.4. Every mere proposition is a set.

Proof. Suppose f : isProp(A); thus for all x, y : A we have f (x, y) : x = y. Fix x : A and define
g(y) :≡ f (x, y). Then for any y, z : A and p : y = z we have apdg(p) : p∗(g(y)) = g(z). Hence

by Lemma 2.11.2, we have g(y) � p = g(z), which is to say that p = g(y)−1 � g(z). Thus, for any
p, q : x = y, we have p = g(x)−1 � g(y) = q.

In particular, this implies:

Lemma 3.3.5. For any type A, the types isProp(A) and isSet(A) are mere propositions.

Proof. Suppose f , g : isProp(A). By function extensionality, to show f = g it suffices to show
f (x, y) = g(x, y) for any x, y : A. But f (x, y) and g(x, y) are both paths in A, and hence are equal
because, by either f or g, we have that A is a mere proposition, and hence by Lemma 3.3.4 is
a set. Similarly, suppose f , g : isSet(A), which is to say that for all a, b : A and p, q : a = b,
we have f (a, b, p, q) : p = q and g(a, b, p, q) : p = q. But by then since A is a set (by either
f or g), and hence a 1-type, it follows that f (a, b, p, q) = g(a, b, p, q); hence f = g by function
extensionality.

We have seen one other example so far: condition (iii) in §2.4 asserts that for any function f ,
the type isequiv(f) should be a mere proposition.

3.4 Classical vs. intuitionistic logic

With the notion of mere proposition in hand, we can now give the proper formulation of the law
of excluded middle in homotopy type theory:

LEM :≡ ∏
A:U

(
isProp(A)→ (A + ¬A)

)
. (3.4.1)

Similarly, the law of double negation is

∏
A:U

(
isProp(A)→ (¬¬A→ A)

)
. (3.4.2)

3.4 CLASSICAL VS. INTUITIONISTIC LOGIC 105

The two are also easily seen to be equivalent to each other—see Exercise 3.18—so from now on
we will generally speak only of LEM.

This formulation of LEM avoids the “paradoxes” of Theorem 3.2.2 and Corollary 3.2.7, since 2
is not a mere proposition. In order to distinguish it from the more general propositions-as-types
formulation, we rename the latter:

LEM∞ :≡ ∏
A:U

(A + ¬A).

For emphasis, the proper version (3.4.1) may be denoted LEM−1; see also Exercise 7.7. Although
LEM is not a consequence of the basic type theory described in Chapter 1, it may be consistently
assumed as an axiom (unlike its ∞-counterpart). For instance, we will assume it in §10.4.

However, it can be surprising how far we can get without using LEM. Quite often, a simple
reformulation of a definition or theorem enables us to avoid invoking excluded middle. While
this takes a little getting used to sometimes, it is often worth the hassle, resulting in more elegant
and more general proofs. We discussed some of the benefits of this in the introduction.

For instance, in classical mathematics, double negations are frequently used unnecessarily.
A very simple example is the common assumption that a set A is “nonempty”, which literally
means it is not the case that A contains no elements. Almost always what is really meant is the
positive assertion that A does contain at least one element, and by removing the double negation
we make the statement less dependent on LEM. Recall that we say that a type A is inhabited when
we assert A itself as a proposition (i.e. we construct an element of A, usually unnamed). Thus,
often when translating a classical proof into constructive logic, we replace the word “nonempty”
by “inhabited” (although sometimes we must replace it instead by “merely inhabited”; see §3.7).

Similarly, it is not uncommon in classical mathematics to find unnecessary proofs by contra-
diction. Of course, the classical form of proof by contradiction proceeds by way of the law of
double negation: we assume ¬A and derive a contradiction, thereby deducing ¬¬A, and thus
by double negation we obtain A. However, often the derivation of a contradiction from ¬A can
be rephrased slightly so as to yield a direct proof of A, avoiding the need for LEM.

It is also important to note that if the goal is to prove a negation, then “proof by contradiction”
does not involve LEM. In fact, since ¬A is by definition the type A → 0, by definition to prove
¬A is to prove a contradiction (0) under the assumption of A. Similarly, the law of double nega-
tion does hold for negated propositions: ¬¬¬A → ¬A. With practice, one learns to distinguish
more carefully between negated and non-negated propositions and to notice when LEM is being
used and when it is not.

Thus, contrary to how it may appear on the surface, doing mathematics “constructively”
does not usually involve giving up important theorems, but rather finding the best way to state
the definitions so as to make the important theorems constructively provable. That is, we may
freely use the LEM when first investigating a subject, but once that subject is better understood,
we can hope to refine its definitions and proofs so as to avoid that axiom. This sort of observation
is even more pronounced in homotopy type theory, where the powerful tools of univalence and
higher inductive types allow us to constructively attack many problems that traditionally would
require classical reasoning. We will see several examples of this in Part II.

It is also worth mentioning that even in constructive mathematics, the law of excluded mid-
dle can hold for some propositions. The name traditionally given to such propositions is decidable.

Definition 3.4.3.

(i) A type A is called decidable if A + ¬A.

106 CHAPTER 3. SETS AND LOGIC

(ii) Similarly, a type family B : A→ U is decidable if ∏(a:A)(B(a) + ¬B(a)).
(iii) In particular, A has decidable equality if ∏(a,b:A)((a = b) + ¬(a = b)).

Thus, LEM is exactly the statement that all mere propositions are decidable, and hence so are
all families of mere propositions. In particular, LEM implies that all sets (in the sense of §3.1) have
decidable equality. Having decidable equality in this sense is very strong; see Theorem 7.2.5.

3.5 Subsets and propositional resizing

As another example of the usefulness of mere propositions, we discuss subsets (and more gen-
erally subtypes). Suppose P : A → U is a type family, with each type P(x) regarded as a
proposition. Then P itself is a predicate on A, or a property of elements of A.

In set theory, whenever we have a predicate P on a set A, we may form the subset { x ∈ A | P(x) }.
As mentioned briefly in §1.11, the obvious analogue in type theory is the Σ-type ∑(x:A) P(x). An
inhabitant of ∑(x:A) P(x) is, of course, a pair (x, p) where x : A and p is a proof of P(x). However,
for general P, an element a : A might give rise to more than one distinct element of ∑(x:A) P(x),
if the proposition P(a) has more than one distinct proof. This is counter to the usual intuition of
a subset. But if P is a mere proposition, then this cannot happen.

Lemma 3.5.1. Suppose P : A → U is a type family such that P(x) is a mere proposition for all x : A. If
u, v : ∑(x:A) P(x) are such that pr1(u) = pr1(v), then u = v.

Proof. Suppose p : pr1(u) = pr1(v). By Theorem 2.7.2, to show u = v it suffices to show
p∗(pr2(u)) = pr2(v). But p∗(pr2(u)) and pr2(v) are both elements of P(pr1(v)), which is a mere
proposition; hence they are equal.

For instance, recall that in §2.4 we defined

(A ≃ B) :≡ ∑
f :A→B

isequiv(f),

where each type isequiv(f) was supposed to be a mere proposition. It follows that if two equiva-
lences have equal underlying functions, then they are equal as equivalences.

Henceforth, if P : A → U is a family of mere propositions (i.e. each P(x) is a mere proposi-
tion), we may write

{ x : A | P(x) } (3.5.2)

as an alternative notation for ∑(x:A) P(x). (There is no technical reason not to use this notation
for arbitrary P as well, but such usage could be confusing due to unintended connotations.) If
A is a set, we call (3.5.2) a subset of A; for general A we might call it a subtype. We may also
refer to P itself as a subset or subtype of A; this is actually more correct, since the type (3.5.2) in
isolation doesn’t remember its relationship to A.

Given such a P and a : A, we may write a ∈ P or a ∈ { x : A | P(x) } to refer to the mere
proposition P(a). If it holds, we may say that a is a member of P. Similarly, if { x : A | Q(x) }
is another subset of A, then we say that P is contained in Q, and write P ⊆ Q, if we have
∏(x:A)(P(x)→ Q(x)).

As further examples of subtypes, we may define the “subuniverses” of sets and of mere
propositions in a universe U :

SetU :≡ { A : U | isSet(A) } ,

PropU :≡ { A : U | isProp(A) } .

3.6 THE LOGIC OF MERE PROPOSITIONS 107

An element of SetU is a type A : U together with evidence s : isSet(A), and similarly for PropU .
Lemma 3.5.1 implies that (A, s) =SetU (B, t) is equivalent to A =U B (and hence to A ≃ B). Thus,
we will frequently abuse notation and write simply A : SetU instead of (A, s) : SetU . We may
also drop the subscript U if there is no need to specify the universe in question.

Recall that for any two universes Ui and Ui+1, if A : Ui then also A : Ui+1. Thus, for any
(A, s) : SetUi we also have (A, s) : SetUi+1 , and similarly for PropUi

, giving natural maps

SetUi → SetUi+1 , (3.5.3)

PropUi
→ PropUi+1

. (3.5.4)

The map (3.5.3) cannot be an equivalence, since then we could reproduce the paradoxes of self-
reference that are familiar from Cantorian set theory. However, although (3.5.4) is not automati-
cally an equivalence in the type theory we have presented so far, it is consistent to suppose that
it is. That is, we may consider adding to type theory the following axiom.

Axiom 3.5.5 (Propositional resizing). The map PropUi
→ PropUi+1

is an equivalence.

We refer to this axiom as propositional resizing, since it means that any mere proposition
in the universe Ui+1 can be “resized” to an equivalent one in the smaller universe Ui. It follows
automatically if Ui+1 satisfies LEM (see Exercise 3.10). We will not assume this axiom in general,
although in some places we will use it as an explicit hypothesis. It is a form of impredicativity for
mere propositions, and by avoiding its use, the type theory is said to remain predicative.

In practice, what we want most frequently is a slightly different statement: that a universe
U under consideration contains a type which “classifies all mere propositions”. In other words,
we want a type Ω : U together with an Ω-indexed family of mere propositions, which contains
every mere proposition up to equivalence. This statement follows from propositional resizing as
stated above if U is not the smallest universe U0, since then we can define Ω :≡ PropU0

.
One use for impredicativity is to define power sets. It is natural to define the power set of a

set A to be A→ PropU ; but in the absence of impredicativity, this definition depends (even up to
equivalence) on the choice of the universe U . But with propositional resizing, we can define the
power set to be

P(A) :≡ (A→ Ω),

which is then independent of U . See also §10.1.4.

3.6 The logic of mere propositions

We mentioned in §1.1 that in contrast to type theory, which has only one basic notion (types),
set-theoretic foundations have two basic notions: sets and propositions. Thus, a classical mathe-
matician is accustomed to manipulating these two kinds of objects separately.

It is possible to recover a similar dichotomy in type theory, with the role of the set-theoretic
propositions being played by the types (and type families) that are mere propositions. In many
cases, the logical connectives and quantifiers can be represented in this logic by simply restricting
the corresponding type-former to the mere propositions. Of course, this requires knowing that
the type-former in question preserves mere propositions.

Example 3.6.1. If A and B are mere propositions, so is A × B. This is easy to show using the
characterization of paths in products, just like Example 3.1.5 but simpler. Thus, the connective
“and” preserves mere propositions.

108 CHAPTER 3. SETS AND LOGIC

Example 3.6.2. If A is any type and B : A → U is such that for all x : A, the type B(x) is a
mere proposition, then ∏(x:A) B(x) is a mere proposition. The proof is just like Example 3.1.6
but simpler: given f , g : ∏(x:A) B(x), for any x : A we have f (x) = g(x) since B(x) is a mere
proposition. But then by function extensionality, we have f = g.

In particular, if B is a mere proposition, then so is A → B regardless of what A is. In even
more particular, since 0 is a mere proposition, so is ¬A ≡ (A → 0). Thus, the connectives
“implies” and “not” preserve mere propositions, as does the quantifier “for all”.

On the other hand, some type formers do not preserve mere propositions. Even if A and B
are mere propositions, A + B will not in general be. For instance, 1 is a mere proposition, but
2 = 1 + 1 is not. Logically speaking, A + B is a “purely constructive” sort of “or”: a witness
of it contains the additional information of which disjunct is true. Sometimes this is very useful,
but if we want a more classical sort of “or” that preserves mere propositions, we need a way to
“truncate” this type into a mere proposition by forgetting this additional information.

The same issue arises with the Σ-type ∑(x:A) P(x). This is a purely constructive interpretation
of “there exists an x : A such that P(x)” which remembers the witness x, and hence is not
generally a mere proposition even if each type P(x) is. (Recall that we observed in §3.5 that
∑(x:A) P(x) can also be regarded as “the subset of those x : A such that P(x)”.)

3.7 Propositional truncation

The propositional truncation, also called the (−1)-truncation, bracket type, or squash type, is an addi-
tional type former which “squashes” or “truncates” a type down to a mere proposition, forget-
ting all information contained in inhabitants of that type other than their existence.

More precisely, for any type A, there is a type ∥A∥. It has two constructors:

• For any a : A we have |a| : ∥A∥.
• For any x, y : ∥A∥, we have x = y.

The first constructor means that if A is inhabited, so is ∥A∥. The second ensures that ∥A∥ is a
mere proposition; usually we leave the witness of this fact nameless.

The recursion principle of ∥A∥ says that:

• If B is a mere proposition and we have f : A → B, then there is an induced g : ∥A∥ → B
such that g(|a|) ≡ f (a) for all a : A.

In other words, any mere proposition which follows from (the inhabitedness of) A already fol-
lows from ∥A∥. Thus, ∥A∥, as a mere proposition, contains no more information than the inhab-
itedness of A. (There is also an induction principle for ∥A∥, but it is not especially useful; see
Exercise 3.17.)

In Exercises 3.14 and 3.15 and §6.9 we will describe some ways to construct ∥A∥ in terms
of more general things. For now, we simply assume it as an additional rule alongside those of
Chapter 1.

With the propositional truncation, we can extend the “logic of mere propositions” to cover
disjunction and the existential quantifier. Specifically, ∥A + B∥ is a mere propositional version
of “A or B”, which does not “remember” the information of which disjunct is true.

The recursion principle of truncation implies that we can still do a case analysis on ∥A + B∥
when attempting to prove a mere proposition. That is, suppose we have an assumption u : ∥A + B∥
and we are trying to prove a mere proposition Q. In other words, we are trying to define an

3.7 PROPOSITIONAL TRUNCATION 109

element of ∥A + B∥ → Q. Since Q is a mere proposition, by the recursion principle for proposi-
tional truncation, it suffices to construct a function A+ B→ Q. But now we can use case analysis
on A + B.

Similarly, for a type family P : A→ U , we can consider
∥∥∥∑(x:A) P(x)

∥∥∥, which is a mere propo-

sitional version of “there exists an x : A such that P(x)”. As for disjunction, by combining the
induction principles of truncation and Σ-types, if we have an assumption of type

∥∥∥∑(x:A) P(x)
∥∥∥,

we may introduce new assumptions x : A and y : P(x) when attempting to prove a mere proposition.
In other words, if we know that there exists some x : A such that P(x), but we don’t have a
particular such x in hand, then we are free to make use of such an x as long as we aren’t trying to
construct anything which might depend on the particular value of x. Requiring the codomain to
be a mere proposition expresses this independence of the result on the witness, since all possible
inhabitants of such a type must be equal.

For the purposes of set-level mathematics in Chapters 10 and 11, where we deal mostly with
sets and mere propositions, it is convenient to use the traditional logical notations to refer only
to “propositionally truncated logic”.

Definition 3.7.1. We define traditional logical notation using truncation as follows, where P
and Q denote mere propositions (or families thereof):

⊤ :≡ 1

⊥ :≡ 0

P ∧Q :≡ P×Q

P⇒ Q :≡ P→ Q

P⇔ Q :≡ P = Q

¬P :≡ P→ 0

P ∨Q :≡ ∥P + Q∥
∀(x : A). P(x) :≡ ∏

x:A
P(x)

∃(x : A). P(x) :≡
∥∥∥∑

x:A
P(x)

∥∥∥
The notations ∧ and ∨ are also used in homotopy theory for the smash product and the

wedge of pointed spaces, which we will introduce in Chapter 6. This technically creates a poten-
tial for conflict, but no confusion will generally arise.

Similarly, when discussing subsets as in §3.5, we may use the traditional notation for inter-
sections, unions, and complements:

{ x : A | P(x) } ∩ { x : A | Q(x) } :≡ { x : A | P(x) ∧Q(x) } ,

{ x : A | P(x) } ∪ { x : A | Q(x) } :≡ { x : A | P(x) ∨Q(x) } ,

A \ { x : A | P(x) } :≡ { x : A | ¬P(x) } .

Of course, in the absence of LEM, the latter are not “complements” in the usual sense: we may
not have B ∪ (A \ B) = A for every subset B of A.

110 CHAPTER 3. SETS AND LOGIC

3.8 The axiom of choice

We can now properly formulate the axiom of choice in homotopy type theory. Assume a type X
and type families

A : X → U and P : ∏
x:X

A(x)→ U ,

and moreover that

• X is a set,
• A(x) is a set for all x : X, and
• P(x, a) is a mere proposition for all x : X and a : A(x).

The axiom of choice AC asserts that under these assumptions,(
∏
x:X

∥∥∥ ∑
a:A(x)

P(x, a)
∥∥∥)→ ∥∥∥ ∑

(g:∏(x:X) A(x))
∏
(x:X)

P(x, g(x))
∥∥∥. (3.8.1)

Of course, this is a direct translation of (3.2.1) where we read “there exists x : A such that B(x)”
as
∥∥∥∑(x:A) B(x)

∥∥∥, so we could have written the statement in the familiar logical notation as(
∀(x : X). ∃(a : A(x)). P(x, a)

)
⇒
(
∃(g : ∏(x:X) A(x)). ∀(x : X). P(x, g(x))

)
.

In particular, note that the propositional truncation appears twice. The truncation in the domain
means we assume that for every x there exists some a : A(x) such that P(x, a), but that these
values are not chosen or specified in any known way. The truncation in the codomain means
we conclude that there exists some function g, but this function is not determined or specified in
any known way.

In fact, because of Theorem 2.15.7, this axiom can also be expressed in a simpler form.

Lemma 3.8.2. The axiom of choice (3.8.1) is equivalent to the statement that for any set X and any
Y : X → U such that each Y(x) is a set, we have(

∏
x:X

∥∥∥Y(x)
∥∥∥)→ ∥∥∥∏

x:X
Y(x)

∥∥∥. (3.8.3)

This corresponds to a well-known equivalent form of the classical axiom of choice, namely
“the cartesian product of a family of nonempty sets is nonempty”.

Proof. By Theorem 2.15.7, the codomain of (3.8.1) is equivalent to∥∥∥ ∏
(x:X)

∑
(a:A(x))

P(x, a)
∥∥∥.

Thus, (3.8.1) is equivalent to the instance of (3.8.3) where Y(x) :≡ ∑(a:A(x)) P(x, a). (This is a set
by Example 3.1.5 and Lemma 3.3.4.) Conversely, (3.8.3) is equivalent to the instance of (3.8.1)
where A(x) :≡ Y(x) and P(x, a) :≡ 1. Thus, the two are logically equivalent. Since both are
mere propositions, by Lemma 3.3.3 they are equivalent types.

As with LEM, the equivalent forms (3.8.1) and (3.8.3) are not a consequence of our basic type
theory, but they may consistently be assumed as axioms.

3.9 THE PRINCIPLE OF UNIQUE CHOICE 111

Remark 3.8.4. It is easy to show that the right side of (3.8.3) always implies the left. Since both
are mere propositions, by Lemma 3.3.3 the axiom of choice is also equivalent to asking for an
equivalence (

∏
x:X

∥∥∥Y(x)
∥∥∥) ≃ ∥∥∥∏

x:X
Y(x)

∥∥∥
This illustrates a common pitfall: although dependent function types preserve mere propositions
(Example 3.6.2), they do not commute with truncation:

∥∥∥∏(x:A) P(x)
∥∥∥ is not generally equivalent

to ∏(x:A)∥P(x)∥. The axiom of choice, if we assume it, says that this is true for sets; as we will see
below, it fails in general.

The restriction in the axiom of choice to types that are sets can be relaxed to a certain extent.
For instance, we may allow A and P in (3.8.1), or Y in (3.8.3), to be arbitrary type families;
this results in a seemingly stronger statement that is equally consistent. We may also replace
the propositional truncation by the more general n-truncations to be considered in Chapter 7,
obtaining a spectrum of axioms ACn interpolating between (3.8.1), which we call simply AC (or
AC−1 for emphasis), and Theorem 2.15.7, which we shall call AC∞. See also Exercises 7.8 and 7.10.
However, observe that we cannot relax the requirement that X be a set.

Lemma 3.8.5. There exists a type X and a family Y : X → U such that each Y(x) is a set, but such
that (3.8.3) is false.

Proof. Define X :≡ ∑(A:U)∥2 = A∥, and let x0 :≡ (2, |refl2|) : X. Then by the identification of
paths in Σ-types, the fact that ∥A = 2∥ is a mere proposition, and univalence, for any (A, p), (B, q) :
X we have ((A, p) =X (B, q)) ≃ (A ≃ B). In particular, (x0 =X x0) ≃ (2 ≃ 2), so as in Exam-
ple 3.1.9, X is not a set.

On the other hand, if (A, p) : X, then A is a set; this follows by induction on truncation for
p : ∥2 = A∥ and the fact that 2 is a set. Since A ≃ B is a set whenever A and B are, it follows
that x1 =X x2 is a set for any x1, x2 : X, i.e. X is a 1-type. In particular, if we define Y : X → U by
Y(x) :≡ (x0 = x), then each Y(x) is a set.

Now by definition, for any (A, p) : X we have ∥2 = A∥, and hence ∥x0 = (A, p)∥. Thus,

we have ∏(x:X)∥Y(x)∥. If (3.8.3) held for this X and Y, then we would also have
∥∥∥∏(x:X) Y(x)

∥∥∥.
Since we are trying to derive a contradiction (0), which is a mere proposition, we may assume
∏(x:X) Y(x), i.e. that ∏(x:X)(x0 = x). But this implies X is a mere proposition, and hence a set,
which is a contradiction.

3.9 The principle of unique choice

The following observation is trivial, but very useful.

Lemma 3.9.1. If P is a mere proposition, then P ≃ ∥P∥.

Proof. Of course, we have P→ ∥P∥ by definition. And since P is a mere proposition, the univer-
sal property of ∥P∥ applied to idP : P → P yields ∥P∥ → P. These functions are quasi-inverses
by Lemma 3.3.3.

Among its important consequences is the following.

Corollary 3.9.2 (The principle of unique choice). Suppose a type family P : A→ U such that

112 CHAPTER 3. SETS AND LOGIC

(i) For each x, the type P(x) is a mere proposition, and
(ii) For each x we have ∥P(x)∥.

Then we have ∏(x:A) P(x).

Proof. Immediate from the two assumptions and the previous lemma.

The corollary also encapsulates a very useful technique of reasoning. Namely, suppose we
know that ∥A∥, and we want to use this to construct an element of some other type B. We
would like to use an element of A in our construction of an element of B, but this is allowed
only if B is a mere proposition, so that we can apply the induction principle for the propositional
truncation ∥A∥; the most we could hope to do in general is to show ∥B∥. Instead, we can extend
B with additional data which characterizes uniquely the object we wish to construct. Specifically,
we define a predicate Q : B → U such that ∑(x:B) Q(x) is a mere proposition. Then from an
element of A we construct an element b : B such that Q(b), hence from ∥A∥ we can construct∥∥∥∑(x:B) Q(x)

∥∥∥, and because
∥∥∥∑(x:B) Q(x)

∥∥∥ is equivalent to ∑(x:B) Q(x) an element of B may be
projected from it. An example can be found in Exercise 3.19.

A similar issue arises in set-theoretic mathematics, although it manifests slightly differently.
If we are trying to define a function f : A→ B, and depending on an element a : A we are able to
prove mere existence of some b : B, we are not done yet because we need to actually pinpoint an
element of B, not just prove its existence. One option is of course to refine the argument to unique
existence of b : B, as we did in type theory. But in set theory the problem can often be avoided
more simply by an application of the axiom of choice, which picks the required elements for us.
In homotopy type theory, however, quite apart from any desire to avoid choice, the available
forms of choice are simply less applicable, since they require that the domain of choice be a set.
Thus, if A is not a set (such as perhaps a universe U), there is no consistent form of choice that
will allow us to simply pick an element of B for each a : A to use in defining f (a).

3.10 When are propositions truncated?

At first glance, it may seem that the truncated versions of + and Σ are actually closer to the
informal mathematical meaning of “or” and “there exists” than the untruncated ones. Certainly,
they are closer to the precise meaning of “or” and “there exists” in the first-order logic which
underlies formal set theory, since the latter makes no attempt to remember any witnesses to the
truth of propositions. However, it may come as a surprise to realize that the practice of informal
mathematics is often more accurately described by the untruncated forms.

For example, consider a statement like “every prime number is either 2 or odd”. The working
mathematician feels no compunction about using this fact not only to prove theorems about prime
numbers, but also to perform constructions on prime numbers, perhaps doing one thing in the
case of 2 and another in the case of an odd prime. The end result of the construction is not
merely the truth of some statement, but a piece of data which may depend on the parity of the
prime number. Thus, from a type-theoretic perspective, such a construction is naturally phrased
using the induction principle for the coproduct type “(p = 2) + (p is odd)”, not its propositional
truncation.

Admittedly, this is not an ideal example, since “p = 2” and “p is odd” are mutually exclusive,
so that (p = 2) + (p is odd) is in fact already a mere proposition and hence equivalent to its
truncation (see Exercise 3.7). More compelling examples come from the existential quantifier. It

3.10 WHEN ARE PROPOSITIONS TRUNCATED? 113

is not uncommon to prove a theorem of the form “there exists an x such that . . . ” and then refer
later on to “the x constructed in Theorem Y” (note the definite article). Moreover, when deriving
further properties of this x, one may use phrases such as “by the construction of x in the proof
of Theorem Y”.

A very common example is “A is isomorphic to B”, which strictly speaking means only that
there exists some isomorphism between A and B. But almost invariably, when proving such a
statement, one exhibits a specific isomorphism or proves that some previously known map is an
isomorphism, and it often matters later on what particular isomorphism was given.

Set-theoretically trained mathematicians often feel a twinge of guilt at such “abuses of lan-
guage”. We may attempt to apologize for them, expunge them from final drafts, or weasel out
of them with vague words like “canonical”. The problem is exacerbated by the fact that in for-
malized set theory, there is technically no way to “construct” objects at all — we can only prove
that an object with certain properties exists. Untruncated logic in type theory thus captures some
common practices of informal mathematics that the set theoretic reconstruction obscures. (This
is similar to how the univalence axiom validates the common, but formally unjustified, practice
of identifying isomorphic objects.)

On the other hand, sometimes truncated logic is essential. We have seen this in the statements
of LEM and AC; some other examples will appear later on in the book. Thus, we are faced with
the problem: when writing informal type theory, what should we mean by the words “or” and
“there exists” (along with common synonyms such as “there is” and “we have”)?

A universal consensus may not be possible. Perhaps depending on the sort of mathematics
being done, one convention or the other may be more useful — or, perhaps, the choice of con-
vention may be irrelevant. In this case, a remark at the beginning of a mathematical paper may
suffice to inform the reader of the linguistic conventions in use therein. However, even after
one overall convention is chosen, the other sort of logic will usually arise at least occasionally,
so we need a way to refer to it. More generally, one may consider replacing the propositional
truncation with another operation on types that behaves similarly, such as the double negation
operation A 7→ ¬¬A, or the n-truncations to be considered in Chapter 7. As an experiment in
exposition, in what follows we will occasionally use adverbs to denote the application of such
“modalities” as propositional truncation.

For instance, if untruncated logic is the default convention, we may use the adverb merely
to denote propositional truncation. Thus the phrase

“there merely exists an x : A such that P(x)”

indicates the type
∥∥∥∑(x:A) P(x)

∥∥∥. Similarly, we will say that a type A is merely inhabited to

mean that its propositional truncation ∥A∥ is inhabited (i.e. that we have an unnamed element
of it). Note that this is a definition of the adverb “merely” as it is to be used in our informal math-
ematical English, in the same way that we define nouns like “group” and “ring”, and adjectives
like “regular” and “normal”, to have precise mathematical meanings. We are not claiming that
the dictionary definition of “merely” refers to propositional truncation; the choice of word is
meant only to remind the mathematician reader that a mere proposition contains “merely” the
information of a truth value and nothing more.

On the other hand, if truncated logic is the current default convention, we may use an adverb
such as purely or constructively to indicate its absence, so that

“there purely exists an x : A such that P(x)”

114 CHAPTER 3. SETS AND LOGIC

would denote the type ∑(x:A) P(x). We may also use “purely” or “actually” just to emphasize
the absence of truncation, even when that is the default convention.

In this book we will continue using untruncated logic as the default convention, for a number
of reasons.

(1) We want to encourage the newcomer to experiment with it, rather than sticking to trun-
cated logic simply because it is more familiar.

(2) Using truncated logic as the default in type theory suffers from the same sort of “abuse
of language” problems as set-theoretic foundations, which untruncated logic avoids. For
instance, our definition of “A ≃ B” as the type of equivalences between A and B, rather
than its propositional truncation, means that to prove a theorem of the form “A ≃ B” is
literally to construct a particular such equivalence. This specific equivalence can then be
referred to later on.

(3) We want to emphasize that the notion of “mere proposition” is not a fundamental part of
type theory. As we will see in Chapter 7, mere propositions are just the second rung on an
infinite ladder, and there are also many other modalities not lying on this ladder at all.

(4) Many statements that classically are mere propositions are no longer so in homotopy type
theory. Of course, foremost among these is equality.

(5) On the other hand, one of the most interesting observations of homotopy type theory is
that a surprising number of types are automatically mere propositions, or can be slightly
modified to become so, without the need for any truncation. (See Lemma 3.3.5 and Chap-
ters 4, 7, 9 and 10.) Thus, although these types contain no data beyond a truth value, we
can nevertheless use them to construct untruncated objects, since there is no need to use the
induction principle of propositional truncation. This useful fact is more clumsy to express
if propositional truncation is applied to all statements by default.

(6) Finally, truncations are not very useful for most of the mathematics we will be doing in this
book, so it is simpler to notate them explicitly when they occur.

3.11 Contractibility

In Lemma 3.3.2 we observed that a mere proposition which is inhabited must be equivalent to
1, and it is not hard to see that the converse also holds. A type with this property is called
contractible. Another equivalent definition of contractibility, which is also sometimes convenient,
is the following.

Definition 3.11.1. A type A is contractible, or a singleton, if there is a : A, called the center of
contraction, such that a = x for all x : A. We denote the specified path a = x by contrx.

In other words, the type isContr(A) is defined to be

isContr(A) :≡ ∑
(a:A)

∏
(x:A)

(a = x).

Note that under the usual propositions-as-types reading, we can pronounce isContr(A) as “A
contains exactly one element”, or more precisely “A contains an element, and every element of
A is equal to that element”.

3.11 CONTRACTIBILITY 115

Remark 3.11.2. We can also pronounce isContr(A) more topologically as “there is a point a : A
such that for all x : A there exists a path from a to x”. Note that to a classical ear, this sounds like
a definition of connectedness rather than contractibility. The point is that the meaning of “there
exists” in this sentence is a continuous/natural one.

A better way to express connectedness would be ∑(a:A) ∏(x:A)∥a = x∥. This is indeed correct
if A is assumed to be pointed — see the remark after Lemma 7.5.11 — but in general a type can
be connected without being pointed. In §7.5 we will define connectedness as the n = 0 case of
a general notion of n-connectedness, and in Exercise 7.6 the reader is asked to show that this
definition is equivalent to having both ∥A∥ and ∏(x,y:A)∥x = y∥.

Lemma 3.11.3. For a type A, the following are logically equivalent.

(i) A is contractible in the sense of Definition 3.11.1.
(ii) A is a mere proposition, and there is a point a : A.

(iii) A is equivalent to 1.

Proof. If A is contractible, then it certainly has a point a : A (the center of contraction), while for
any x, y : A we have x = a = y; thus A is a mere proposition. Conversely, if we have a : A
and A is a mere proposition, then for any x : A we have x = a; thus A is contractible. And we
showed (ii)⇒(iii) in Lemma 3.3.2, while the converse follows since 1 easily has property (ii).

Lemma 3.11.4. For any type A, the type isContr(A) is a mere proposition.

Proof. Suppose given c, c′ : isContr(A). We may assume c ≡ (a, p) and c′ ≡ (a′, p′) for a, a′ : A
and p : ∏(x:A)(a = x) and p′ : ∏(x:A)(a′ = x). By the characterization of paths in Σ-types, to
show c = c′ it suffices to exhibit q : a = a′ such that q∗(p) = p′. We choose q :≡ p(a′). Now since
A is contractible (by c or c′), by Lemma 3.11.3 it is a mere proposition. Hence, by Lemma 3.3.4
and Example 3.6.2, so is ∏(x:A)(a′ = x); thus q∗(p) = p′ is automatic.

Corollary 3.11.5. If A is contractible, then so is isContr(A).

Proof. By Lemma 3.11.4 and Lemma 3.11.3(ii).

Like mere propositions, contractible types are preserved by many type constructors. For
instance, we have:

Lemma 3.11.6. If P : A → U is a type family such that each P(a) is contractible, then ∏(x:A) P(x) is
contractible.

Proof. By Example 3.6.2, ∏(x:A) P(x) is a mere proposition since each P(x) is. But it also has an
element, namely the function sending each x : A to the center of contraction of P(x). Thus by
Lemma 3.11.3(ii), ∏(x:A) P(x) is contractible.

(In fact, the statement of Lemma 3.11.6 is equivalent to the function extensionality axiom.
See §4.9.)

Of course, if A is equivalent to B and A is contractible, then so is B. More generally, it suffices
for B to be a retract of A. By definition, a retraction is a function r : A → B such that there exists
a function s : B→ A, called its section, and a homotopy ϵ : ∏(y:B)(r(s(y)) = y); then we say that
B is a retract of A.

Lemma 3.11.7. If B is a retract of A, and A is contractible, then so is B.

116 CHAPTER 3. SETS AND LOGIC

Proof. Let a0 : A be the center of contraction. We claim that b0 :≡ r(a0) : B is a center of
contraction for B. Let b : B; we need a path b = b0. But we have ϵb : r(s(b)) = b and contrs(b) :
s(b) = a0, so by composition

ϵb
−1 � r

(
contrs(b)

)
: b = r(a0) ≡ b0.

Contractible types may not seem very interesting, since they are all equivalent to 1. One
reason the notion is useful is that sometimes a collection of individually nontrivial data will
collectively form a contractible type. An important example is the space of paths with one free
endpoint. As we will see in §5.8, this fact essentially encapsulates the based path induction
principle for identity types.

Lemma 3.11.8. For any A and any a : A, the type ∑(x:A)(a = x) is contractible.

Proof. We choose as center the point (a, refla). Now suppose (x, p) : ∑(x:A)(a = x); we must
show (a, refla) = (x, p). By the characterization of paths in Σ-types, it suffices to exhibit q : a = x
such that q∗(refla) = p. But we can take q :≡ p, in which case q∗(refla) = p follows from the
characterization of transport in path types.

When this happens, it can allow us to simplify a complicated construction up to equivalence,
using the informal principle that contractible data can be freely ignored. This principle consists
of many lemmas, most of which we leave to the reader; the following is an example.

Lemma 3.11.9. Let P : A→ U be a type family.

(i) If each P(x) is contractible, then ∑(x:A) P(x) is equivalent to A.

(ii) If A is contractible with center a, then ∑(x:A) P(x) is equivalent to P(a).

Proof. In the situation of (i), we show that pr1 : ∑(x:A) P(x) → A is an equivalence. For quasi-
inverse we define g(x) :≡ (x, cx) where cx is the center of P(x). The composite pr1 ◦ g is obviously
idA, whereas the opposite composite is homotopic to the identity by using the contractions of
each P(x).

We leave the proof of (ii) to the reader (see Exercise 3.20).

Another reason contractible types are interesting is that they extend the ladder of n-types
mentioned in §3.1 downwards one more step.

Lemma 3.11.10. A type A is a mere proposition if and only if for all x, y : A, the type x =A y is
contractible.

Proof. For “if”, we simply observe that any contractible type is inhabited. For “only if”, we
observed in §3.3 that every mere proposition is a set, so that each type x =A y is a mere proposi-
tion. But it is also inhabited (since A is a mere proposition), and hence by Lemma 3.11.3(ii) it is
contractible.

Thus, contractible types may also be called (−2)-types. They are the bottom rung of the
ladder of n-types, and will be the base case of the recursive definition of n-types in Chapter 7.

CHAPTER 3 NOTES 117

Notes

The fact that it is possible to define sets, mere propositions, and contractible types in type the-
ory, with all higher homotopies automatically taken care of as in §§3.1, 3.3 and 3.11, was first
observed by Voevodsky. In fact, he defined the entire hierarchy of n-types by induction, as we
will do in Chapter 7.

Theorem 3.2.2 and Corollary 3.2.7 rely in essence on a classical theorem of Hedberg, which
we will prove in §7.2. The implication that the propositions-as-types form of LEM contradicts
univalence was observed by Martı́n Escardó on the AGDA mailing list. The proof we have given
of Theorem 3.2.2 is due to Thierry Coquand.

The propositional truncation was introduced in the extensional type theory of NUPRL in
1983 by Constable [Con85] as an application of “subset” and “quotient” types. What is here
called the “propositional truncation” was called “squashing” in the NUPRL type theory [CAB+86].
Rules characterizing the propositional truncation directly, still in extensional type theory, were
given in [AB04]. The intensional version in homotopy type theory was constructed by Voevod-
sky using an impredicative quantification, and later by Lumsdaine using higher inductive types
(see §6.9).

Voevodsky [Voe12] has proposed resizing rules of the kind considered in §3.5. These are
clearly related to the notorious axiom of reducibility proposed by Russell in his and Whitehead’s
Principia Mathematica [WR27].

The adverb “purely” as used to refer to untruncated logic is a reference to the use of monadic
modalities to model effects in programming languages; see §7.7 and the Notes to Chapter 7.

There are many different ways in which logic can be treated relative to type theory. For in-
stance, in addition to the plain propositions-as-types logic described in §1.11, and the alternative
which uses mere propositions only as described in §3.6, one may introduce a separate “sort” of
propositions, which behave somewhat like types but are not identified with them. This is the
approach taken in logic enriched type theory [AG02] and in some presentations of the internal
languages of toposes and related categories (e.g. [Jac99, Joh02]), as well as in the proof assistant
COQ. Such an approach is more general, but less powerful. For instance, the principle of unique
choice (§3.9) fails in the category of so-called setoids in COQ [Spi11], in logic enriched type the-
ory [AG02], and in minimal type theory [MS05]. Thus, the univalence axiom makes our type
theory behave more like the internal logic of a topos; see also Chapter 10.

Martin-Löf [ML06] provides a discussion on the history of axioms of choice. Of course, con-
structive and intuitionistic mathematics has a long and complicated history, which we will not
delve into here; see for instance [TvD88a, TvD88b].

Exercises

Exercise 3.1. Prove that if A ≃ B and A is a set, then so is B.

Exercise 3.2. Prove that if A and B are sets, then so is A + B.

Exercise 3.3. Prove that if A is a set and B : A → U is a type family such that B(x) is a set for all
x : A, then ∑(x:A) B(x) is a set.

Exercise 3.4. Show that A is a mere proposition if and only if A→ A is contractible.

Exercise 3.5. Show that isProp(A) ≃ (A→ isContr(A)).

Exercise 3.6. Show that if A is a mere proposition, then so is A + (¬A). Thus, there is no need to
insert a propositional truncation in (3.4.1).

118 CHAPTER 3. SETS AND LOGIC

Exercise 3.7. More generally, show that if A and B are mere propositions and ¬(A × B), then
A + B is also a mere proposition.

Exercise 3.8. Assuming that some type isequiv(f) satisfies conditions (i)–(iii) of §2.4, show that
the type ∥qinv(f)∥ satisfies the same conditions and is equivalent to isequiv(f).

Exercise 3.9. Show that if LEM holds, then the type Prop :≡ ∑(A:U) isProp(A) is equivalent to 2.

Exercise 3.10. Show that if Ui+1 satisfies LEM, then the canonical inclusion PropUi
→ PropUi+1

is
an equivalence.

Exercise 3.11. Show that it is not the case that for all A : U we have ∥A∥ → A. (However, there
can be particular types for which ∥A∥ → A. Exercise 3.8 implies that qinv(f) is such.)

Exercise 3.12. Show that if LEM holds, then for all A : U we have
∥∥(∥A∥ → A)

∥∥. (This property is
a very simple form of the axiom of choice, which can fail in the absence of LEM; see [KECA13].)

Exercise 3.13. We showed in Corollary 3.2.7 that the following naive form of LEM is inconsistent
with univalence:

∏
A:U

(A + (¬A))

In the absence of univalence, this axiom is consistent. However, show that it implies the axiom
of choice (3.8.1).

Exercise 3.14. Show that assuming LEM, the double negation ¬¬A has the same recursion prin-
ciple as the propositional truncation ∥A∥ but with a propositional computation rule rather than
a judgmental one. In other words, prove that assuming LEM, if B is a mere proposition and we
have f : A → B, then there is an induced g : ¬¬A → B such that g(|a|) = f (a) for all a : A. De-
duce that (assuming LEM) we have ¬¬A ≃ ∥A∥. Thus, under LEM, the propositional truncation
can be defined rather than taken as a separate type former.

Exercise 3.15. Show that if we assume propositional resizing as in §3.5, then the type

∏
P:Prop

(
(A→ P)→ P

)
has the same recursion principle as ∥A∥, with the same judgmental computation rule. Thus, we
can also define the propositional truncation in this case.

Exercise 3.16. Assuming LEM, show that double negation commutes with universal quantifica-
tion of mere propositions over sets. That is, show that if X is a set and each Y(x) is a mere
proposition, then LEM implies (

∏
x:X
¬¬Y(x)

)
≃
(
¬¬∏

x:X
Y(x)

)
. (3.11.11)

Observe that if we assume instead that each Y(x) is a set, then (3.11.11) becomes equivalent to
the axiom of choice (3.8.3).

Exercise 3.17. Show that the rules for the propositional truncation given in §3.7 are sufficient to
imply the following induction principle: for any type family B : ∥A∥ → U such that each B(x)
is a mere proposition, if for every a : A we have B(|a|), then for every x : ∥A∥ we have B(x).

Exercise 3.18. Show that the law of excluded middle (3.4.1) and the law of double negation (3.4.2)
are logically equivalent.

CHAPTER 3 EXERCISES 119

Exercise 3.19. Suppose P : N→ U is a decidable family (see Definition 3.4.3(ii)) of mere proposi-
tions. Prove that ∥∥∥∑

n:N
P(n)

∥∥∥ → ∑
n:N

P(n).

Exercise 3.20. Prove Lemma 3.11.9(ii): if A is contractible with center a, then ∑(x:A) P(x) is equiv-
alent to P(a).

Exercise 3.21. Prove that isProp(P) ≃ (P ≃ ∥P∥).
Exercise 3.22. As in classical set theory, the finite version of the axiom of choice is a theorem.
Prove that the axiom of choice (3.8.1) holds when X is a finite type Fin(n) (as defined in Exer-
cise 1.9).

Exercise 3.23. Show that the conclusion of Exercise 3.19 is true if P : N → U is any decidable
family.

Exercise 3.24. Simplify the proof of Theorem 2.13.1 by first proving that code(m, n) is a mere
proposition for all m, n.

120 CHAPTER 3. SETS AND LOGIC

Chapter 4

Equivalences

We now study in more detail the notion of equivalence of types that was introduced briefly in §2.4.
Specifically, we will give several different ways to define a type isequiv(f) having the properties
mentioned there. Recall that we wanted isequiv(f) to have the following properties, which we
restate here:

(i) qinv(f)→ isequiv(f).

(ii) isequiv(f)→ qinv(f).

(iii) isequiv(f) is a mere proposition.

Here qinv(f) denotes the type of quasi-inverses to f :

∑
g:B→A

(
(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

)
.

By function extensionality, it follows that qinv(f) is equivalent to the type

∑
g:B→A

(
(f ◦ g = idB)× (g ◦ f = idA)

)
.

We will define three different types having properties (i)–(iii), which we call

• half adjoint equivalences,

• bi-invertible maps, and

• contractible functions.

We will also show that all these types are equivalent. These names are intentionally somewhat
cumbersome, because after we know that they are all equivalent and have properties (i)–(iii), we
will revert to saying simply “equivalence” without needing to specify which particular definition
we choose. But for purposes of the comparisons in this chapter, we need different names for each
definition.

Before we examine the different notions of equivalence, however, we give a little more expla-
nation of why a different concept than quasi-invertibility is needed.

122 CHAPTER 4. EQUIVALENCES

4.1 Quasi-inverses

We have said that qinv(f) is unsatisfactory because it is not a mere proposition, whereas we
would rather that a given function could “be an equivalence” in at most one way. However, we
have given no evidence that qinv(f) is not a mere proposition. In this section we exhibit a specific
counterexample.

Lemma 4.1.1. If f : A→ B is such that qinv(f) is inhabited, then

qinv(f) ≃
(
∏
x:A

(x = x)
)

.

Proof. By assumption, f is an equivalence; that is, we have e : isequiv(f) and so (f , e) : A ≃ B.
By univalence, idtoeqv : (A = B) → (A ≃ B) is an equivalence, so we may assume that (f , e) is
of the form idtoeqv(p) for some p : A = B. Then by path induction, we may assume p is reflA,
in which case f is idA. Thus we are reduced to proving qinv(idA) ≃ (∏(x:A)(x = x)). Now by
definition we have

qinv(idA) ≡ ∑
g:A→A

(
(g ∼ idA)× (g ∼ idA)

)
.

By function extensionality, this is equivalent to

∑
g:A→A

(
(g = idA)× (g = idA)

)
.

And by Exercise 2.10, this is equivalent to

∑
h:∑(g:A→A)(g=idA)

(pr1(h) = idA)

However, by Lemma 3.11.8, ∑(g:A→A)(g = idA) is contractible with center (idA, reflidA); therefore
by Lemma 3.11.9 this type is equivalent to idA = idA. And by function extensionality, idA = idA
is equivalent to ∏(x:A) x = x.

We remark that Exercise 4.3 asks for a proof of the above lemma which avoids univalence.
Thus, what we need is some A which admits a nontrivial element of ∏(x:A)(x = x). Thinking

of A as a higher groupoid, an inhabitant of ∏(x:A)(x = x) is a natural transformation from the
identity functor of A to itself. Such transformations are said to form the center of a category,
since the naturality axiom requires that they commute with all morphisms. Classically, if A is
simply a group regarded as a one-object groupoid, then this yields precisely its center in the
usual group-theoretic sense. This provides some motivation for the following.

Lemma 4.1.2. Suppose we have a type A with a : A and q : a = a such that

(i) The type a = a is a set.

(ii) For all x : A we have ∥a = x∥.

(iii) For all p : a = a we have p � q = q � p.

Then there exists f : ∏(x:A)(x = x) with f (a) = q.

4.1 QUASI-INVERSES 123

Proof. Let g : ∏(x:A)∥a = x∥ be as given by (ii). First we observe that each type x =A y is a set.
For since being a set is a mere proposition, we may apply the induction principle of propositional
truncation, and assume that g(x) = |p| and g(y) = |p′| for p : a = x and p′ : a = y. In this case,
composing with p and p′−1 yields an equivalence (x = y) ≃ (a = a). But (a = a) is a set by (i),
so (x = y) is also a set.

Now, we would like to define f by assigning to each x the path g(x)−1 � q � g(x), but this does
not work because g(x) does not inhabit a = x but rather ∥a = x∥, and the type (x = x) may not
be a mere proposition, so we cannot use induction on propositional truncation. Instead we can
apply the technique mentioned in §3.9: we characterize uniquely the object we wish to construct.
Let us define, for each x : A, the type

B(x) :≡ ∑
(r:x=x)

∏
(s:a=x)

(r = s−1 � q � s).

We claim that B(x) is a mere proposition for each x : A. Since this claim is itself a mere proposi-
tion, we may again apply induction on truncation and assume that g(x) = |p| for some p : a = x.
Now suppose given (r, h) and (r′, h′) in B(x); then we have

h(p) � h′(p)−1 : r = r′.

It remains to show that h is identified with h′ when transported along this equality, which by
transport in identity types and function types (§§2.9 and 2.11), reduces to showing

h(s) = h(p) � h′(p)−1 � h′(s)

for any s : a = x. But each side of this is an equality between elements of (x = x), so it follows
from our above observation that (x = x) is a set.

Thus, each B(x) is a mere proposition; we claim that ∏(x:A) B(x). Given x : A, we may
now invoke the induction principle of propositional truncation to assume that g(x) = |p| for
p : a = x. We define r :≡ p−1 � q � p; to inhabit B(x) it remains to show that for any s : a = x we
have r = s−1 � q � s. Manipulating paths, this reduces to showing that q � (p � s−1) = (p � s−1) � q.
But this is just an instance of (iii).

Theorem 4.1.3. There exist types A and B and a function f : A → B such that qinv(f) is not a mere
proposition.

Proof. It suffices to exhibit a type X such that ∏(x:X)(x = x) is not a mere proposition. Define
X :≡ ∑(A:U)∥2 = A∥, as in the proof of Lemma 3.8.5. It will suffice to exhibit an f : ∏(x:X)(x = x)
which is unequal to λx. reflx.

Let a :≡ (2, |refl2|) : X, and let q : a = a be the path corresponding to the nonidentity
equivalence e : 2 ≃ 2 defined by e(02) :≡ 12 and e(12) :≡ 02. We would like to apply Lemma 4.1.2
to build an f . By definition of X, equalities in subset types (§3.5), and univalence, we have
(a = a) ≃ (2 ≃ 2), which is a set, so (i) holds. Similarly, by definition of X and equalities in
subset types we have (ii). Finally, Exercise 2.13 implies that every equivalence 2 ≃ 2 is equal to
either id2 or e, so we can show (iii) by a four-way case analysis.

Thus, we have f : ∏(x:X)(x = x) such that f (a) = q. Since e is not equal to id2, q is not equal
to refla, and thus f is not equal to λx. reflx. Therefore, ∏(x:X)(x = x) is not a mere proposition.

More generally, Lemma 4.1.2 implies that any “Eilenberg–Mac Lane space” K(G, 1), where G
is a nontrivial abelian group, will provide a counterexample; see Chapter 8. The type X we used

124 CHAPTER 4. EQUIVALENCES

turns out to be equivalent to K(Z2, 1). In Chapter 6 we will see that the circle S1 = K(Z, 1) is
another easy-to-describe example.

We now move on to describing better notions of equivalence.

4.2 Half adjoint equivalences

In §4.1 we concluded that qinv(f) is equivalent to ∏(x:A)(x = x) by discarding a contractible
type. Roughly, the type qinv(f) contains three data g, η, and ϵ, of which two (g and η) could
together be seen to be contractible when f is an equivalence. The problem is that removing these
data left one remaining (ϵ). In order to solve this problem, the idea is to add one additional datum
which, together with ϵ, forms a contractible type.

Definition 4.2.1. A function f : A → B is a half adjoint equivalence if there are g : B → A and
homotopies η : g ◦ f ∼ idA and ϵ : f ◦ g ∼ idB such that there exists a homotopy

τ : ∏
x:A

f (ηx) = ϵ(f x).

Thus we have a type ishae(f), defined to be

∑
(g:B→A)

∑
(η:g◦ f∼idA)

∑
(ϵ: f ◦g∼idB)

∏
(x:A)

f (ηx) = ϵ(f x).

Note that in the above definition, the coherence condition relating η and ϵ only involves f . We
might consider instead an analogous coherence condition involving g:

υ : ∏
y:B

g(ϵy) = η(gy)

and a resulting analogous definition ishae′(f).
Fortunately, it turns out each of the conditions implies the other one:

Lemma 4.2.2. For functions f : A → B and g : B → A and homotopies η : g ◦ f ∼ idA and
ϵ : f ◦ g ∼ idB, the following conditions are logically equivalent:

• ∏(x:A) f (ηx) = ϵ(f x)
• ∏(y:B) g(ϵy) = η(gy)

Proof. It suffices to show one direction; the other one is obtained by replacing A, f , and η by B,
g, and ϵ respectively. Let τ : ∏(x:A) f (ηx) = ϵ(f x). Fix y : B. Using naturality of ϵ and applying
g, we get the following commuting diagram of paths:

g f g f gy
g f g(ϵy)

g(ϵ(f gy))

g f gy

g(ϵy)

g f gy
g(ϵy)

gy

Using τ(gy) on the left side of the diagram gives us

g f g f gy
g f g(ϵy)

g f (η(gy))

g f gy

g(ϵy)

g f gy
g(ϵy)

gy

4.2 HALF ADJOINT EQUIVALENCES 125

Using the commutativity of η with g ◦ f (Corollary 2.4.4), we have

g f g f gy
g f g(ϵy)

η(g f gy)

g f gy

g(ϵy)

g f gy
g(ϵy)

gy

However, by naturality of η we also have

g f g f gy
g f g(ϵy)

η(g f gy)

g f gy

η(gy)

g f gy
g(ϵy)

gy

Thus, canceling all but the right-hand homotopy, we have g(ϵy) = η(gy) as desired.

However, it is important that we do not include both τ and υ in the definition of ishae(f)
(whence the name “half adjoint equivalence”). If we did, then after canceling contractible types
we would still have one remaining datum — unless we added another higher coherence con-
dition. In general, we expect to get a well-behaved type if we cut off after an odd number of
coherences.

Of course, it is obvious that ishae(f) → qinv(f): simply forget the coherence datum. The
other direction is a version of a standard argument from homotopy theory and category theory.

Theorem 4.2.3. For any f : A→ B we have qinv(f)→ ishae(f).

Proof. Suppose that (g, η, ϵ) is a quasi-inverse for f . We have to provide a quadruple (g′, η′, ϵ′, τ)

witnessing that f is a half adjoint equivalence. To define g′ and η′, we can just make the obvious
choice by setting g′ :≡ g and η′ :≡ η. However, in the definition of ϵ′ we need start worrying
about the construction of τ, so we cannot just follow our nose and take ϵ′ to be ϵ. Instead, we
take

ϵ′(b) :≡ ϵ(f (g(b)))−1 � (f (η(g(b))) � ϵ(b)).

Now we need to find

τ(a) : f (η(a)) = ϵ(f (g(f (a))))−1 � (f (η(g(f (a)))) � ϵ(f (a))).

Note first that by Corollary 2.4.4, we have η(g(f (a))) = g(f (η(a))). Therefore, we can apply
Lemma 2.4.3 to compute

f (η(g(f (a)))) � ϵ(f (a)) = f (g(f (η(a)))) � ϵ(f (a))

= ϵ(f (g(f (a)))) � f (η(a))

from which we get the desired path τ(a).

Combining this with Lemma 4.2.2 (or symmetrizing the proof), we also have qinv(f) →
ishae′(f).

It remains to show that ishae(f) is a mere proposition. For this, we will need to know that the
fibers of an equivalence are contractible.

126 CHAPTER 4. EQUIVALENCES

Definition 4.2.4. The fiber of a map f : A→ B over a point y : B is

fib f (y) :≡ ∑
x:A

(f (x) = y).

In homotopy theory, this is what would be called the homotopy fiber of f . The path lemmas in
§2.5 yield the following characterization of paths in fibers:

Lemma 4.2.5. For any f : A→ B, y : B, and (x, p), (x′, p′) : fib f (y), we have

(
(x, p) = (x′, p′)

)
≃
(

∑
γ:x=x′

f (γ) � p′ = p
)

Theorem 4.2.6. If f : A → B is a half adjoint equivalence, then for any y : B the fiber fib f (y) is
contractible.

Proof. Let (g, η, ϵ, τ) : ishae(f), and fix y : B. As our center of contraction for fib f (y) we choose
(gy, ϵy). Now take any (x, p) : fib f (y); we want to construct a path from (gy, ϵy) to (x, p). By
Lemma 4.2.5, it suffices to give a path γ : gy = x such that f (γ) � p = ϵy. We put γ :≡ g(p)−1 � ηx.
Then we have

f (γ) � p = f g(p)−1 � f (ηx) � p

= f g(p)−1 � ϵ(f x) � p

= ϵy

where the second equality follows by τx and the third equality is naturality of ϵ.

We now define the types which encapsulate contractible pairs of data. The following types
put together the quasi-inverse g with one of the homotopies.

Definition 4.2.7. Given a function f : A→ B, we define the types

linv(f) :≡ ∑
g:B→A

(g ◦ f ∼ idA)

rinv(f) :≡ ∑
g:B→A

(f ◦ g ∼ idB)

of left inverses and right inverses to f , respectively. We call f left invertible if linv(f) is inhab-
ited, and similarly right invertible if rinv(f) is inhabited.

Lemma 4.2.8. If f : A→ B has a quasi-inverse, then so do

(f ◦ –) : (C → A)→ (C → B)

(– ◦ f) : (B→ C)→ (A→ C).

Proof. If g is a quasi-inverse of f , then (g ◦ –) and (– ◦ g) are quasi-inverses of (f ◦ –) and (– ◦ f)
respectively.

Lemma 4.2.9. If f : A→ B has a quasi-inverse, then the types rinv(f) and linv(f) are contractible.

4.2 HALF ADJOINT EQUIVALENCES 127

Proof. By function extensionality, we have

linv(f) ≃ ∑
g:B→A

(g ◦ f = idA).

But this is the fiber of (– ◦ f) over idA, and so by Lemma 4.2.8 and Theorems 4.2.3 and 4.2.6, it is
contractible. Similarly, rinv(f) is equivalent to the fiber of (f ◦ –) over idB and hence contractible.

Next we define the types which put together the other homotopy with the additional coher-
ence datum.

Definition 4.2.10. For f : A→ B, a left inverse (g, η) : linv(f), and a right inverse (g, ϵ) : rinv(f),
we denote

lcoh f (g, η) :≡ ∑
(ϵ: f ◦g∼idB)

∏
(y:B)

g(ϵy) = η(gy),

rcoh f (g, ϵ) :≡ ∑
(η:g◦ f∼idA)

∏
(x:A)

f (ηx) = ϵ(f x).

Lemma 4.2.11. For any f , g, ϵ, η, we have

lcoh f (g, η) ≃∏
y:B

(f gy, η(gy)) =fibg(gy) (y, reflgy),

rcoh f (g, ϵ) ≃∏
x:A

(g f x, ϵ(f x)) =fib f (f x) (x, refl f x).

Proof. Using Lemma 4.2.5.

Lemma 4.2.12. If f is a half adjoint equivalence, then for any (g, ϵ) : rinv(f), the type rcoh f (g, ϵ) is
contractible.

Proof. By Lemma 4.2.11 and the fact that dependent function types preserve contractible spaces,
it suffices to show that for each x : A, the type (g f x, ϵ(f x)) =fib f (f x) (x, refl f x) is contractible.
But by Theorem 4.2.6, fib f (f x) is contractible, and any path space of a contractible space is itself
contractible.

Theorem 4.2.13. For any f : A→ B, the type ishae(f) is a mere proposition.

Proof. By Exercise 3.5 it suffices to assume f to be a half adjoint equivalence and show that
ishae(f) is contractible. Now by associativity of Σ (Exercise 2.10), the type ishae(f) is equivalent
to

∑
u:rinv(f)

rcoh f (pr1(u), pr2(u)).

But by Lemmas 4.2.9 and 4.2.12 and the fact that Σ preserves contractibility, the latter type is also
contractible.

Thus, we have shown that ishae(f) has all three desiderata for the type isequiv(f). In the next
two sections we consider a couple of other possibilities.

128 CHAPTER 4. EQUIVALENCES

4.3 Bi-invertible maps

Using the language introduced in §4.2, we can restate the definition proposed in §2.4 as follows.

Definition 4.3.1. We say f : A→ B is bi-invertible if it has both a left inverse and a right inverse:

biinv(f) :≡ linv(f)× rinv(f).

In §2.4 we proved that qinv(f) → biinv(f) and biinv(f) → qinv(f). What remains is the
following.

Theorem 4.3.2. For any f : A→ B, the type biinv(f) is a mere proposition.

Proof. We may suppose f to be bi-invertible and show that biinv(f) is contractible. But since
biinv(f)→ qinv(f), by Lemma 4.2.9 in this case both linv(f) and rinv(f) are contractible, and the
product of contractible types is contractible.

Note that this also fits the proposal made at the beginning of §4.2: we combine g and η into
a contractible type and add an additional datum which combines with ϵ into a contractible type.
The difference is that instead of adding a higher datum (a 2-dimensional path) to combine with
ϵ, we add a lower one (a right inverse that is separate from the left inverse).

Corollary 4.3.3. For any f : A→ B we have biinv(f) ≃ ishae(f).

Proof. We have biinv(f) → qinv(f) → ishae(f) and ishae(f) → qinv(f) → biinv(f). Since both
ishae(f) and biinv(f) are mere propositions, the equivalence follows from Lemma 3.3.3.

4.4 Contractible fibers

Note that our proofs about ishae(f) and biinv(f) made essential use of the fact that the fibers of an
equivalence are contractible. In fact, it turns out that this property is itself a sufficient definition
of equivalence.

Definition 4.4.1 (Contractible maps). A map f : A → B is contractible if for all y : B, the fiber
fib f (y) is contractible.

Thus, the type isContr(f) is defined to be

isContr(f) :≡∏
y:B

isContr(fib f (y)) (4.4.2)

Note that in §3.11 we defined what it means for a type to be contractible. Here we are defining
what it means for a map to be contractible. Our terminology follows the general homotopy-
theoretic practice of saying that a map has a certain property if all of its (homotopy) fibers have
that property. Thus, a type A is contractible just when the map A → 1 is contractible. From
Chapter 7 onwards we will also call contractible maps and types (−2)-truncated.

We have already shown in Theorem 4.2.6 that ishae(f)→ isContr(f). Conversely:

Theorem 4.4.3. For any f : A→ B we have isContr(f)→ ishae(f).

4.5 ON THE DEFINITION OF EQUIVALENCES 129

Proof. Let P : isContr(f). We define an inverse mapping g : B → A by sending each y : B to the
center of contraction of the fiber at y:

g(y) :≡ pr1(pr1(Py)).

We can thus define the homotopy ϵ by mapping y to the witness that g(y) indeed belongs to the
fiber at y:

ϵ(y) :≡ pr2(pr1(Py)).

It remains to define η and τ. This of course amounts to giving an element of rcoh f (g, ϵ). By
Lemma 4.2.11, this is the same as giving for each x : A a path from (g f x, ϵ(f x)) to (x, refl f x)

in the fiber of f over f x. But this is easy: for any x : A, the type fib f (f x) is contractible by
assumption, hence such a path must exist. We can construct it explicitly as(

pr2(P(f x))(g f x, ϵ(f x))
)−1 �

(
pr2(P(f x))(x, refl f x)

)
.

It is also easy to see:

Lemma 4.4.4. For any f , the type isContr(f) is a mere proposition.

Proof. By Lemma 3.11.4, each type isContr(fib f (y)) is a mere proposition. Thus, by Example 3.6.2,
so is (4.4.2).

Theorem 4.4.5. For any f : A→ B we have isContr(f) ≃ ishae(f).

Proof. We have already established a logical equivalence isContr(f) ⇔ ishae(f), and both are
mere propositions (Lemma 4.4.4 and Theorem 4.2.13). Thus, Lemma 3.3.3 applies.

Usually, we prove that a function is an equivalence by exhibiting a quasi-inverse, but some-
times this definition is more convenient. For instance, it implies that when proving a function to
be an equivalence, we are free to assume that its codomain is inhabited.

Corollary 4.4.6. If f : A→ B is such that B→ isequiv(f), then f is an equivalence.

Proof. To show f is an equivalence, it suffices to show that fib f (y) is contractible for any y : B. But
if e : B → isequiv(f), then given any such y we have e(y) : isequiv(f), so that f is an equivalence
and hence fib f (y) is contractible, as desired.

4.5 On the definition of equivalences

We have shown that all three definitions of equivalence satisfy the three desirable properties and
are pairwise equivalent:

isContr(f) ≃ ishae(f) ≃ biinv(f).

(There are yet more possible definitions of equivalence, but we will stop with these three. See
Exercise 3.8 and the exercises in this chapter for some more.) Thus, we may choose any one of
them as “the” definition of isequiv(f). For definiteness, we choose to define

isequiv(f) :≡ ishae(f).

This choice is advantageous for formalization, since ishae(f) contains the most directly useful
data. On the other hand, for other purposes, biinv(f) is often easier to deal with, since it contains
no 2-dimensional paths and its two symmetrical halves can be treated independently. However,
for purposes of this book, the specific choice will make little difference.

In the rest of this chapter, we study some other properties and characterizations of equiva-
lences.

130 CHAPTER 4. EQUIVALENCES

4.6 Surjections and embeddings

When A and B are sets and f : A → B is an equivalence, we also call it as isomorphism or a
bijection. (We avoid these words for types that are not sets, since in homotopy theory and higher
category theory they often denote a stricter notion of “sameness” than homotopy equivalence.)
In set theory, a function is a bijection just when it is both injective and surjective. The same is
true in type theory, if we formulate these conditions appropriately. For clarity, when dealing
with types that are not sets, we will speak of embeddings instead of injections.

Definition 4.6.1. Let f : A→ B.

(i) We say f is surjective (or a surjection) if for every b : B we have
∥∥fib f (b)

∥∥.
(ii) We say f is an embedding if for every x, y : A the function ap f : (x =A y) → (f (x) =B

f (y)) is an equivalence.

In other words, f is surjective if every fiber of f is merely inhabited, or equivalently if for all
b : B there merely exists an a : A such that f (a) = b. In traditional logical notation, f is surjective
if ∀(b : B). ∃(a : A). (f (a) = b). This must be distinguished from the stronger assertion that
∏(b:B) ∑(a:A)(f (a) = b); if this holds we say that f is a split surjection. (Since this latter type
is equivalent to ∑(g:B→A) ∏(b:B)(f (g(b)) = b), being a split surjection is the same as being a
retraction as defined in §3.11.)

The axiom of choice from §3.8 says exactly that every surjection between sets is split. How-
ever, in the presence of the univalence axiom, it is simply false that all surjections are split. In
Lemma 3.8.5 we constructed a type family Y : X → U such that ∏(x:X)∥Y(x)∥ but ¬∏(x:X) Y(x);
for any such family, the first projection (∑(x:X) Y(x))→ X is a surjection that is not split.

If A and B are sets, then by Lemma 3.3.3, f is an embedding just when

∏
x,y:A

(f (x) =B f (y))→ (x =A y). (4.6.2)

In this case we say that f is injective, or an injection. We avoid these word for types that are
not sets, because they might be interpreted as (4.6.2), which is an ill-behaved notion for non-sets.
It is also true that any function between sets is surjective if and only if it is an epimorphism in a
suitable sense, but this also fails for more general types, and surjectivity is generally the more
important notion.

Theorem 4.6.3. A function f : A → B is an equivalence if and only if it is both surjective and an
embedding.

Proof. If f is an equivalence, then each fib f (b) is contractible, hence so is
∥∥fib f (b)

∥∥, so f is surjec-
tive. And we showed in Theorem 2.11.1 that any equivalence is an embedding.

Conversely, suppose f is a surjective embedding. Let b : B; we show that ∑(x:A)(f (x) = b)
is contractible. Since f is surjective, there merely exists an a : A such that f (a) = b. Thus, the
fiber of f over b is inhabited; it remains to show it is a mere proposition. For this, suppose given
x, y : A with p : f (x) = b and q : f (y) = b. Then since ap f is an equivalence, there exists
r : x = y with ap f (r) = p � q−1. However, using the characterization of paths in Σ-types, the
latter equality rearranges to r∗(p) = q. Thus, together with r it exhibits (x, p) = (y, q) in the fiber
of f over b.

Corollary 4.6.4. For any f : A→ B we have

isequiv(f) ≃ (isEmbedding(f)× isSurjective(f)).

4.7 CLOSURE PROPERTIES OF EQUIVALENCES 131

Proof. Being a surjection and an embedding are both mere propositions; now apply Lemma 3.3.3.

Of course, this cannot be used as a definition of “equivalence”, since the definition of embed-
dings refers to equivalences. However, this characterization can still be useful; see §8.8. We will
generalize it in Chapter 7.

4.7 Closure properties of equivalences

We have already seen in Lemma 2.4.12 that equivalences are closed under composition. Further-
more, we have:

Theorem 4.7.1 (The 2-out-of-3 property). Suppose f : A→ B and g : B→ C. If any two of f , g, and
g ◦ f are equivalences, so is the third.

Proof. If g ◦ f and g are equivalences, then (g ◦ f)−1 ◦ g is a quasi-inverse to f . On the one hand,
we have (g ◦ f)−1 ◦ g ◦ f ∼ idA, while on the other we have

f ◦ (g ◦ f)−1 ◦ g ∼ g−1 ◦ g ◦ f ◦ (g ◦ f)−1 ◦ g

∼ g−1 ◦ g

∼ idB.

Similarly, if g ◦ f and f are equivalences, then f ◦ (g ◦ f)−1 is a quasi-inverse to g.

This is a standard closure condition on equivalences from homotopy theory. Also well-
known is that they are closed under retracts, in the following sense.

Definition 4.7.2. A function g : A→ B is said to be a retract of a function f : X → Y if there is a
diagram

A s //

g
��

X r //

f
��

A
g
��

B
s′
// Y

r′
// B

for which there are

(i) a homotopy R : r ◦ s ∼ idA.

(ii) a homotopy R′ : r′ ◦ s′ ∼ idB.

(iii) a homotopy L : f ◦ s ∼ s′ ◦ g.

(iv) a homotopy K : g ◦ r ∼ r′ ◦ f .

(v) for every a : A, a path H(a) witnessing the commutativity of the square

g(r(s(a)))
K(s(a))

g(R(a))

r′(f (s(a)))

r′(L(a))

g(a)
R′(g(a))−1

r′(s′(g(a)))

132 CHAPTER 4. EQUIVALENCES

Recall that in §3.11 we defined what it means for a type to be a retract of another. This is a
special case of the above definition where B and Y are 1. Conversely, just as with contractibility,
retractions of maps induce retractions of their fibers.

Lemma 4.7.3. If a function g : A → B is a retract of a function f : X → Y, then fibg(b) is a retract of
fib f (s′(b)) for every b : B, where s′ : B→ Y is as in Definition 4.7.2.

Proof. Suppose that g : A→ B is a retract of f : X → Y. Then for any b : B we have the functions

φb : fibg(b)→ fib f (s′(b)), φb(a, p) :≡ (s(a), L(a) � s′(p)),

ψb : fib f (s′(b))→ fibg(b), ψb(x, q) :≡ (r(x), K(x) � r′(q) � R′(b)).

Then we have ψb(φb(a, p)) ≡ (r(s(a)), K(s(a)) � r′(L(a) � s′(p)) � R′(b)). We claim ψb is a retrac-
tion with section φb for all b : B, which is to say that for all (a, p) : fibg(b) we have ψb(φb(a, p)) =
(a, p). In other words, we want to show

∏
(b:B)

∏
(a:A)

∏
(p:g(a)=b)

ψb(φb(a, p)) = (a, p).

By reordering the first two Πs and applying a version of Lemma 3.11.9, this is equivalent to

∏
a:A

ψg(a)(φg(a)(a, reflg(a))) = (a, reflg(a)).

For any a, by Theorem 2.7.2, this equality of pairs is equivalent to a pair of equalities. The first
components are equal by R(a) : r(s(a)) = a, so we need only show

R(a)∗
(
K(s(a)) � r′(L(a)) � R′(g(a))

)
= reflg(a).

But this transportation computes as g(R(a))−1 � K(s(a)) � r′(L(a)) � R′(g(a)), so the required path
is given by H(a).

Theorem 4.7.4. If g is a retract of an equivalence f , then g is also an equivalence.

Proof. By Lemma 4.7.3, every fiber of g is a retract of a fiber of f . Thus, by Lemma 3.11.7, if the
latter are all contractible, so are the former.

Finally, we show that fiberwise equivalences can be characterized in terms of equivalences
of total spaces. To explain the terminology, recall from §2.3 that a type family P : A → U can
be viewed as a fibration over A with total space ∑(x:A) P(x), the fibration being the projection
pr1 : ∑(x:A) P(x) → A. From this point of view, given two type families P, Q : A → U , we may
refer to a function f : ∏(x:A)(P(x) → Q(x)) as a fiberwise map or a fiberwise transformation.
Such a map induces a function on total spaces:

Definition 4.7.5. Given type families P, Q : A → U and a map f : ∏(x:A) P(x) → Q(x), we
define

total(f) :≡ λw. (pr1w, f (pr1w, pr2w)) : ∑
x:A

P(x)→ ∑
x:A

Q(x).

Theorem 4.7.6. Suppose that f is a fiberwise transformation between families P and Q over a type A
and let x : A and v : Q(x). Then we have an equivalence

fibtotal(f)((x, v)) ≃ fib f (x)(v).

4.8 THE OBJECT CLASSIFIER 133

Proof. We calculate:

fibtotal(f)((x, v)) ≡ ∑
w:∑(x:A) P(x)

(pr1w, f (pr1w, pr2w)) = (x, v)

≃ ∑
(a:A)

∑
(u:P(a))

(a, f (a, u)) = (x, v) (by Exercise 2.10)

≃ ∑
(a:A)

∑
(u:P(a))

∑
(p:a=x)

p∗(f (a, u)) = v (by Theorem 2.7.2)

≃ ∑
(a:A)

∑
(p:a=x)

∑
(u:P(a))

p∗(f (a, u)) = v

≃ ∑
u:P(x)

f (x, u) = v (∗)

≡ fib f (x)(v).

The equivalence (∗) follows from Lemmas 3.11.8 and 3.11.9 and Exercise 2.10.

We say that a fiberwise transformation f : ∏(x:A) P(x) → Q(x) is a fiberwise equivalence if
each f (x) : P(x)→ Q(x) is an equivalence.

Theorem 4.7.7. Suppose that f is a fiberwise transformation between families P and Q over a type A.
Then f is a fiberwise equivalence if and only if total(f) is an equivalence.

Proof. Let f , P, Q and A be as in the statement of the theorem. By Theorem 4.7.6 it follows for
all x : A and v : Q(x) that fibtotal(f)((x, v)) is contractible if and only if fib f (x)(v) is contractible.
Thus, fibtotal(f)(w) is contractible for all w : ∑(x:A) Q(x) if and only if fib f (x)(v) is contractible for
all x : A and v : Q(x).

4.8 The object classifier

In type theory we have a basic notion of family of types, namely a function B : A → U . We have
seen that such families behave somewhat like fibrations in homotopy theory, with the fibration
being the projection pr1 : ∑(a:A) B(a) → A. A basic fact in homotopy theory is that every map is
equivalent to a fibration. With univalence at our disposal, we can prove the same thing in type
theory.

Lemma 4.8.1. For any type family B : A → U , the fiber of pr1 : ∑(x:A) B(x) → A over a : A is
equivalent to B(a):

fibpr1(a) ≃ B(a)

Proof. We have

fibpr1(a) :≡ ∑
u:∑(x:A) B(x)

pr1(u) = a

≃ ∑
(x:A)

∑
(b:B(x))

(x = a)

≃ ∑
(x:A)

∑
(p:x=a)

B(x)

≃ B(a)

using the left universal property of identity types.

134 CHAPTER 4. EQUIVALENCES

Lemma 4.8.2. For any function f : A→ B, we have A ≃ ∑(b:B) fib f (b).

Proof. We have

∑
b:B

fib f (b) :≡ ∑
(b:B)

∑
(a:A)

(f (a) = b)

≃ ∑
(a:A)

∑
(b:B)

(f (a) = b)

≃ A

using the fact that ∑(b:B)(f (a) = b) is contractible.

Theorem 4.8.3. For any type B there is an equivalence

χ :
(

∑
A:U

(A→ B)
)
≃ (B→ U).

Proof. We have to construct quasi-inverses

χ :
(

∑
A:U

(A→ B)
)
→ B→ U

ψ : (B→ U)→
(

∑
A:U

(A→ B)
)

.

We define χ by χ((A, f), b) :≡ fib f (b), and ψ by ψ(P) :≡
(
(∑(b:B) P(b)), pr1

)
. Now we have to

verify that χ ◦ ψ ∼ id and that ψ ◦ χ ∼ id.

(i) Let P : B → U . By Lemma 4.8.1, fibpr1(b) ≃ P(b) for any b : B, so it follows immediately
that P ∼ χ(ψ(P)).

(ii) Let f : A→ B be a function. We have to find a path(
∑(b:B)fib f (b), pr1

)
= (A, f).

First note that by Lemma 4.8.2, we have e : ∑(b:B) fib f (b) ≃ A with e(b, a, p) :≡ a and
e−1(a) :≡ (f (a), a, refl f (a)). By Theorem 2.7.2, it remains to show (ua(e))∗(pr1) = f . But by
the computation rule for univalence and (2.9.4), we have (ua(e))∗(pr1) = pr1 ◦ e−1, and the
definition of e−1 immediately yields pr1 ◦ e−1 ≡ f .

In particular, this implies that we have an object classifier in the sense of higher topos theory.
Recall from Definition 2.1.7 that U• denotes the type ∑(A:U) A of pointed types.

Theorem 4.8.4. Let f : A→ B be a function. Then the diagram

A
ϑ f
//

f
��

U•
pr1
��

B
χ f
// U

is a pullback square (see Exercise 2.11). Here the function ϑ f is defined by

λa. (fib f (f (a)), (a, refl f (a))).

4.9 UNIVALENCE IMPLIES FUNCTION EXTENSIONALITY 135

Proof. Note that we have the equivalences

A ≃∑
b:B

fib f (b)

≃ ∑
(b:B)

∑
(X:U)

∑
(p:fib f (b)=X)

X

≃ ∑
(b:B)

∑
(X:U)

∑
(x:X)

fib f (b) = X

≃ ∑
(b:B)

∑
(Y:U•)

fib f (b) = pr1Y

≡ B×U U•

which gives us a composite equivalence e : A ≃ B ×U U•. We may display the action of this
composite equivalence step by step by

a 7→ (f (a), (a, refl f (a)))

7→ (f (a), fib f (f (a)), reflfib f (f (a)), (a, refl f (a)))

7→ (f (a), fib f (f (a)), (a, refl f (a)), reflfib f (f (a))).

Therefore, we get homotopies f ∼ pr1 ◦ e and ϑ f ∼ pr2 ◦ e.

4.9 Univalence implies function extensionality

In the last section of this chapter we include a proof that the univalence axiom implies function
extensionality. Thus, in this section we work without the function extensionality axiom. The
proof consists of two steps. First we show in Theorem 4.9.4 that the univalence axiom implies
a weak form of function extensionality, defined in Definition 4.9.1 below. The principle of weak
function extensionality in turn implies the usual function extensionality, and it does so without
the univalence axiom (Theorem 4.9.5).

Let U be a universe; we will explicitly indicate where we assume that it is univalent.

Definition 4.9.1. The weak function extensionality principle asserts that there is a function(
∏
x:A

isContr(P(x))
)
→ isContr

(
∏
x:A

P(x)
)

for any family P : A→ U of types over any type A.

The following lemma is easy to prove using function extensionality; the point here is that it
also follows from univalence without assuming function extensionality separately.

Lemma 4.9.2. Assuming U is univalent, for any A, B, X : U and any e : A ≃ B, there is an equivalence

(X → A) ≃ (X → B)

of which the underlying map is given by post-composition with the underlying function of e.

Proof. As in the proof of Lemma 4.1.1, we may assume that e = idtoeqv(p) for some p : A = B.
Then by path induction, we may assume p is reflA, so that e = idA. But in this case, post-
composition with e is the identity, hence an equivalence.

136 CHAPTER 4. EQUIVALENCES

Corollary 4.9.3. Let P : A → U be a family of contractible types, i.e. ∏(x:A) isContr(P(x)). Then the
projection pr1 : (∑(x:A) P(x)) → A is an equivalence. Assuming U is univalent, it follows immediately
that post-composition with pr1 gives an equivalence

α :
(

A→ ∑
x:A

P(x)
)
≃ (A→ A).

Proof. By Lemma 4.8.1, for pr1 : ∑(x:A) P(X)→ A and x : A we have an equivalence

fibpr1(x) ≃ P(x).

Therefore pr1 is an equivalence whenever each P(x) is contractible. The assertion is now a con-
sequence of Lemma 4.9.2.

In particular, the homotopy fiber of the above equivalence at idA is contractible. Therefore, we
can show that univalence implies weak function extensionality by showing that the dependent
function type ∏(x:A) P(x) is a retract of fibα(idA).

Theorem 4.9.4. In a univalent universe U , suppose that P : A → U is a family of contractible types
and let α be the function of Corollary 4.9.3. Then ∏(x:A) P(x) is a retract of fibα(idA). As a consequence,
∏(x:A) P(x) is contractible. In other words, the univalence axiom implies the weak function extensionality
principle.

Proof. Define the functions

φ : (∏(x:A)P(x))→ fibα(idA),

φ(f) :≡ (λx. (x, f (x)), reflidA),

and

ψ : fibα(idA)→ ∏(x:A)P(x),

ψ(g, p) :≡ λx. happly(p, x)∗(pr2(g(x))).

Then ψ(φ(f)) = λx. f (x), which is f , by the uniqueness principle for dependent function types.

We now show that weak function extensionality implies the usual function extensionality.
Recall from (2.9.2) the function happly(f , g) : (f = g) → (f ∼ g) which converts equality of
functions to homotopy. In the proof that follows, the univalence axiom is not used.

Theorem 4.9.5. Weak function extensionality implies the function extensionality Axiom 2.9.3.

Proof. We want to show that

∏
(A:U)

∏
(P:A→U)

∏
(f ,g:∏(x:A) P(x))

isequiv(happly(f , g)).

Since a fiberwise map induces an equivalence on total spaces if and only if it is fiberwise an
equivalence by Theorem 4.7.7, it suffices to show that the function of type(

∑
g:∏(x:A) P(x)

(f = g)
)
→ ∑

g:∏(x:A) P(x)
(f ∼ g)

CHAPTER 4 NOTES 137

induced by λ(g : ∏(x:A) P(x)). happly(f , g) is an equivalence. Since the type on the left is con-
tractible by Lemma 3.11.8, it suffices to show that the type on the right:

∑
(g:∏(x:A) P(x))

∏
(x:A)

f (x) = g(x) (4.9.6)

is contractible. Now Theorem 2.15.7 says that this is equivalent to

∏
(x:A)

∑
(u:P(x))

f (x) = u. (4.9.7)

The proof of Theorem 2.15.7 uses function extensionality, but only for one of the composites.
Thus, without assuming function extensionality, we can conclude that (4.9.6) is a retract of (4.9.7).
And (4.9.7) is a product of contractible types, which is contractible by the weak function exten-
sionality principle; hence (4.9.6) is also contractible.

Notes

The fact that the space of continuous maps equipped with quasi-inverses has the wrong homo-
topy type to be the “space of homotopy equivalences” is well-known in algebraic topology. In
that context, the “space of homotopy equivalences” (A ≃ B) is usually defined simply as the
subspace of the function space (A → B) consisting of the functions that are homotopy equiva-
lences. In type theory, this would correspond most closely to ∑(f :A→B)∥qinv(f)∥; see Exercise 3.8.

The first definition of equivalence given in homotopy type theory was the one that we have
called isContr(f), which was due to Voevodsky. The possibility of the other definitions was
subsequently observed by various people. The basic theorems about adjoint equivalences such
as Lemma 4.2.2 and Theorem 4.2.3 are adaptations of standard facts in higher category theory
and homotopy theory. Using bi-invertibility as a definition of equivalences was suggested by
André Joyal.

The properties of equivalences discussed in §§4.6 and 4.7 are well-known in homotopy the-
ory. Most of them were first proven in type theory by Voevodsky.

The fact that every function is equivalent to a fibration is a standard fact in homotopy the-
ory. The notion of object classifier in (∞, 1)-category theory (the categorical analogue of Theo-
rem 4.8.3) is due to Rezk (see [Rez05, Lur09]).

Finally, the fact that univalence implies function extensionality (§4.9) is due to Voevodsky.
Our proof is a simplification of his. Exercise 4.9 is also due to Voevodsky.

Exercises

Exercise 4.1. Consider the type of “two-sided adjoint equivalence data” for f : A→ B,

∑
(g:B→A)

∑
(η:g◦ f∼idA)

∑
(ϵ: f ◦g∼idB)

(
∏
x:A

f (ηx) = ϵ(f x)
)
×
(
∏
y:B

g(ϵy) = η(gy)
)

.

By Lemma 4.2.2, we know that if f is an equivalence, then this type is inhabited. Give a charac-
terization of this type analogous to Lemma 4.1.1.

Can you give an example showing that this type is not generally a mere proposition? (This
will be easier after Chapter 6.)

138 CHAPTER 4. EQUIVALENCES

Exercise 4.2. Show that for any A, B : U , the following type is equivalent to A ≃ B.

∑
R:A→B→U

(
∏
a:A

isContr
(
∑
b:B

R(a, b)
))
×
(
∏
b:B

isContr
(
∑
a:A

R(a, b)
))

.

Can you extract from this a definition of a type satisfying the three desiderata of isequiv(f)?

Exercise 4.3. Reformulate the proof of Lemma 4.1.1 without using univalence.

Exercise 4.4 (The unstable octahedral axiom). Suppose f : A→ B and g : B→ C and b : B.

(i) Show that there is a natural map fibg◦ f (g(b)) → fibg(g(b)) whose fiber over (b, reflg(b)) is
equivalent to fib f (b).

(ii) Show that fibg◦ f (c) ≃ ∑(w:fibg(c)) fib f (pr1w).

Exercise 4.5. Prove that equivalences satisfy the 2-out-of-6 property: given f : A → B and g : B →
C and h : C → D, if g ◦ f and h ◦ g are equivalences, so are f , g, h, and h ◦ g ◦ f . Use this to give
a higher-level proof of Theorem 2.11.1.

Exercise 4.6. For A, B : U , define

idtoqinvA,B : (A = B)→ ∑
f :A→B

qinv(f)

by path induction in the obvious way. Let qinv-univalence denote the modified form of the
univalence axiom which asserts that for all A, B : U the function idtoqinvA,B has a quasi-inverse.

(i) Show that qinv-univalence can be used instead of univalence in the proof of function ex-
tensionality in §4.9.

(ii) Show that qinv-univalence can be used instead of univalence in the proof of Theorem 4.1.3.
(iii) Show that qinv-univalence is inconsistent (i.e. allows construction of an inhabitant of 0).

Thus, the use of a “good” version of isequiv is essential in the statement of univalence.

Exercise 4.7. Show that a function f : A → B is an embedding if and only if the following two
conditions hold:

(i) f is left cancellable, i.e. for any x, y : A, if f (x) = f (y) then x = y.
(ii) For any x : A, the map ap f : Ω(A, x)→ Ω(B, f (x)) is an equivalence.

(In particular, if A is a set, then f is an embedding if and only if it is left-cancellable and
Ω(B, f (x)) is contractible for all x : A.) Give examples to show that neither of (i) or (ii) implies
the other.

Exercise 4.8. Show that the type of left-cancellable functions 2→ B (see Exercise 4.7) is equivalent
to ∑(x,y:B)(x ̸= y). Give a similar explicit characterization of the type of embeddings 2→ B.

Exercise 4.9. The naı̈ve non-dependent function extensionality axiom says that for A, B : U and
f , g : A→ B there is a function (∏(x:A) f (x) = g(x))→ (f = g). Modify the argument of §4.9 to
show that this axiom implies the full function extensionality axiom (Axiom 2.9.3).

Chapter 5

Induction

In Chapter 1, we introduced many ways to form new types from old ones. Except for (de-
pendent) function types and universes, all these rules are special cases of the general notion of
inductive definition. In this chapter we study inductive definitions more generally.

5.1 Introduction to inductive types

An inductive type X can be intuitively understood as a type “freely generated” by a certain fi-
nite collection of constructors, each of which is a function (of some number of arguments) with
codomain X. This includes functions of zero arguments, which are simply elements of X.

When describing a particular inductive type, we list the constructors with bullets. For in-
stance, the type 2 from §1.8 is inductively generated by the following constructors:

• 02 : 2
• 12 : 2

Similarly, 1 is inductively generated by the constructor:

• ⋆ : 1

while 0 is inductively generated by no constructors at all. An example where the constructor
functions take arguments is the coproduct A + B, which is generated by the two constructors

• inl : A→ A + B
• inr : B→ A + B.

And an example with a constructor taking multiple arguments is the cartesian product A× B,
which is generated by one constructor

• (–, –) : A→ B→ A× B.

Crucially, we also allow constructors of inductive types that take arguments from the inductive
type being defined. For instance, the type N of natural numbers has constructors

• 0 : N

• succ : N→N.

Another useful example is the type List(A) of finite lists of elements of some type A, which has
constructors

140 CHAPTER 5. INDUCTION

• nil : List(A)

• cons : A→ List(A)→ List(A).

Intuitively, we should understand an inductive type as being freely generated by its construc-
tors. That is, the elements of an inductive type are exactly what can be obtained by starting from
nothing and applying the constructors repeatedly. (We will see in §5.8 and Chapter 6 that this
conception has to be modified slightly for more general kinds of inductive definitions, but for
now it is sufficient.) For instance, in the case of 2, we should expect that the only elements are 02

and 12. Similarly, in the case of N, we should expect that every element is either 0 or obtained
by applying succ to some “previously constructed” natural number.

Rather than assert properties such as this directly, however, we express them by means of an
induction principle, also called a (dependent) elimination rule. We have seen these principles already
in Chapter 1. For instance, the induction principle for 2 is:

• When proving a statement E : 2→ U about all inhabitants of 2, it suffices to prove it for 02

and 12, i.e., to give proofs e0 : E(02) and e1 : E(12).

Furthermore, the resulting proof ind2(E, e0, e1) : ∏(b:2) E(b) behaves as expected when ap-
plied to the constructors 02 and 12; this principle is expressed by the computation rules:

• We have ind2(E, e0, e1, 02) ≡ e0.
• We have ind2(E, e0, e1, 12) ≡ e1.

Thus, the induction principle for the type 2 of booleans allows us to reason by case analysis.
Since neither of the two constructors takes any arguments, this is all we need for booleans.

For natural numbers, however, case analysis is generally not sufficient: in the case corre-
sponding to the inductive step succ(n), we also want to presume that the statement being proven
has already been shown for n. This gives us the following induction principle:

• When proving a statement E : N→ U about all natural numbers, it suffices to prove it for 0
and for succ(n), assuming it holds for n, i.e., we construct ez : E(0) and es : ∏(n:N) E(n) →
E(succ(n)).

As in the case of booleans, we also have the associated computation rules for the function
indN(E, ez, es) : ∏(x:N) E(x):

• indN(E, ez, es, 0) ≡ ez.
• indN(E, ez, es, succ(n)) ≡ es(n, indN(E, ez, es, n)) for any n : N.

The dependent function indN(E, ez, es) can thus be understood as being defined recursively on
the argument x : N, via the functions ez and es which we call the recurrences. When x is zero,
the function simply returns ez. When x is the successor of another natural number n, the result is
obtained by taking the recurrence es and substituting the specific predecessor n and the recursive
call value indN(E, ez, es, n).

The induction principles for all the examples mentioned above share this family resemblance.
In §5.6 we will discuss a general notion of “inductive definition” and how to derive an appro-
priate induction principle for it, but first we investigate various commonalities between inductive
definitions.

For instance, we have remarked in every case in Chapter 1 that from the induction principle
we can derive a recursion principle in which the codomain is a simple type (rather than a family).

5.2 UNIQUENESS OF INDUCTIVE TYPES 141

Both induction and recursion principles may seem odd, since they yield only the existence of a
function without seeming to characterize it uniquely. However, in fact the induction principle is
strong enough also to prove its own uniqueness principle, as in the following theorem.

Theorem 5.1.1. Let f , g : ∏(x:N) E(x) be two functions which satisfy the recurrences

ez : E(0) and es : ∏
n:N

E(n)→ E(succ(n))

up to propositional equality, i.e., such that

f (0) = ez and g(0) = ez

as well as

∏
n:N

f (succ(n)) = es(n, f (n)),

∏
n:N

g(succ(n)) = es(n, g(n)).

Then f and g are equal.

Proof. We use induction on the type family D(x) :≡ f (x) = g(x). For the base case, we have

f (0) = ez = g(0).

For the inductive case, assume n : N such that f (n) = g(n). Then

f (succ(n)) = es(n, f (n)) = es(n, g(n)) = g(succ(n)).

The first and last equality follow from the assumptions on f and g. The middle equality follows
from the inductive hypothesis and the fact that application preserves equality. This gives us
pointwise equality between f and g; invoking function extensionality finishes the proof.

Note that the uniqueness principle applies even to functions that only satisfy the recurrences
up to propositional equality, i.e. a path. Of course, the particular function obtained from the induc-
tion principle satisfies these recurrences judgmentally; we will return to this point in §5.5. On
the other hand, the theorem itself only asserts a propositional equality between functions (see
also Exercise 5.2). From a homotopical viewpoint it is natural to ask whether this path is coherent,
i.e. whether the equality f = g is unique up to higher paths; in §5.4 we will see that this is in fact
the case.

Of course, similar uniqueness theorems for functions can generally be formulated and shown
for other inductive types as well. In the next section, we show how this uniqueness property, to-
gether with univalence, implies that an inductive type such as the natural numbers is completely
characterized by its introduction, elimination, and computation rules.

5.2 Uniqueness of inductive types

We have defined “the” natural numbers to be a particular type N with particular inductive
generators 0 and succ. However, by the general principle of inductive definitions in type theory
described in the previous section, there is nothing preventing us from defining another type in an
identical way. That is, suppose we let N′ be the inductive type generated by the constructors

142 CHAPTER 5. INDUCTION

• 0′ : N′

• succ′ : N′ →N′.

Then N′ will have identical-looking induction and recursion principles to N. When proving
a statement E : N′ → U for all of these “new” natural numbers, it suffices to give the proofs
ez : E(0′) and es : ∏(n:N′) E(n)→ E(succ′(n)). And the function recN′(E, ez, es) : ∏(n:N′) E(n) has
the following computation rules:

• recN′(E, ez, es, 0′) ≡ ez,
• recN′(E, ez, es, succ′(n)) ≡ es(n, recN′(E, ez, es, n)) for any n : N′.

But what is the relation between N and N′?
This is not just an academic question, since structures that “look like” the natural numbers

can be found in many other places. For instance, we may identify natural numbers with lists
over the type with one element (this is arguably the oldest appearance, found on walls of caves),
with the non-negative integers, with subsets of the rationals and the reals, and so on. And
from a programming point of view, the “unary” representation of our natural numbers is very
inefficient, so we might prefer sometimes to use a binary one instead. We would like to be able
to identify all of these versions of “the natural numbers” with each other, in order to transfer
constructions and results from one to another.

Of course, if two versions of the natural numbers satisfy identical induction principles, then
they have identical induced structure. For instance, recall the example of the function double

defined in §1.9. A similar function for our new natural numbers is readily defined by duplication
and adding primes:

double′ :≡ recN′(N
′, 0′, λn. λm. succ′(succ′(m))).

Simple as this may seem, it has the obvious drawback of leading to a proliferation of duplicates.
Not only functions have to be duplicated, but also all lemmas and their proofs. For example,
an easy result such as ∏(n:N) double(succ(n)) = succ(succ(double(n))), as well as its proof by
induction, also has to be “primed”.

In traditional mathematics, one just proclaims that N and N′ are obviously “the same”, and
can be substituted for each other whenever the need arises. This is usually unproblematic, but
it sweeps a fair amount under the rug, widening the gap between informal mathematics and its
precise description. In homotopy type theory, we can do better.

First observe that we have the following definable maps:

• f :≡ recN(N′, 0′, λn. succ′) : N→N′,
• g :≡ recN′(N, 0, λn. succ) : N′ →N.

Since the composition of g and f satisfies the same recurrences as the identity function on N,
Theorem 5.1.1 gives that ∏(n:N) g(f (n)) = n, and the “primed” version of the same theorem
gives ∏(n:N′) f (g(n)) = n. Thus, f and g are quasi-inverses, so that N ≃ N′. We can now
transfer functions on N directly to functions on N′ (and vice versa) along this equivalence, e.g.

double′ :≡ λn. f (double(g(n))).

It is an easy exercise to show that this version of double′ is equal to the earlier one.
Of course, there is nothing surprising about this; such an isomorphism is exactly how a math-

ematician will envision “identifying” N with N′. However, the mechanism of “transfer” across

5.2 UNIQUENESS OF INDUCTIVE TYPES 143

an isomorphism depends on the thing being transferred; it is not always as simple as pre- and
post-composing a single function with f and g. Consider, for instance, a simple lemma such as

∏
n:N′

double′(succ′(n)) = succ′(succ′(double′(n))).

Inserting the correct f s and gs is only a little easier than re-proving it by induction on n : N′

directly.
Here is where the univalence axiom steps in: since N ≃ N′, we also have N =U N′, i.e. N

and N′ are equal as types. Now the induction principle for identity guarantees that any construc-
tion or proof relating to N can automatically be transferred to N′ in the same way. We simply
consider the type of the function or theorem as a type-indexed family of types P : U → U , with
the given object being an element of P(N), and transport along the path N = N′. This involves
considerably less overhead.

For simplicity, we have described this method in the case of two types N and N′ with iden-
tical-looking definitions. However, a more common situation in practice is when the definitions
are not literally identical, but nevertheless one induction principle implies the other. Consider,
for instance, the type of lists from a one-element type, List(1), which is generated by

• an element nil : List(1), and
• a function cons : 1× List(1)→ List(1).

This is not identical to the definition of N, and it does not give rise to an identical induction
principle. The induction principle of List(1) says that for any E : List(1) → U together with
recurrence data enil : E(nil) and econs : ∏(u:1) ∏(ℓ:List(1)) E(ℓ) → E(cons(u, ℓ)), there exists f :
∏(ℓ:List(1)) E(ℓ) such that f (nil) ≡ enil and f (cons(u, ℓ)) ≡ econs(u, ℓ, f (ℓ)). (We will see how to
derive the induction principle of an inductive definition in §5.6.)

Now suppose we define 0′′ :≡ nil : List(1), and succ′′ : List(1) → List(1) by succ′′(ℓ) :≡
cons(⋆, ℓ). Then for any E : List(1) → U together with e0 : E(0′′) and es : ∏(ℓ:List(1)) E(ℓ) →
E(succ′′(ℓ)), we can define

enil :≡ e0

econs(⋆, ℓ, x) :≡ es(ℓ, x).

(In the definition of econs we use the induction principle of 1 to assume that u is ⋆.) Now we can
apply the induction principle of List(1), obtaining f : ∏(ℓ:List(1)) E(ℓ) such that

f (0′′) ≡ f (nil) ≡ enil ≡ e0

f (succ′′(ℓ)) ≡ f (cons(⋆, ℓ)) ≡ econs(⋆, ℓ, f (ℓ)) ≡ es(ℓ, f (ℓ)).

Thus, List(1) satisfies the same induction principle as N, and hence (by the same arguments
above) is equal to it.

Finally, these conclusions are not confined to the natural numbers: they apply to any induc-
tive type. If we have an inductively defined type W, say, and some other type W ′ which satisfies
the same induction principle as W, then it follows that W ≃ W ′, and hence W = W ′. We use
the derived recursion principles for W and W ′ to construct maps W → W ′ and W ′ → W, re-
spectively, and then the induction principles for each to prove that both composites are equal
to identities. For instance, in Chapter 1 we saw that the coproduct A + B could also have been
defined as ∑(x:2) rec2(U , A, B, x). The latter type satisfies the same induction principle as the
former; hence they are canonically equivalent.

144 CHAPTER 5. INDUCTION

This is, of course, very similar to the familiar fact in category theory that if two objects have
the same universal property, then they are equivalent. In §5.4 we will see that inductive types
actually do have a universal property, so that this is a manifestation of that general principle.

5.3 W-types

Inductive types are very general, which is excellent for their usefulness and applicability, but
makes them difficult to study as a whole. Fortunately, they can all be formally reduced to a few
special cases. It is beyond the scope of this book to discuss this reduction — which is anyway
irrelevant to the mathematician using type theory in practice — but we will take a little time
to discuss one of the basic special cases that we have not yet met. These are Martin-Löf’s W-
types, also known as the types of well-founded trees. W-types are a generalization of such types
as natural numbers, lists, and binary trees, which are sufficiently general to encapsulate the
“recursion” aspect of any inductive type.

A particular W-type is specified by giving two parameters A : U and B : A → U , in which
case the resulting W-type is written W(a:A)B(a). The type A represents the type of labels for
W(a:A)B(a), which function as constructors (however, we reserve that word for the actual func-
tions which arise in inductive definitions). For instance, when defining natural numbers as a
W-type, the type A would be the type 2 inhabited by the two elements 02 and 12, since there are
precisely two ways to obtain a natural number — either it will be zero or a successor of another
natural number.

The type family B : A → U is used to record the arity of labels: a label a : A will take a
family of inductive arguments, indexed over B(a). We can therefore think of the “B(a)-many”
arguments of a. These arguments are represented by a function f : B(a) → W(a:A)B(a), with
the understanding that for any b : B(a), f (b) is the “b-th” argument to the label a. The W-type
W(a:A)B(a) can thus be thought of as the type of well-founded trees, where nodes are labeled by
elements of A and each node labeled by a : A has B(a)-many branches.

In the case of natural numbers, the label 02 has arity 0, since it constructs the constant zero;
the label 12 has arity 1, since it constructs the successor of its argument. We can capture this
by using simple elimination on 2 to define a function rec2(U , 0, 1) into a universe of types; this
function returns the empty type 0 for 02 and the unit type 1 for 12. We can thus define

Nw :≡ W(b:2)rec2(U , 0, 1, b)

where the superscript w serves to distinguish this version of natural numbers from the previ-
ously used one. Similarly, we can define the type of lists over A as a W-type with 1 + A many
labels: one nullary label for the empty list, plus one unary label for each a : A, corresponding to
appending a to the head of a list:

List(A) :≡ W(x:1+A)rec1+A(U , 0, λa. 1, x).

In general, the W-type W(x:A)B(x) specified by A : U and B : A → U is the inductive type
generated by the following constructor:

• sup : ∏(a:A)

(
B(a)→ W(x:A)B(x)

)
→ W(x:A)B(x).

The constructor sup (short for supremum) takes a label a : A and a function f : B(a) →
W(x:A)B(x) representing the arguments to a, and constructs a new element of W(x:A)B(x). Using

5.3 W-TYPES 145

our previous encoding of natural numbers as W-types, we can for instance define

0w :≡ sup(02, λx. rec0(Nw, x)).

Put differently, we use the label 02 to construct 0w. Then, rec2(U , 0, 1, 02) evaluates to 0, as it
should since 02 is a nullary label. Thus, we need to construct a function f : 0 → Nw, which
represents the (zero) arguments supplied to 02. This is of course trivial, using simple elimination
on 0 as shown. Similarly, we can define 1w and a successor function succw

1w :≡ sup(12, λx. 0w)

succw :≡ λn. sup(12, λx. n).

We have the following induction principle for W-types:

• When proving a statement E :
(
W(x:A)B(x)

)
→ U about all elements of the W-type W(x:A)B(x),

it suffices to prove it for sup(a, f), assuming it holds for all f (b) with b : B(a). In other
words, it suffices to give a proof

e : ∏
(a:A)

∏
(f :B(a)→W(x:A)B(x))

∏
(g:∏(b:B(a)) E(f (b)))

E(sup(a, f))

The variable g represents our inductive hypothesis, namely that all arguments of a satisfy E.
To state this, we quantify over all elements of type B(a), since each b : B(a) corresponds to one
argument f (b) of a.

How would we define the function double on natural numbers encoded as a W-type? We
would like to use the recursion principle of Nw with a codomain of Nw itself. We thus need to
construct a suitable function

e : ∏
(a:2)

∏
(f :B(a)→Nw)

∏
(g:B(a)→Nw)

Nw

which will represent the recurrence for the double function; for simplicity we denote the type
family rec2(U , 0, 1) by B.

Clearly, e will be a function taking a : 2 as its first argument. The next step is to perform case
analysis on a and proceed based on whether it is 02 or 12. This suggests the following form

e :≡ λa. ind2(C, e0, e1, a)

where
C :≡ λa. ∏

(f :B(a)→Nw)
∏

(g:B(a)→Nw)

Nw.

If a is 02, the type B(a) becomes 0. Thus, given f : 0 → Nw and g : 0 → Nw, we want to
construct an element of Nw. Since the label 02 represents 0, it needs zero inductive arguments
and the variables f and g are irrelevant. We return 0w as a result:

e0 :≡ λ f . λg. 0w.

Analogously, if a is 12, the type B(a) becomes 1. Since the label 12 represents the successor
operator, it needs one inductive argument — the predecessor — which is represented by the
variable f : 1 → Nw. The value of the recursive call on the predecessor is represented by the

146 CHAPTER 5. INDUCTION

variable g : 1→ Nw. Thus, taking this value (namely g(⋆)) and applying the successor function
twice thus yields the desired result:

e1 :≡ λ f . λg. succw(succw(g(⋆))).

Putting this together, we thus have

double :≡ recNw(Nw, e)

with e as defined above.
The associated computation rule for the function recW(x:A)B(x)(E, e) : ∏(w:W(x:A)B(x)) E(w) is as

follows.

• For any a : A and f : B(a)→ W(x:A)B(x) we have

recW(x:A)B(x)(E, e, sup(a, f)) ≡ e(a, f ,
(
λb. recW(x:A)B(x)(E, e, f (b))

)
).

In other words, the function recW(x:A)B(x)(E, e) satisfies the recurrence e.
By the above computation rule, the function double behaves as expected:

double(0w) ≡ recNw(Nw, e, sup(02, λx. rec0(Nw, x)))

≡ e(02,
(
λx. rec0(Nw, x)

)
,
(
λx. double(rec0(Nw, x))

)
)

≡ e0(
(
λx. rec0(Nw, x)

)
,
(
λx. double(rec0(Nw, x))

)
)

≡ 0w

and

double(1w) ≡ recNw(Nw, e, sup(12, λx. 0w))

≡ e(12,
(
λx. 0w), (λx. double(0w)

)
)

≡ e1(
(
λx. 0w), (λx. double(0w)

)
)

≡ succw(succw((λx. double(0w))(⋆)
)
)

≡ succw(succw(0w))

and so on.
Just as for natural numbers, we can prove a uniqueness theorem for W-types:

Theorem 5.3.1. Let g, h : ∏(w:W(x:A)B(x)) E(w) be two functions which satisfy the recurrence

e : ∏
a, f

(
∏

b:B(a)
E(f (b))

)
→ E(sup(a, f)),

propositionally, i.e., such that

∏
a, f

g(sup(a, f)) = e(a, f , λb. g(f (b))),

∏
a, f

h(sup(a, f)) = e(a, f , λb. h(f (b))).

Then g and h are equal.

5.4 INDUCTIVE TYPES ARE INITIAL ALGEBRAS 147

5.4 Inductive types are initial algebras

As suggested earlier, inductive types also have a category-theoretic universal property. They
are homotopy-initial algebras: initial objects (up to coherent homotopy) in a category of “algebras”
determined by the specified constructors. As a simple example, consider the natural numbers.
The appropriate sort of “algebra” here is a type equipped with the same structure that the con-
structors of N give to it.

Definition 5.4.1. A N-algebra is a type C with two elements c0 : C, cs : C → C. The type of such
algebras is

NAlg :≡ ∑
C:U

C× (C → C).

Definition 5.4.2. A N-homomorphism between N-algebras (C, c0, cs) and (D, d0, ds) is a func-
tion h : C → D such that h(c0) = d0 and h(cs(c)) = ds(h(c)) for all c : C. The type of such
homomorphisms is

NHom((C, c0, cs), (D, d0, ds)) :≡ ∑
(h:C→D)

(h(c0) = d0)×∏(c:C)(h(cs(c)) = ds(h(c))).

We thus have a category of N-algebras and N-homomorphisms, and the claim is that N

is the initial object of this category. A category theorist will immediately recognize this as the
definition of a natural numbers object in a category.

Of course, since our types behave like ∞-groupoids, we actually have an (∞, 1)-category
of N-algebras, and we should ask N to be initial in the appropriate (∞, 1)-categorical sense.
Fortunately, we can formulate this without needing to define (∞, 1)-categories.

Definition 5.4.3. A N-algebra I is called homotopy-initial, or h-initial for short, if for any other
N-algebra C, the type of N-homomorphisms from I to C is contractible. Thus,

isHinitN(I) :≡ ∏
C:NAlg

isContr(NHom(I, C)).

When they exist, h-initial algebras are unique — not just up to isomorphism, as usual in
category theory, but up to equality, by the univalence axiom.

Theorem 5.4.4. Any two h-initial N-algebras are equal. Thus, the type of h-initial N-algebras is a mere
proposition.

Proof. Suppose I and J are h-initial N-algebras. Then NHom(I, J) is contractible, hence inhabited
by some N-homomorphism f : I → J, and likewise we have an N-homomorphism g : J →
I. Now the composite g ◦ f is a N-homomorphism from I to I, as is idI ; but NHom(I, I) is
contractible, so g ◦ f = idI . Similarly, f ◦ g = idJ . Hence I ≃ J, and so I = J. Since being
contractible is a mere proposition and dependent products preserve mere propositions, it follows
that being h-initial is itself a mere proposition. Thus any two proofs that I (or J) is h-initial are
necessarily equal, which finishes the proof.

We now have the following theorem.

Theorem 5.4.5. The N-algebra (N, 0, succ) is homotopy initial.

148 CHAPTER 5. INDUCTION

Sketch of proof. Fix an arbitrary N-algebra (C, c0, cs). The recursion principle of N yields a func-
tion f : N→ C defined by

f (0) :≡ c0

f (succ(n)) :≡ cs(f (n)).

These two equalities make f an N-homomorphism, which we can take as the center of con-
traction for NHom(N, C). The uniqueness theorem (Theorem 5.1.1) then implies that any other
N-homomorphism is equal to f .

To place this in a more general context, it is useful to consider the notion of algebra for an
endofunctor. Note that to make a type C into a N-algebra is the same as to give a function c :
C + 1 → C, and a function f : C → D is a N-homomorphism just when f ◦ c ∼ d ◦ (f + 1). In
categorical language, this means the N-algebras are the algebras for the endofunctor F(X) :≡
X + 1 of the category of types.

For a more generic case, consider the W-type associated to A : U and B : A→ U . In this case
we have an associated polynomial functor:

P(X) = ∑
x:A

(B(x)→ X). (5.4.6)

Actually, this assignment is functorial only up to homotopy, but this makes no difference in what
follows. By definition, a P-algebra is then a type C equipped with a function sC : PC → C. By
the universal property of Σ-types, this is equivalent to giving a function ∏(a:A)(B(a)→ C)→ C.
We will also call such objects W-algebras for A and B, and we write

WAlg(A, B) :≡ ∑
(C:U)

∏
(a:A)

(B(a)→ C)→ C.

Similarly, for P-algebras (C, sC) and (D, sD), a homomorphism between them (f , s f) : (C, sC)→
(D, sD) consists of a function f : C → D and a homotopy between maps PC → D

s f : f ◦ sC = sD ◦ P f ,

where P f : PC → PD is the result of the easily-definable action of P on f : C → D. Such an
algebra homomorphism can be represented suggestively in the form:

PC

sC
��

P f
//

s f

PD

sD
��

C
f
// D

In terms of elements, f is a P-homomorphism (or W-homomorphism) if

f (sC(a, h)) = sD(a, f ◦ h).

We have the type of W-homomorphisms:

WHomA,B((C, sC), (D, sD)) :≡ ∑
(f :C→D)

∏
(a:A)

∏
(h:B(a)→C)

f (sC(a, h)) = sD(a, f ◦ h)

5.5 HOMOTOPY-INDUCTIVE TYPES 149

Finally, a P-algebra (C, sC) is said to be homotopy-initial if for every P-algebra (D, sD), the
type of all algebra homomorphisms (C, sC)→ (D, sD) is contractible. That is,

isHinitW(A, B, I) :≡ ∏
C:WAlg(A,B)

isContr(WHomA,B(I, C)).

Now the analogous theorem to Theorem 5.4.5 is:

Theorem 5.4.7. For any type A : U and type family B : A → U , the W-algebra (W(x:A)B(x), sup) is
h-initial.

Sketch of proof. Suppose we have A : U and B : A → U , and consider the associated polynomial
functor P(X) :≡ ∑(x:A)(B(x) → X). Let W :≡ W(x:A)B(x). Then using the W-introduction
rule from §5.3, we have a structure map sW :≡ sup : PW → W. We want to show that the
algebra (W, sW) is h-initial. So, let us consider another algebra (C, sC) and show that the type
T :≡ WHomA,B((W, sW), (C, sC)) of W-homomorphisms from (W, sW) to (C, sC) is contractible.
To do so, observe that the W-elimination rule and the W-computation rule allow us to define a W-
homomorphism (f , s f) : (W, sW) → (C, sC), thus showing that T is inhabited. It is furthermore
necessary to show that for every W-homomorphism (g, sg) : (W, sW) → (C, sC), there is an
identity proof

p : (f , s f) = (g, sg). (5.4.8)

This uses the fact that, in general, a type of the form (f , s f) = (g, sg) is equivalent to the type of
what we call algebra 2-cells from f to g, whose canonical elements are pairs of the form (e, se),
where e : f = g and se is a higher identity proof between the identity proofs represented by the
following pasting diagrams:

PW

Pg
&&

sW
��

P f

;;Pe PC

sC
��

W

f

;;

s f
C

PW

Pg
&&

sW
��

sg
PC

sC
��

W

g
$$

f

;;
e C

In light of this fact, to prove that there exists an element as in (5.4.8), it is sufficient to show that
there is an algebra 2-cell (e, se) from f to g. The identity proof e : f = g is now constructed
by function extensionality and W-elimination so as to guarantee the existence of the required
identity proof se.

5.5 Homotopy-inductive types

In §5.3 we showed how to encode natural numbers as W-types, with

Nw :≡ W(b:2)rec2(U , 0, 1, b),

0w :≡ sup(02, (λx. rec0(Nw, x))),

succw :≡ λn. sup(12, (λx. n)).

We also showed how one can define a double function on Nw using the recursion principle. When
it comes to the induction principle, however, this encoding is no longer satisfactory: given E :

150 CHAPTER 5. INDUCTION

Nw → U and recurrences ez : E(0w) and es : ∏(n:Nw) E(n)→ E(succw(n)), we can only construct
a dependent function r(E, ez, es) : ∏(n:Nw) E(n) satisfying the given recurrences propositionally, i.e.
up to a path. This means that the computation rules for natural numbers, which give judgmental
equalities, cannot be derived from the rules for W-types in any obvious way.

This problem goes away if instead of the conventional inductive types we consider homotopy-
inductive types, where all computation rules are stated up to a path, i.e. the symbol ≡ is replaced
by =. For instance, the computation rule for the homotopy version of W-types Wh becomes:

• For any a : A and f : B(a)→ Wh
(x:A)B(x) we have

recWh
(x:A)

B(x)(E, e, sup(a, f)) = e
(

a, f ,
(
λb. recWh

(x:A)
B(x)(E, f (b))

))
Homotopy-inductive types have an obvious disadvantage when it comes to computational

properties — the behavior of any function constructed using the induction principle can now
only be characterized propositionally. But numerous other considerations drive us to consider
homotopy-inductive types as well. For instance, while we showed in §5.4 that inductive types
are homotopy-initial algebras, not every homotopy-initial algebra is an inductive type (i.e. satis-
fies the corresponding induction principle) — but every homotopy-initial algebra is a homotopy-
inductive type. Similarly, we might want to apply the uniqueness argument from §5.2 when one
(or both) of the types involved is only a homotopy-inductive type — for instance, to show that
the W-type encoding of N is equivalent to the usual N.

Additionally, the notion of a homotopy-inductive type is now internal to the type theory.
For example, this means we can form a type of all natural numbers objects and make assertions
about it. In the case of W-types, we can characterize a homotopy W-type W(x:A)B(x) as any
type endowed with a supremum function and an induction principle satisfying the appropriate
(propositional) computation rule:

Wd(A, B) :≡ ∑
(W:U)

∑
(sup:∏(a)(B(a)→W)→W)

∏
(E:W→U)

∏
(e:∏(a, f)(∏(b:B(a)) E(f (b)))→E(sup(a, f)))

∑
(ind :∏(w:W) E(w))

∏
(a, f)

ind(sup(a, f)) = e(a, λb. ind(f (b))).

In Chapter 6 we will see some other reasons why propositional computation rules are worth
considering.

In this section, we will state some basic facts about homotopy-inductive types. We omit most
of the proofs, which are somewhat technical.

Theorem 5.5.1. For any A : U and B : A→ U , the type Wd(A, B) is a mere proposition.

It turns out that there is an equivalent characterization of W-types using a recursion principle,
plus certain uniqueness and coherence laws. First we give the recursion principle:

• When constructing a function from the W-type Wh
(x:A)B(x) into the type C, it suffices to

give its value for sup(a, f), assuming we are given the values of all f (b) with b : B(a). In
other words, it suffices to construct a function

c : ∏
a:A

(B(a)→ C)→ C.

5.5 HOMOTOPY-INDUCTIVE TYPES 151

The associated computation rule for recWh
(x:A)

B(x)(C, c) : (W(x:A)B(x))→ C is as follows:

• For any a : A and f : B(a)→ Wh
(x:A)B(x) we have a witness β(C, c, a, f) for equality

recWh
(x:A)

B(x)(C, c, sup(a, f)) = c(a, λb. recWh
(x:A)

B(x)(C, c, f (b))).

Furthermore, we assert the following uniqueness principle, saying that any two functions
defined by the same recurrence are equal:

• Let C : U and c : ∏(a:A)(B(a) → C) → C be given. Let g, h : (Wh
(x:A)B(x)) → C be two

functions which satisfy the recurrence c up to propositional equality, i.e., such that we have

βg : ∏
a, f

g(sup(a, f)) = c(a, λb. g(f (b))),

βh : ∏
a, f

h(sup(a, f)) = c(a, λb. h(f (b))).

Then g and h are equal, i.e. there is α(C, c, f , g, βg, βh) of type g = h.

Recall that when we have an induction principle rather than only a recursion principle, this
propositional uniqueness principle is derivable (Theorem 5.3.1). But with only recursion, the
uniqueness principle is no longer derivable — and in fact, the statement is not even true (exer-
cise). Hence, we postulate it as an axiom. We also postulate the following coherence law, which
tells us how the proof of uniqueness behaves on canonical elements:

• For any a : A and f : B(a)→ C, the following diagram commutes propositionally:

g(sup(a, f))

α(sup(a, f))
��

βg
// c(a, λb. g(f (b)))

c(a, –)(funext(λb. α(f (b))))
��

h(sup(a, f))
βh

// c(a, λb. h(f (b)))

where α abbreviates the path α(C, c, f , g, βg, βh) : g = h.

Putting all of this data together yields another characterization of W(x:A)B(x), as a type with
a supremum function, satisfying simple elimination, computation, uniqueness, and coherence
rules:

Ws(A, B) :≡ ∑
(W:U)

∑
(sup:∏(a)(B(a)→W)→W)

∏
(C:U)

∏
(c:∏(a)(B(a)→C)→C)

∑
(rec:W→C)

∑
(β:∏(a, f) rec(sup(a, f))=c(a,λb. rec(f (b))))

∏
(g:W→C)

∏
(h:W→C)

∏
(βg :∏(a, f) g(sup(a, f))=c(a,λb. g(f (b))))

∏
(βh :∏(a, f) h(sup(a, f))=c(a,λb. h(f (b))))

∑
(α:∏(w:W) g(w)=h(w))

∏
(a, f)

α(sup(a, f)) � βh = βg � c(a,−)(funext λb. α(f (b)))

Theorem 5.5.2. For any A : U and B : A→ U , the type Ws(A, B) is a mere proposition.

Finally, we have a third, very concise characterization of W(x:A)B(x) as an h-initial W-algebra:

Wh(A, B) :≡ ∑
I:WAlg(A,B)

isHinitW(A, B, I).

152 CHAPTER 5. INDUCTION

Theorem 5.5.3. For any A : U and B : A→ U , the type Wh(A, B) is a mere proposition.

It turns out all three characterizations of W-types are in fact equivalent:

Lemma 5.5.4. For any A : U and B : A→ U , we have

Wd(A, B) ≃ Ws(A, B) ≃ Wh(A, B)

Indeed, we have the following theorem, which is an improvement over Theorem 5.4.7:

Theorem 5.5.5. The types satisfying the formation, introduction, elimination, and propositional compu-
tation rules for W-types are precisely the homotopy-initial W-algebras.

Sketch of proof. Inspecting the proof of Theorem 5.4.7, we see that only the propositional compu-
tation rule was required to establish the h-initiality of W(x:A)B(x). For the converse implication,
let us assume that the polynomial functor associated to A : U and B : A→ U , has an h-initial al-
gebra (W, sW); we show that W satisfies the propositional rules of W-types. The W-introduction
rule is simple; namely, for a : A and t : B(a) → W, we define sup(a, t) : W to be the result of
applying the structure map sW : PW → W to (a, t) : PW. For the W-elimination rule, let us
assume its premisses and in particular that C′ : W → U . Using the other premisses, one shows
that the type C :≡ ∑(w:W) C′(w) can be equipped with a structure map sC : PC → C. By the
h-initiality of W, we obtain an algebra homomorphism (f , s f) : (W, sW)→ (C, sC). Furthermore,
the first projection pr1 : C → W can be equipped with the structure of a homomorphism, so that
we obtain a diagram of the form

PW
P f
//

sW
��

PC

sC
��

Ppr1 // PW

sW
��

W
f
// C pr1

//W.

But the identity function 1W : W → W has a canonical structure of an algebra homomorphism
and so, by the contractibility of the type of homomorphisms from (W, sW) to itself, there must
be an identity proof between the composite of (f , s f) with (pr1, spr1) and (1W , s1W). This implies,
in particular, that there is an identity proof p : pr1 ◦ f = 1W .

Since (pr2 ◦ f)w : C((pr1 ◦ f)w), we can define

rec(w, c) :≡ p ∗ ((pr2 ◦ f)w) : C(w)

where the transport p ∗ is with respect to the family

λu. C ◦ u : (W →W)→W → U .

The verification of the propositional W-computation rule is a calculation, involving the naturality
properties of operations of the form p ∗ .

Finally, as desired, we can encode homotopy-natural-numbers as homotopy-W-types:

Theorem 5.5.6. The rules for natural numbers with propositional computation rules can be derived from
the rules for W-types with propositional computation rules.

5.6 THE GENERAL SYNTAX OF INDUCTIVE DEFINITIONS 153

5.6 The general syntax of inductive definitions

So far, we have been discussing only particular inductive types: 0, 1, 2, N, coproducts, products,
Σ-types, W-types, etc. However, an important aspect of type theory is the ability to define new
inductive types, rather than being restricted only to some particular fixed list of them. In order
to be able to do this, however, we need to know what sorts of “inductive definitions” are valid
or reasonable.

To see that not everything which “looks like an inductive definition” makes sense, consider
the following “constructor” of a type C:

• g : (C →N)→ C.

The recursion principle for such a type C ought to say that given a type P, in order to construct
a function f : C → P, it suffices to consider the case when the input c : C is of the form g(α) for
some α : C → N. Moreover, we would expect to be able to use the “recursive data” of f applied
to α in some way. However, it is not at all clear how to “apply f to α”, since both are functions
with domain C.

We could write down a “recursion principle” for C by just supposing (unjustifiably) that there
is some way to apply f to α and obtain a function P → N. Then the input to the recursion rule
would ask for a type P together with a function

h : (C →N)→ (P→N)→ P (5.6.1)

where the two arguments of h are α and “the result of applying f to α”. However, what would
the computation rule for the resulting function f : C → P be? Looking at other computation
rules, we would expect something like “ f (g(α)) ≡ h(α, f (α))” for α : C → N, but as we have
seen, “ f (α)” does not make sense. The induction principle of C is even more problematic; it’s
not even clear how to write down the hypotheses.

On the other hand, we could write down a different “recursion principle” for C by ignoring
the “recursive” presence of C in the domain of α, considering it as merely an indexing type for a
family of natural numbers. In this case the input would ask for a type P together with a function

h : (C →N)→ P,

so the type of the recursion principle would be recC : ∏(P:U)((C →N)→ P)→ C → P, and sim-
ilarly for the induction principle. Now it is possible to write down a computation rule, namely
recC(P, h, g(α)) ≡ h(α). However, the existence of a type C with this recursor and computation
rule turns out to be inconsistent. See Exercises 5.7 to 5.10 for proofs of this and other variations.

This example suggests one restriction on inductive definitions: the domains of all the con-
structors must be covariant functors of the type being defined, so that we can “apply f to them”
to get the result of the “recursive call”. In other words, if we replace all occurrences of the type
being defined with a variable X : U , then each domain of a constructor must be an expression
that can be made into a covariant functor of X. This is the case for all the examples we have
considered so far. For instance, with the constructor inl : A → A + B, the relevant functor is
constant at A (i.e. X 7→ A), while for the constructor succ : N → N, the functor is the identity
functor (X 7→ X).

However, this necessary condition is also not sufficient. Covariance prevents the inductive
type from occurring on the left of a single function type, as in the argument C → N of the

154 CHAPTER 5. INDUCTION

“constructor” g considered above, since this yields a contravariant functor rather than a covari-
ant one. However, since the composite of two contravariant functors is covariant, double func-
tion types such as ((X → N) → N) are once again covariant. This enables us to reproduce
Cantorian-style paradoxes.

For instance, consider an “inductive type” D with the following constructor:

• k : ((D → Prop)→ Prop)→ D.

Assuming such a type exists, we define functions

r : D → (D → Prop)→ Prop,

f : (D → Prop)→ D,

p : (D → Prop)→ (D → Prop)→ Prop,

by

r(k(θ)) :≡ θ,

f (δ) :≡ k(λx. (x = δ)),

p(δ) :≡ λx. δ(f (x)).

Here r is defined by the recursion principle of D, while f and p are defined explicitly. Then for
any δ : D → Prop, we have r(f (δ)) = λx. (x = δ).

In particular, therefore, if f (δ) = f (δ′), then we have a path s : (λx. (x = δ)) = (λx. (x =

δ′)). Thus, happly(s, δ) : (δ = δ) = (δ = δ′), and so in particular δ = δ′ holds. Hence, f is
“injective” (although a priori D may not be a set). This already sounds suspicious — we have an
“injection” of the “power set” of D into D — and with a little more work we can massage it into
a contradiction.

Suppose given θ : (D → Prop)→ Prop, and define δ : D → Prop by

δ(d) :≡ ∃(γ : D → Prop). (f (γ) = d)× θ(γ). (5.6.2)

We claim that p(δ) = θ. By function extensionality, it suffices to show p(δ)(γ) =Prop θ(γ) for any
γ : D → Prop. And by univalence, for this it suffices to show that each implies the other. Now
by definition of p, we have

p(δ)(γ) ≡ δ(f (γ))

≡ ∃(γ′ : D → Prop). (f (γ′) = f (γ))× θ(γ′).

Clearly this holds if θ(γ), since we may take γ′ :≡ γ. On the other hand, if we have γ′ with
f (γ′) = f (γ) and θ(γ′), then γ′ = γ since f is injective, hence also θ(γ).

This completes the proof that p(δ) = θ. Thus, every element θ : (D → Prop) → Prop

is the image under p of some element δ : D → Prop. However, if we define θ by a classic
diagonalization:

θ(γ) :≡ ¬p(γ)(γ) for all γ : D → Prop

then from θ = p(δ) we deduce p(δ)(δ) = ¬p(δ)(δ). This is a contradiction: no proposition can
be equivalent to its negation. (Supposing P⇔ ¬P, if P, then ¬P, and so 0; hence ¬P, but then P,
and so 0.)

5.6 THE GENERAL SYNTAX OF INDUCTIVE DEFINITIONS 155

Remark 5.6.3. There is a question of universe size to be addressed. In general, an inductive type
must live in a universe that already contains all the types going into its definition. Thus if in the
definition of D, the ambiguous notation Prop means PropU , then we do not have D : U but only
D : U ′ for some larger universe U ′ with U : U ′. In a predicative theory, therefore, the right-hand
side of (5.6.2) lives in PropU ′ , not PropU . So this contradiction does require the propositional
resizing axiom mentioned in §3.5.

This counterexample suggests that we should ban an inductive type from ever appearing
on the left of an arrow in the domain of its constructors, even if that appearance is nested in
other arrows so as to eventually become covariant. (Similarly, we also forbid it from appearing
in the domain of a dependent function type.) This restriction is called strict positivity (ordinary
“positivity” being essentially covariance), and it turns out to suffice.

In conclusion, therefore, a valid inductive definition of a type W consists of a list of construc-
tors. Each constructor is assigned a type that is a function type taking some number (possibly
zero) of inputs (possibly dependent on one another) and returning an element of W. Finally, we
allow W itself to occur in the input types of its constructors, but only strictly positively. This
essentially means that each argument of a constructor is either a type not involving W, or some
iterated function type with codomain W. For instance, the following is a valid constructor type:

c : (A→W)→ (B→ C →W)→ D →W →W. (5.6.4)

All of these function types can also be dependent functions (Π-types).1

Note we require that an inductive definition is given by a finite list of constructors. This is
simply because we have to write it down on the page. If we want an inductive type which be-
haves as if it has an infinite number of constructors, we can simply parametrize one constructor
by some infinite type. For instance, a constructor such as N → W → W can be thought of as
equivalent to countably many constructors of the form W → W. (Of course, the infinity is now
internal to the type theory, but this is as it should be for any foundational system.) Similarly, if
we want a constructor that takes “infinitely many arguments”, we can allow it to take a family of
arguments parametrized by some infinite type, such as (N → W) → W which takes an infinite
sequence of elements of W.

Now, once we have such an inductive definition, what can we do with it? Firstly, there is a
recursion principle stating that in order to define a function f : W → P, it suffices to consider the
case when the input w : W arises from one of the constructors, allowing ourselves to recursively
call f on the inputs to that constructor. For the example constructor (5.6.4), we would require P
to be equipped with a function of type

d : (A→W)→ (A→ P)→ (B→ C →W)→ (B→ C → P)→ D →W → P→ P. (5.6.5)

Under these hypotheses, the recursion principle yields f : W → P, which moreover “preserves
the constructor data” in the evident way — this is the computation rule, where we use covariance
of the inputs. For instance, in the example (5.6.4), the computation rule says that for any α : A→
W, β : B→ C →W, δ : D, and ω : W, we have

f (c(α, β, δ, ω)) ≡ d(α, f ◦ α, β, f ◦ β, δ, ω, f (ω)). (5.6.6)

1In the language of §5.4, the condition of strict positivity ensures that the relevant endofunctor is polynomial. It is
well-known in category theory that not all endofunctors can have initial algebras; restricting to polynomial functors
ensures consistency. One can consider various relaxations of this condition, but in this book we will restrict ourselves
to strict positivity as defined here.

156 CHAPTER 5. INDUCTION

The induction principle for a general inductive type W is only a little more complicated. Of
course, we start with a type family P : W → U , which we require to be equipped with constructor
data “lying over” the constructor data of W. That means the “recursive call” arguments such as
A→ P above must be replaced by dependent functions with types such as ∏(a:A) P(α(a)). In the
full example of (5.6.4), the corresponding hypothesis for the induction principle would require

d : ∏
α:A→W

(
∏
a:A

P(α(a))
)
→ ∏

β:B→C→W

(
∏
(b:B)

∏
(c:C)

P(β(b, c))
)
→

∏
(δ:D)

∏
(ω:W)

P(ω)→ P(c(α, β, δ, ω)). (5.6.7)

The corresponding computation rule looks identical to (5.6.6). Of course, the recursion principle
is the special case of the induction principle where P is a constant family. As we have mentioned
before, the induction principle is also called the eliminator, and the recursion principle the non-
dependent eliminator.

As discussed in §1.10, we also allow ourselves to invoke the induction and recursion prin-
ciples implicitly, writing a definitional equation with :≡ for each expression that would be the
hypotheses of the induction principle. This is called giving a definition by (dependent) pattern
matching. In our running example, this means we could define f : ∏(w:W) P(w) by

f (c(α, β, δ, ω)) :≡ · · ·

where α : A → W and β : B → C → W and δ : D and ω : W are variables that are bound
in the right-hand side. Moreover, the right-hand side may involve recursive calls to f of the
form f (α(a)), f (β(b, c)), and f (ω). When this definition is repackaged in terms of the induction
principle, we replace such recursive calls by ᾱ(a), β̄(b, c), and ω̄, respectively, for new variables

ᾱ : ∏
a:A

P(α(a))

β̄ : ∏
(b:B)

∏
(c:C)

P(β(b, c))

ω̄ : P(ω).

Then we could write
f :≡ indW(P, λα. λᾱ. λβ. λβ̄. λδ. λω. λω̄. · · ·)

where the second argument to indW has the type of (5.6.7).
We will not attempt to give a formal presentation of the grammar of a valid inductive def-

inition and its resulting induction and recursion principles and pattern matching rules. This is
possible to do (indeed, it is necessary to do if implementing a computer proof assistant), but
provides no additional insight. With practice, one learns to automatically deduce the induction
and recursion principles for any inductive definition, and to use them without having to think
twice.

5.7 Generalizations of inductive types

The notion of inductive type has been studied in type theory for many years, and admits many,
many generalizations: inductive type families, mutual inductive types, inductive-inductive types,
inductive-recursive types, etc. In this section we give an overview of some of these, a few of

5.7 GENERALIZATIONS OF INDUCTIVE TYPES 157

which will be used later in the book. (In Chapter 6 we will study in more depth a very different
generalization of inductive types, which is particular to homotopy type theory.)

Most of these generalizations involve allowing ourselves to define more than one type by
induction at the same time. One very simple example of this, which we have already seen, is
the coproduct A + B. It would be tedious indeed if we had to write down separate inductive
definitions for N + N, for N + 2, for 2 + 2, and so on every time we wanted to consider the
coproduct of two types. Instead, we make one definition in which A and B are variables standing
for types; in type theory they are called parameters. Thus technically speaking, what results
from the definition is not a single type, but a family of types + : U → U → U , taking two
types as input and producing their coproduct. Similarly, the type List(A) of lists is a family
List(–) : U → U in which the type A is a parameter.

In mathematics, this sort of thing is so obvious as to not be worth mentioning, but we bring
it up in order to contrast it with the next example. Note that each type A + B is independently
defined inductively, as is each type List(A). By contrast, we might also consider defining a whole
type family B : A → U by induction together. The difference is that now the constructors may
change the index a : A, and as a consequence we cannot say that the individual types B(a) are
inductively defined, only that the entire family is inductively defined.

The standard example is the type of lists of specified length, traditionally called vectors. We
fix a parameter type A, and define a type family Vecn(A), for n : N, generated by the following
constructors:

• a vector nil : Vec0(A) of length zero,

• a function cons : ∏(n:N) A→ Vecn(A)→ Vecsucc(n)(A).

In contrast to lists, vectors (with elements from a fixed type A) form a family of types indexed
by their length. While A is a parameter, we say that n : N is an index of the inductive family.
An individual type such as Vec3(A) is not inductively defined: the constructors which build
elements of Vec3(A) take input from a different type in the family, such as cons : A→ Vec2(A)→
Vec3(A).

In particular, the induction principle must refer to the entire type family as well; thus the hy-
potheses and the conclusion must quantify over the indices appropriately. In the case of vectors,
the induction principle states that given a type family C : ∏(n:N) Vecn(A)→ U , together with

• an element cnil : C(0, nil), and

• a function ccons : ∏(n:N) ∏(a:A) ∏(ℓ:Vecn(A)) C(n, ℓ)→ C(succ(n), cons(a, ℓ))

there exists a function f : ∏(n:N) ∏(ℓ:Vecn(A)) C(n, ℓ) such that

f (0, nil) ≡ cnil
f (succ(n), cons(a, ℓ)) ≡ ccons(n, a, ℓ, f (ℓ)).

One use of inductive families is to define predicates inductively. For instance, we might de-
fine the predicate iseven : N → U as an inductive family indexed by N, with the following
constructors:

• an element even0 : iseven(0),

• a function evenss : ∏(n:N) iseven(n)→ iseven(succ(succ(n))).

158 CHAPTER 5. INDUCTION

In other words, we stipulate that 0 is even, and that if n is even then so is succ(succ(n)). These
constructors “obviously” give no way to construct an element of, say, iseven(1), and since iseven is
supposed to be freely generated by these constructors, there must be no such element. (Actually
proving that ¬iseven(1) is not entirely trivial, however). The induction principle for iseven says
that to prove something about all even natural numbers, it suffices to prove it for 0 and verify
that it is preserved by adding two.

Inductively defined predicates are much used in computer formalization of mathematics and
software verification. But we will not have much use for them, with a couple of exceptions in
§§10.3 and 11.5.

Another important special case is when the indexing type of an inductive family is finite.
In this case, we can equivalently express the inductive definition as a finite collection of types
defined by mutual induction. For instance, we might define the types even and odd of even and
odd natural numbers by mutual induction, where even is generated by constructors

• 0 : even and
• esucc : odd→ even,

while odd is generated by the one constructor

• osucc : even→ odd.

Note that even and odd are simple types (not type families), but their constructors can refer to
each other. If we expressed this definition as an inductive type family paritynat : 2 → U , with
paritynat(02) and paritynat(12) representing even and odd respectively, it would instead have con-
structors:

• 0 : paritynat(02),
• esucc : paritynat(12)→ paritynat(02),
• osucc : paritynat(02)→ paritynat(12).

When expressed explicitly as a mutual inductive definition, the induction principle for even and
odd says that given C : even→ U and D : odd→ U , along with

• c0 : C(0),
• cs : ∏(n:odd) D(n)→ C(esucc(n)),
• ds : ∏(n:even) C(n)→ D(osucc(n)),

there exist f : ∏(n:even) C(n) and g : ∏(n:odd) D(n) such that

f (0) ≡ c0

f (esucc(n)) ≡ cs(g(n))

g(osucc(n)) ≡ ds(f (n)).

In particular, just as we can only induct over an inductive family “all at once”, we have to induct
on even and odd simultaneously. We will not have much use for mutual inductive definitions in
this book either.

A further, more radical, generalization is to allow definition of a type family B : A → U in
which not only the types B(a), but the type A itself, is defined as part of one big induction. In
other words, not only do we specify constructors for the B(a)s which can take inputs from other

5.8 IDENTITY TYPES AND IDENTITY SYSTEMS 159

B(a′)s, as with inductive families, we also at the same time specify constructors for A itself,
which can take inputs from the B(a)s. This can be regarded as an inductive family in which the
indices are inductively defined simultaneously with the indexed types, or as a mutual inductive
definition in which one of the types can depend on the other. More complicated dependency
structures are also possible. In general, these are called inductive-inductive definitions. For the
most part, we will not use them in this book, but their higher variant (see Chapter 6) will appear
in a couple of experimental examples in Chapter 11.

The last generalization we wish to mention is inductive-recursive definitions, in which a
type is defined inductively at the same time as a recursive function on it. That is, we fix a known
type P, and give constructors for an inductive type A and at the same time define a function
f : A → P using the recursion principle for A resulting from its constructors — with the twist
that the constructors of A are allowed to refer also to the values of f . We do not yet know how to
justify such definitions from a homotopical perspective, and we will not use any of them in this
book.

5.8 Identity types and identity systems

We now wish to point out that the identity types, which play so central a role in homotopy type
theory, may also be considered to be defined inductively. Specifically, they are an “inductive
family” with indices, in the sense of §5.7. In fact, there are two ways to describe identity types
as an inductive family, resulting in the two induction principles described in Chapter 1, path
induction and based path induction.

In both definitions, the type A is a parameter. For the first definition, we inductively define a
family =A: A→ A→ U , with two indices belonging to A, by the following constructor:

• for any a : A, an element refla : a =A a.

By analogy with the other inductive families, we may extract the induction principle from this
definition. It states that given any C : ∏(a,b:A)(a =A b) → U , along with d : ∏(a:A) C(a, a, refla),
there exists f : ∏(a,b:A) ∏(p:a=Ab) C(a, b, p) such that f (a, a, refla) ≡ d(a). This is exactly the path
induction principle for identity types.

For the second definition, we consider one element a0 : A to be a parameter along with A : U ,
and we inductively define a family (a0 =A –) : A → U , with one index belonging to A, by the
following constructor:

• an element refla0 : a0 =A a0.

Note that because a0 : A was fixed as a parameter, the constructor refla0 does not appear inside
the inductive definition as a function, but only as an element. The induction principle for this
definition says that given C : ∏(b:A)(a0 =A b) → U along with an element d : C(a0, refla0), there
exists f : ∏(b:A) ∏(p:a0=Ab) C(b, p) with f (a0, refla0) ≡ d. This is exactly the based path induction
principle for identity types.

The view of identity types as inductive types has historically caused some confusion, because
of the intuition mentioned in §5.1 that all the elements of an inductive type should be obtained
by repeatedly applying its constructors. For ordinary inductive types such as 2 and N, this is the
case: we saw in Eq. (1.8.1) that indeed every element of 2 is either 02 or 12, and similarly one can
prove that every element of N is either 0 or a successor.

However, this is not true for identity types: there is only one constructor refl, but not every
path is equal to the constant path. More precisely, we cannot prove, using only the induction

160 CHAPTER 5. INDUCTION

principle for identity types (either one), that every inhabitant of a =A a is equal to refla. In order
to actually exhibit a counterexample, we need some additional principle such as the univalence
axiom — recall that in Example 3.1.9 we used univalence to exhibit a particular path 2 =U 2
which is not equal to refl2.

The point is that, as validated by the study of homotopy-initial algebras, an inductive def-
inition should be regarded as freely generated by its constructors. Of course, a freely generated
structure may contain elements other than its generators: for instance, the free group on two
symbols x and y contains not only x and y but also words such as xy, yx−1y, and x3y2x−2yx. In
general, the elements of a free structure are obtained by applying not only the generators, but
also the operations of the ambient structure, such as the group operations if we are talking about
free groups.

In the case of inductive types, we are talking about freely generated types — so what are
the “operations” of the structure of a type? If types are viewed as like sets, as was traditionally
the case in type theory, then there are no such operations, and hence we expect there to be no
elements in an inductive type other than those resulting from its constructors. In homotopy type
theory, we view types as like spaces or ∞-groupoids, in which case there are many operations on
the paths (concatenation, inversion, etc.) — this will be important in Chapter 6 — but there are
still no operations on the objects (elements). Thus, it is still true for us that, e.g., every element of
2 is either 02 or 12, and every element of N is either 0 or a successor.

However, as we saw in Chapter 2, viewing types as ∞-groupoids entails also viewing func-
tions as functors, and this includes type families B : A → U . Thus, the identity type (a0 =A –),
viewed as an inductive type family, is actually a freely generated functor A → U . Specifically, it is
the functor F : A → U freely generated by one element refla0 : F(a0). And a functor does have
operations on objects, namely the action of the morphisms (paths) of A.

In category theory, the Yoneda lemma tells us that for any category A and object a0, the functor
freely generated by an element of F(a0) is the representable functor homA(a0, –). Thus, we
should expect the identity type (a0 =A –) to be this representable functor, and this is indeed
exactly how we view it: (a0 =A b) is the space of morphisms (paths) in A from a0 to b.

One reason for viewing identity types as inductive families is to apply the uniqueness prin-
ciples of §§5.2 and 5.5. Specifically, we can characterize the family of identity types of a type A,
up to equivalence, by giving another family of types over A× A satisfying the same induction
principle. This suggests the following definitions and theorem.

Definition 5.8.1. Let A be a type and a0 : A an element.

• A pointed predicate over (A, a0) is a family R : A → U equipped with an element r0 :
R(a0).

• For pointed predicates (R, r0) and (S, s0), a family of maps g : ∏(b:A) R(b) → S(b) is
pointed if g(a0, r0) = s0. We have

ppmap(R, S) :≡ ∑
g:∏(b:A) R(b)→S(b)

(g(a0, r0) = s0).

• An identity system at a0 is a pointed predicate (R, r0) such that for any type family D :
∏(b:A) R(b) → U and d : D(a0, r0), there exists a function f : ∏(b:A) ∏(r:R(b)) D(b, r) such
that f (a0, r0) = d.

Theorem 5.8.2. For a pointed predicate (R, r0) over (A, a0), the following are logically equivalent.

5.8 IDENTITY TYPES AND IDENTITY SYSTEMS 161

(i) (R, r0) is an identity system at a0.

(ii) For any pointed predicate (S, s0), the type ppmap(R, S) is contractible.

(iii) For any b : A, the function transportR(– , r0) : (a0 =A b)→ R(b) is an equivalence.

(iv) The type ∑(b:A) R(b) is contractible.

Note that the equivalences (i)⇔(ii)⇔(iii) are a version of Lemma 5.5.4 for identity types a0 =A
–, regarded as inductive families varying over one element of A. Of course, (ii)–(iv) are mere
propositions, so that logical equivalence implies actual equivalence. (Condition (i) is also a mere
proposition, but we will not prove this.) Note also that unlike (i)–(iii), statement (iv) doesn’t refer
to a0 or r0.

Proof. First, assume (i) and let (S, s0) be a pointed predicate. Define D(b, r) :≡ S(b) and d :≡
s0 : S(a0) ≡ D(a0, r0). Since R is an identity system, we have f : ∏(b:A) R(b) → S(b) with
f (a0, r0) = s0; hence ppmap(R, S) is inhabited. Now suppose (f , fr), (g, gr) : ppmap(R, S), and
define D(b, r) :≡ (f (b, r) = g(b, r)), and let d :≡ fr � gr

−1 : f (a0, r0) = s0 = g(a0, r0). Then again
since R is an identity system, we have h : ∏(b:A) ∏(r:R(b)) D(b, r) such that h(a0, r0) = fr � gr

−1. By
function extensionality and the characterization of paths in Σ-types and path types, these data
yield an equality (f , fr) = (g, gr). Hence ppmap(R, S) is an inhabited mere proposition, and thus
contractible; so (ii) holds.

Now suppose (ii), and define S(b) :≡ (a0 = b) with s0 :≡ refla0 : S(a0). Then (S, s0) is a
pointed predicate, and λb. λp. transportR(p, r) : ∏(b:A) S(b) → R(b) is a pointed family of maps
from S to R. By assumption, ppmap(R, S) is contractible, hence inhabited, so there also exists a
pointed family of maps from R to S. And the composites in either direction are pointed families
of maps from R to R and from S to S, respectively, hence equal to identities since ppmap(R, R)
and ppmap(S, S) are contractible. Thus (iii) holds.

Now supposing (iii), condition (iv) follows from Lemma 3.11.8, using the fact that Σ-types
respect equivalences (the “if” direction of Theorem 4.7.7).

Finally, assume (iv), and let D : ∏(b:A) R(b) → U and d : D(a0, r0). We can equivalently
express D as a family D′ : (∑(b:A) R(b))→ U . Now since ∑(b:A) R(b) is contractible, we have

p : ∏
u:∑(b:A) R(b)

(a0, r0) = u.

Moreover, since the path types of a contractible type are again contractible, we have p((a0, r0)) =

refl(a0,r0). Define f (u) :≡ transportD′(p(u), d), yielding f : ∏(u:∑(b:A) R(b)) D′(u), or equivalently
f : ∏(b:A) ∏(r:R(b)) D(b, r). Finally, we have

f (a0, r0) ≡ transportD′(p((a0, r0)), d) = transportD′(refl(a0,r0), d) = d.

Thus, (i) holds.

We can deduce a similar result for identity types =A, regarded as a family varying over two
elements of A.

Definition 5.8.3. An identity system over a type A is a family R : A → A → U equipped
with a function r0 : ∏(a:A) R(a, a) such that for any type family D : ∏(a,b:A) R(a, b) → U and d :
∏(a:A) D(a, a, r0(a)), there exists a function f : ∏(a,b:A) ∏(r:R(a,b)) D(a, b, r) such that f (a, a, r0(a)) =
d(a) for all a : A.

162 CHAPTER 5. INDUCTION

Theorem 5.8.4. For R : A → A → U equipped with r0 : ∏(a:A) R(a, a), the following are logically
equivalent.

(i) (R, r0) is an identity system over A.

(ii) For all a0 : A, the pointed predicate (R(a0), r0(a0)) is an identity system at a0.

(iii) For any S : A→ A→ U and s0 : ∏(a:A) S(a, a), the type

∑
(g:∏(a,b:A) R(a,b)→S(a,b))

∏
(a:A)

g(a, a, r0(a)) = s0(a)

is contractible.

(iv) For any a, b : A, the map transportR(a)(– , r0(a)) : (a =A b)→ R(a, b) is an equivalence.

(v) For any a : A, the type ∑(b:A) R(a, b) is contractible.

Proof. The equivalence (i)⇔(ii) follows exactly the proof of equivalence between the path induc-
tion and based path induction principles for identity types; see §1.12. The equivalence with (iv)
and (v) then follows from Theorem 5.8.2, while (iii) is straightforward.

One reason this characterization is interesting is that it provides an alternative way to state
univalence and function extensionality. The univalence axiom for a universe U says exactly that
the type family

(– ≃ –) : U → U → U

together with id : ∏(A:U)(A ≃ A) satisfies Theorem 5.8.4(iv). Therefore, it is equivalent to the
corresponding version of (i), which we can state as follows.

Corollary 5.8.5 (Equivalence induction). Given any type family D : ∏(A,B:U)(A ≃ B)→ U and func-
tion d : ∏(A:U) D(A, A, idA), there exists f : ∏(A,B:U) ∏(e:A≃B) D(A, B, e) such that f (A, A, idA) =

d(A) for all A : U .

In other words, to prove something about all equivalences, it suffices to prove it about iden-
tity maps. We have already used this principle (without stating it in generality) in Lemma 4.1.1.

Similarly, function extensionality says that for any B : A→ U , the type family

(– ∼ –) :
(
∏
a:A

B(a)
)
→
(
∏
a:A

B(a)
)
→ U

together with λ f . λa. refl f (a) satisfies Theorem 5.8.4(iv). Thus, it is also equivalent to the corre-
sponding version of (i).

Corollary 5.8.6 (Homotopy induction). Given any D : ∏(f ,g:∏(a:A) B(a))(f ∼ g) → U and d :
∏(f :∏(a:A) B(a)) D(f , f , λx. refl f (x)), there exists

k : ∏
(f ,g:∏(a:A) B(a))

∏
(h: f∼g)

D(f , g, h)

such that k(f , f , λx. refl f (x)) = d(f) for all f .

CHAPTER 5 NOTES 163

Notes

Inductive definitions have a long pedigree in mathematics, arguably going back at least to Frege
and Peano’s axioms for the natural numbers. More general “inductive predicates” are not un-
common, but in set theoretic foundations they are usually constructed explicitly, either as an
intersection of an appropriate class of subsets or using transfinite iteration along the ordinals,
rather than regarded as a basic notion.

In type theory, particular cases of inductive definitions date back to Martin-Löf’s original
papers: [ML71] presents a general notion of inductively defined predicates and relations; the
notion of inductive type was present (but only with instances, not as a general notion) in Martin-
Löf’s first papers in type theory [ML75]; and then as a general notion with W-types in [ML82].

A general notion of inductive type was introduced in 1985 by Constable and Mendler [CM85].
A general schema for inductive types in intensional type theory was suggested in [PPM90]. Fur-
ther developments included [CP90, Dyb91].

The notion of inductive-recursive definition appears in [Dyb00]. An important type-theoretic
notion is the notion of tree types (a general expression of the notion of Post system in type theory)
which appears in [PS89].

The universal property of the natural numbers as an initial object of the category of N-
algebras is due to Lawvere [Law06]. This was later generalized to a description of W-types as ini-
tial algebras for polynomial endofunctors by [MP00]. The coherently homotopy-theoretic equiv-
alence between such universal properties and the corresponding induction principles (§§5.4
and 5.5) is due to [AGS12].

For actual constructions of inductive types in homotopy-theoretic semantics of type theory,
see [KLV12, vdBM15, LS17].

Exercises

Exercise 5.1. Derive the induction principle for the type List(A) of lists from its definition as an
inductive type in §5.1.

Exercise 5.2. Construct two functions on natural numbers which satisfy the same recurrence
(ez, es) judgmentally, but are not judgmentally equal.

Exercise 5.3. Construct two different recurrences (ez, es) on the same type E which are both satis-
fied judgmentally by the same function f : N→ E.

Exercise 5.4. Show that for any type family E : 2→ U , the induction operator

ind2(E) :
(
E(02)× E(12)

)
→∏

b:2
E(b)

is an equivalence.

Exercise 5.5. Show that the analogous statement to Exercise 5.4 for N fails.

Exercise 5.6. Show that if we assume simple instead of dependent elimination for W-types, the
uniqueness property (analogue of Theorem 5.3.1) fails to hold. That is, exhibit a type satisfying
the recursion principle of a W-type, but for which functions are not determined uniquely by their
recurrence.

164 CHAPTER 5. INDUCTION

Exercise 5.7. Suppose that in the “inductive definition” of the type C at the beginning of §5.6, we
replace the type N by 0. Analogously to (5.6.1), we might consider a recursion principle for this
type with hypothesis

h : (C → 0)→ (P→ 0)→ P.

Show that even without a computation rule, this recursion principle is inconsistent, i.e. it allows
us to construct an element of 0.

Exercise 5.8. Consider now an “inductive type” D with one constructor scott : (D → D) → D.
The second recursor for C suggested in §5.6 leads to the following recursor for D:

recD : ∏
P:U

((D → D)→ (D → P)→ P)→ D → P

with computation rule recD(P, h, scott(α)) ≡ h(α, (λd. recD(P, h, α(d)))). Show that this also
leads to a contradiction.

Exercise 5.9. Let A be an arbitrary type and consider generally an “inductive definition” of a type
LA with constructor lawvere : (LA → A)→ LA. The second recursor for C suggested in §5.6 leads
to the following recursor for LA:

recLA : ∏
P:U

((LA → A)→ P)→ LA → P

with computation rule recLA(P, h, lawvere(α)) ≡ h(α). Using this, show that A has the fixed-point
property, i.e. for every function f : A→ A there exists an a : A such that f (a) = a. In particular,
LA is inconsistent if A is a type without the fixed-point property, such as 0, 2, or N.

Exercise 5.10. Continuing from Exercise 5.9, consider L1, which is not obviously inconsistent since
1 does have the fixed-point property. Formulate an induction principle for L1 and its computa-
tion rule, analogously to its recursor, and using this, prove that it is contractible.

Exercise 5.11. In §5.1 we defined the type List(A) of finite lists of elements of some type A. Con-
sider a similar inductive definition of a type Lost(A) whose only constructor is

cons : A→ Lost(A)→ Lost(A).

Show that Lost(A) is equivalent to 0.

Exercise 5.12. Suppose A is a mere proposition, and B : A→ U .

(i) Show that W(a:A)B(a) is a mere proposition.
(ii) Show that W(a:A)B(a) is equivalent to ∑(a:A) ¬B(a).

(iii) Without using W(a:A)B(a), show that ∑(a:A) ¬B(a) is a homotopy W-type Wh
(a:A)B(a) in the

sense of §5.5.

Exercise 5.13. Let A : U and B : A→ U .

(i) Show that
(

∑(a:A) ¬B(a)
)
→
(
W(a:A)B(a)

)
.

(ii) Show that
(
W(a:A)B(a)

)
→
(
¬∏(a:A) B(a)

)
.

Exercise 5.14. Let A : U and suppose that B : A → U is decidable, i.e. ∏(a:A)(B(a) + ¬B(a)) (see

Definition 3.4.3). Show that
(
W(a:A)B(a)

)
→
(

∑(a:A) ¬B(a)
)

.

CHAPTER 5 EXERCISES 165

Exercise 5.15. Show that the following are logically equivalent.

(i)
(
W(a:A)B(a)

)
→
∥∥∥∑(a:A) ¬B(a)

∥∥∥ for any A : Set and B : A→ Prop.

(ii)
(
¬∏(a:A) B(a)

)
→
∥∥∥W(a:A)B(a)

∥∥∥ for any A : Set and B : A→ Prop.

(iii) The law of excluded middle (as in §3.4).

Similarly, using Corollary 3.2.7, show that it is inconsistent to assume that either implication in (i)
or (ii) holds for all A : U and B : A→ U .

Exercise 5.16. For A : U and B : A→ U , define

W ′A,B :≡∏
R:U

(
∏
a:A

(B(a)→ R)→ R
)
→ R

W ′A,B is called the impredicative encoding of W(a:A)B(a). Note that unlike W(a:A)B(a), it lives in
a higher universe than A and B.

(i) Show that W ′A,B is logically equivalent (as defined in §1.11) to W(a:A)B(a).
(ii) Show that W ′A,B implies ¬¬∑(a:A) ¬B(a).

(iii) Without using W(a:A)B(a), show that W ′A,B satisfies the same recursion principle as W(a:A)B(a)
for defining functions into types in the universe U (to which it itself does not belong).

(iv) Using LEM, give an example of an A : U and a B : A→ U such that W ′A,B is not equivalent
to W(a:A)B(a).

Exercise 5.17. Show that for any A : U and B : A→ U , we have

¬
(
W(a:A)B(a)

)
≃ ¬

(
∑
a:A
¬B(a)

)
.

In other words, W(a:A)B(a) is empty if and only if it has no nullary constructor. (Compare to
Exercise 5.11.)

166 CHAPTER 5. INDUCTION

Chapter 6

Higher inductive types

6.1 Introduction

Like the general inductive types we discussed in Chapter 5, higher inductive types are a general
schema for defining new types generated by some constructors. But unlike ordinary inductive
types, in defining a higher inductive type we may have “constructors” which generate not only
points of that type, but also paths and higher paths in that type. For instance, we can consider the
higher inductive type S1 generated by

• A point base : S1, and

• A path loop : base =S1 base.

This should be regarded as entirely analogous to the definition of, for instance, 2, as being gen-
erated by

• A point 02 : 2 and

• A point 12 : 2,

or the definition of N as generated by

• A point 0 : N and

• A function succ : N→N.

When we think of types as higher groupoids, the more general notion of “generation” is very
natural: since a higher groupoid is a “multi-sorted object” with paths and higher paths as well
as points, we should allow “generators” in all dimensions.

We will refer to the ordinary sort of constructors (such as base) as point constructors or ordi-
nary constructors, and to the others (such as loop) as path constructors or higher constructors. Each
path constructor must specify the starting and ending point of the path, which we call its source
and target; for loop, both source and target are base.

Note that a path constructor such as loop generates a new inhabitant of an identity type, which
is not (at least, not a priori) equal to any previously existing such inhabitant. In particular, loop
is not a priori equal to reflbase (although proving that they are definitely unequal takes a little
thought; see Lemma 6.4.1). This is what distinguishes S1 from the ordinary inductive type 1.

There are some important points to be made regarding this generalization.

168 CHAPTER 6. HIGHER INDUCTIVE TYPES

First of all, the word “generation” should be taken seriously, in the same sense that a group
can be freely generated by some set. In particular, because a higher groupoid comes with opera-
tions on paths and higher paths, when such an object is “generated” by certain constructors, the
operations create more paths that do not come directly from the constructors themselves. For
instance, in the higher inductive type S1, the constructor loop is not the only nontrivial path from
base to base; we have also “loop � loop” and “loop � loop � loop” and so on, as well as loop−1, etc.,
all of which are different. This may seem so obvious as to be not worth mentioning, but it is a
departure from the behavior of “ordinary” inductive types, where one can expect to see nothing
in the inductive type except what was “put in” directly by the constructors.

Secondly, this generation is really free generation: higher inductive types do not technically
allow us to impose “axioms”, such as forcing “loop � loop” to equal reflbase. However, in the world
of ∞-groupoids, there is little difference between “free generation” and “presentation”, since we
can make two paths equal up to homotopy by adding a new 2-dimensional generator relating
them (e.g. a path loop � loop = reflbase in base = base). We do then, of course, have to worry
about whether this new generator should satisfy its own “axioms”, and so on, but in principle
any “presentation” can be transformed into a “free” one by making axioms into constructors. As
we will see, by adding “truncation constructors” we can use higher inductive types to express
classical notions such as group presentations as well.

Thirdly, even though a higher inductive type contains “constructors” which generate paths
in that type, it is still an inductive definition of a single type. In particular, as we will see, it
is the higher inductive type itself which is given a universal property (expressed, as usual, by
an induction principle), and not its identity types. The identity type of a higher inductive type
retains the usual induction principle of any identity type (i.e. path induction), and does not
acquire any new induction principle.

Thus, it may be nontrivial to identify the identity types of a higher inductive type in a con-
crete way, in contrast to how in Chapter 2 we were able to give explicit descriptions of the be-
havior of identity types under all the traditional type forming operations. For instance, are there
any paths from base to base in S1 which are not simply composites of copies of loop and its in-
verse? Intuitively, it seems that the answer should be no (and it is), but proving this is not trivial.
Indeed, such questions bring us rapidly to problems such as calculating the homotopy groups of
spheres, a long-standing problem in algebraic topology for which no simple formula is known.
Homotopy type theory brings a new and powerful viewpoint to bear on such questions, but it
also requires type theory to become as complex as the answers to these questions.

Fourthly, the “dimension” of the constructors (i.e. whether they output points, paths, paths
between paths, etc.) does not have a direct connection to which dimensions the resulting type
has nontrivial homotopy in. As a simple example, if an inductive type B has a constructor of
type A → B, then any paths and higher paths in A result in paths and higher paths in B, even
though the constructor is not a “higher” constructor at all. The same thing happens with higher
constructors too: having a constructor of type A → (x =B y) means not only that points of A
yield paths from x to y in B, but that paths in A yield paths between these paths, and so on. As
we will see, this possibility is responsible for much of the power of higher inductive types.

On the other hand, it is even possible for constructors without higher types in their inputs to
generate “unexpected” higher paths. For instance, in the 2-dimensional sphere S2 generated by

• A point base : S2, and
• A 2-dimensional path surf : reflbase = reflbase in base = base,

there is a nontrivial 3-dimensional path from reflreflbase to itself. Topologists will recognize this

6.2 INDUCTION PRINCIPLES AND DEPENDENT PATHS 169

path as an incarnation of the Hopf fibration. From a category-theoretic point of view, this is the
same sort of phenomenon as the fact mentioned above that S1 contains not only loop but also
loop � loop and so on: it’s just that in a higher groupoid, there are operations which raise dimension.
Indeed, we saw many of these operations back in §2.1: the associativity and unit laws are not
just properties, but operations, whose inputs are 1-paths and whose outputs are 2-paths.

6.2 Induction principles and dependent paths

When we describe a higher inductive type such as the circle as being generated by certain con-
structors, we have to explain what this means by giving rules analogous to those for the basic
type constructors from Chapter 1. The constructors themselves give the introduction rules, but
it requires a bit more thought to explain the elimination rules, i.e. the induction and recursion
principles. In this book we do not attempt to give a general formulation of what constitutes a
“higher inductive definition” and how to extract the elimination rule from such a definition —
indeed, this is a subtle question and the subject of current research. Instead we will rely on some
general informal discussion and numerous examples.

The recursion principle is usually easy to describe: given any type equipped with the same
structure with which the constructors equip the higher inductive type in question, there is a func-
tion which maps the constructors to that structure. For instance, in the case of S1, the recursion
principle says that given any type B equipped with a point b : B and a path ℓ : b = b, there is a
function f : S1 → B such that f (base) = b and ap f (loop) = ℓ.

The latter two equalities are the computation rules. There is, however, a question of whether
these computation rules are judgmental equalities or propositional equalities (paths). For ordi-
nary inductive types, we had no qualms about making them judgmental, although we saw in
Chapter 5 that making them propositional would still yield the same type up to equivalence. In
the ordinary case, one may argue that the computation rules are really definitional equalities, in
the intuitive sense described in the Introduction.

For higher inductive types, this is less clear. Moreover, since the operation ap f is not really a
fundamental part of the type theory, but something that we defined using the induction principle
of identity types (and which we might have defined in some other, equivalent, way), it seems
inappropriate to refer to it explicitly in a judgmental equality. Judgmental equalities are part of
the deductive system, which should not depend on particular choices of definitions that we may
make within that system. There are also semantic and implementation issues to consider; see the
Notes.

It does seem unproblematic to make the computational rules for the point constructors of
a higher inductive type judgmental. In the example above, this means we have f (base) ≡ b,
judgmentally. This choice facilitates a computational view of higher inductive types. Moreover,
it also greatly simplifies our lives, since otherwise the second computation rule ap f (loop) = ℓ

would not even be well-typed as a propositional equality; we would have to compose one side or
the other with the specified identification of f (base) with b. (Such problems do arise eventually,
of course, when we come to talk about paths of higher dimension, but that will not be of great

170 CHAPTER 6. HIGHER INDUCTIVE TYPES

concern to us here. See also §6.7.) Thus, we take the computation rules for point constructors to
be judgmental, and those for paths and higher paths to be propositional.1

Remark 6.2.1. Recall that for ordinary inductive types, we regard the computation rules for a
recursively defined function as not merely judgmental equalities, but definitional ones, and thus
we may use the notation :≡ for them. For instance, the truncated predecessor function p : N→
N is defined by p(0) :≡ 0 and p(succ(n)) :≡ n. In the case of higher inductive types, this
sort of notation is reasonable for the point constructors (e.g. f (base) :≡ b), but for the path
constructors it could be misleading, since equalities such as f (loop) = ℓ are not judgmental.
Thus, we hybridize the notations, writing instead f (loop) := ℓ for this sort of “propositional
equality by definition”.

Now, what about the induction principle (the dependent eliminator)? Recall that for an or-
dinary inductive type W, to prove by induction that ∏(x:W) P(x), we must specify, for each con-
structor of W, an operation on P which acts on the “fibers” above that constructor in W. For
instance, if W is the natural numbers N, then to prove by induction that ∏(x:N) P(x), we must
specify

• An element b : P(0) in the fiber over the constructor 0 : N, and
• For each n : N, a function P(n)→ P(succ(n)).

The second can be viewed as a function “P → P” lying over the constructor succ : N → N,
generalizing how b : P(0) lies over the constructor 0 : N.

By analogy, therefore, to prove that ∏(x:S1) P(x), we should specify

• An element b : P(base) in the fiber over the constructor base : S1, and
• A path from b to b “lying over the constructor loop : base = base”.

Note that even though S1 contains paths other than loop (such as reflbase and loop � loop), we only
need to specify a path lying over the constructor itself. This expresses the intuition that S1 is
“freely generated” by its constructors.

The question, however, is what it means to have a path “lying over” another path. It defi-
nitely does not mean simply a path b = b, since that would be a path in the fiber P(base) (topolog-
ically, a path lying over the constant path at base). Actually, however, we have already answered
this question in Chapter 2: in the discussion preceding Lemma 2.3.4 we concluded that a path
from u : P(x) to v : P(y) lying over p : x = y can be represented by a path p∗(u) = v in the fiber
P(y). Since we will have a lot of use for such dependent paths in this chapter, we introduce a
special notation for them:

(u =P
p v) :≡ (transportP(p, u) = v). (6.2.2)

Remark 6.2.3. There are other possible ways to define dependent paths. For instance, instead
of p∗(u) = v we could consider u = (p−1)∗(v). We could also obtain it as a special case of a
more general “heterogeneous equality”, or with a direct definition as an inductive type family.
All these definitions result in equivalent types, so in that sense it doesn’t much matter which we
pick. However, choosing p∗(u) = v as the definition makes it easiest to conclude other things
about dependent paths, such as the fact that apd f produces them, or that we can compute them
in particular type families using the transport lemmas in §2.5.

1In particular, in the language of §1.1, this means that our higher inductive types are a mix of rules (specifying
how we can introduce such types and their elements, their induction principle, and their computation rules for point
constructors) and axioms (the computation rules for path constructors, which assert that certain identity types are
inhabited by otherwise unspecified terms). We may hope that eventually, there will be a better type theory in which
higher inductive types, like univalence, will be presented using only rules and no axioms.

6.2 INDUCTION PRINCIPLES AND DEPENDENT PATHS 171

P

S1

base

loop

b

ℓ

Figure 6.1: The topological induction principle for S1

With the notion of dependent paths in hand, we can now state more precisely the induction
principle for S1: given P : S1 → U and

• an element b : P(base), and
• a path ℓ : b =P

loop b,

there is a function f : ∏(x:S1) P(x) such that f (base) ≡ b and apd f (loop) = ℓ. As in the non-
dependent case, we speak of defining f by f (base) :≡ b and apd f (loop) := ℓ.

Remark 6.2.4. When describing an application of this induction principle informally, we regard it
as a splitting of the goal “P(x) for all x : S1” into two cases, which we will sometimes introduce
with phrases such as “when x is base” and “when x varies along loop”, respectively. There is no
specific mathematical meaning assigned to “varying along a path”: it is just a convenient way to
indicate the beginning of the corresponding section of a proof; see Lemma 6.4.2 for an example.

Topologically, the induction principle for S1 can be visualized as shown in Figure 6.1. Given
a fibration over the circle (which in the picture is a torus), to define a section of this fibration is
the same as to give a point b in the fiber over base along with a path from b to b lying over loop.
The way we interpret this type-theoretically, using our definition of dependent paths, is shown
in Figure 6.2: the path from b to b over loop is represented by a path from loop∗(b) to b in the fiber
over base.

Of course, we expect to be able to prove the recursion principle from the induction principle,
by taking P to be a constant type family. This is in fact the case, although deriving the non-
dependent computation rule for loop (which refers to ap f) from the dependent one (which refers
to apd f) is surprisingly a little tricky.

Lemma 6.2.5. If A is a type together with a : A and p : a =A a, then there is a function f : S1 → A
with

f (base) :≡ a

ap f (loop) := p.

Proof. We would like to apply the induction principle of S1 to the constant type family, (λx. A) :
S1 → U . The required hypotheses for this are a point of (λx. A)(base) ≡ A, which we have
(namely a : A), and a dependent path in a =x 7→A

loop a, or equivalently transportx 7→A(loop, a) = a.

172 CHAPTER 6. HIGHER INDUCTIVE TYPES

P

S1

base

loop

b

ℓ : loop∗(b) = b

Figure 6.2: The type-theoretic induction principle for S1

This latter type is not the same as the type a =A a where p lives, but it is equivalent to it, because
by Lemma 2.3.5 we have transportconstA

loop(a) : transportx 7→A(loop, a) = a. Thus, given a : A and
p : a = a, we can consider the composite

transportconstA
loop(a) � p : (a =x 7→A

loop a).

Applying the induction principle, we obtain f : S1 → A such that

f (base) ≡ a and (6.2.6)

apd f (loop) = transportconstA
loop(a) � p. (6.2.7)

It remains to derive the equality ap f (loop) = p. However, by Lemma 2.3.8, we have

apd f (loop) = transportconstA
loop(f (base)) � ap f (loop).

Combining this with (6.2.7) and canceling the occurrences of transportconst (which are the same
by (6.2.6)), we obtain ap f (loop) = p.

We also have a corresponding uniqueness principle.

Lemma 6.2.8. If A is a type and f , g : S1 → A are two maps together with two equalities p, q:

p : f (base) =A g(base),

q : f (loop) =λx. x=Ax
p g(loop).

Then for all x : S1 we have f (x) = g(x).

Proof. We apply the induction principle of S1 at the type family P(x) :≡ (f (x) = g(x)). When
x is base, p is exactly what we need. And when x varies along loop, we need p =

λx. f (x)=g(x)
loop p,

which by Theorems 2.11.3 and 2.11.5 can be reduced to q.

These two lemmas imply the expected universal property of the circle:

Lemma 6.2.9. For any type A we have a natural equivalence

(S1 → A) ≃ ∑
x:A

(x = x).

6.3 THE INTERVAL 173

Proof. We have a canonical function f : (S1 → A) → ∑(x:A)(x = x) defined by f (g) :≡
(g(base), g(loop)). In the other direction, we have g : ∑(x:A)(x = x) → (S1 → A) defined by
taking a pair (b, ℓ) to the function S1 → A given by the recursion principle of the circle.

Now, by the computation rule of the recursion principle, f ◦ g ∼ id. Whereas g ◦ f ∼ id by
the uniqueness principle, since (g ◦ f)(loop) =λx. x=Ax

reflbase
loop, again, by the computation rule of the

recursion principle of the circle. Thus, f has a quasi-inverse, and is therefore an equivalence.

As in §5.5, we can show that the conclusion of Lemma 6.2.9 is equivalent to having an induc-
tion principle with propositional computation rules. Other higher inductive types also satisfy
lemmas analogous to Lemmas 6.2.5 and 6.2.9; we will generally leave their proofs to the reader.
We now proceed to consider many examples.

6.3 The interval

The interval, which we denote I, is perhaps an even simpler higher inductive type than the
circle. It is generated by:

• a point 0I : I,

• a point 1I : I, and

• a path seg : 0I =I 1I .

The recursion principle for the interval says that given a type B along with

• a point b0 : B,

• a point b1 : B, and

• a path s : b0 = b1,

there is a function f : I → B such that f (0I) ≡ b0, f (1I) ≡ b1, and f (seg) = s. The induction
principle says that given P : I → U along with

• a point b0 : P(0I),

• a point b1 : P(1I), and

• a path s : b0 =P
seg b1,

there is a function f : ∏(x:I) P(x) such that f (0I) ≡ b0, f (1I) ≡ b1, and apd f (seg) = s.
Regarded purely up to homotopy, the interval is not really interesting:

Lemma 6.3.1. The type I is contractible.

Proof. We prove that for all x : I we have x =I 1I . In other words we want a function f of type
∏(x:I)(x =I 1I). We begin to define f in the following way:

f (0I) :≡ seg : 0I =I 1I ,

f (1I) :≡ refl1I : 1I =I 1I .

It remains to define apd f (seg), which must have type seg =λx. x=I1I
seg refl1I . By definition this type is

seg∗(seg) =1I=I1I refl1I , which in turn is equivalent to seg−1 � seg = refl1I . But there is a canonical
element of that type, namely the proof that path inverses are in fact inverses.

174 CHAPTER 6. HIGHER INDUCTIVE TYPES

However, type-theoretically the interval does still have some interesting features, just like
the topological interval in classical homotopy theory. For instance, it enables us to give an easy
proof of function extensionality. (Of course, as in §4.9, for the duration of the following proof we
suspend our overall assumption of the function extensionality axiom.)

Lemma 6.3.2. If f , g : A → B are two functions such that f (x) = g(x) for every x : A, then f = g in
the type A→ B.

Proof. Let’s call the proof we have p : ∏(x:A)(f (x) = g(x)). For all x : A we define a function
p̃x : I → B by

p̃x(0I) :≡ f (x),

p̃x(1I) :≡ g(x),

p̃x(seg) := p(x).

We now define q : I → (A→ B) by

q(i) :≡ (λx. p̃x(i))

Then q(0I) is the function λx. p̃x(0I), which is equal to f because p̃x(0I) is defined by f (x).
Similarly, we have q(1I) = g, and hence

q(seg) : f =(A→B) g

In Exercise 6.10 we ask the reader to complete the proof of the full function extensionality
axiom from Lemma 6.3.2.

6.4 Circles and spheres

We have already discussed the circle S1 as the higher inductive type generated by

• A point base : S1, and
• A path loop : base =S1 base.

Its induction principle says that given P : S1 → U along with b : P(base) and ℓ : b =P
loop b, we

have f : ∏(x:S1) P(x) with f (base) ≡ b and apd f (loop) = ℓ. Its non-dependent recursion principle
says that given B with b : B and ℓ : b = b, we have f : S1 → B with f (base) ≡ b and f (loop) = ℓ.

We observe that the circle is nontrivial.

Lemma 6.4.1. loop ̸= reflbase.

Proof. Suppose that loop = reflbase. Then since for any type A with x : A and p : x = x, there is a
function f : S1 → A defined by f (base) :≡ x and f (loop) := p, we have

p = f (loop) = f (reflbase) = reflx.

But this implies that every type is a set, which as we have seen is not the case (see Example 3.1.9).

The circle also has the following interesting property, which is useful as a source of coun-
terexamples.

6.4 CIRCLES AND SPHERES 175

Lemma 6.4.2. There exists an element of ∏(x:S1)(x = x) which is not equal to x 7→ reflx.

Proof. We define f : ∏(x:S1)(x = x) by S1-induction. When x is base, we let f (base) :≡ loop. Now
when x varies along loop (see Remark 6.2.4), we must show that transportx 7→x=x(loop, loop) =

loop. However, in §2.11 we observed that transportx 7→x=x(p, q) = p−1 � q � p, so what we have to
show is that loop−1 � loop � loop = loop. But this is clear by canceling an inverse.

To show that f ̸= (x 7→ reflx), it suffices to show that f (base) ̸= reflbase. But f (base) = loop,
so this is just the previous lemma.

For instance, this enables us to extend Example 3.1.9 by showing that any universe which
contains the circle cannot be a 1-type.

Corollary 6.4.3. If the type S1 belongs to some universe U , then U is not a 1-type.

Proof. The type S1 = S1 in U is, by univalence, equivalent to the type S1 ≃ S1 of autoequivalences
of S1, so it suffices to show that S1 ≃ S1 is not a set. For this, it suffices to show that its equality
type idS1 =(S1≃S1) idS1 is not a mere proposition. Since being an equivalence is a mere proposition,
this type is equivalent to idS1 =(S1→S1) idS1 . But by function extensionality, this is equivalent to
∏(x:S1)(x = x), which as we have seen in Lemma 6.4.2 contains two unequal elements.

We have also mentioned that the 2-sphere S2 should be the higher inductive type generated
by

• A point base : S2, and
• A 2-dimensional path surf : reflbase = reflbase in base = base.

The recursion principle for S2 is not hard: it says that given B with b : B and s : reflb = reflb, we
have f : S2 → B with f (base) ≡ b and ap2

f (surf) = s. Here by “ap2
f (surf)” we mean an extension

of the functorial action of f to two-dimensional paths, which can be stated precisely as follows.

Lemma 6.4.4. Given f : A → B and x, y : A and p, q : x = y, and r : p = q, we have a path
ap2

f (r) : f (p) = f (q).

Proof. By path induction, we may assume p ≡ q and r is reflexivity. But then we may define
ap2

f

(
reflp

)
:≡ refl f (p).

In order to state the general induction principle, we need a version of this lemma for de-
pendent functions, which in turn requires a notion of dependent two-dimensional paths. As
before, there are many ways to define such a thing; one is by way of a two-dimensional version
of transport.

Lemma 6.4.5. Given P : A → U and x, y : A and p, q : x = y and r : p = q, for any u : P(x) we have
transport2(r, u) : p∗(u) = q∗(u).

Proof. By path induction.

Now suppose given x, y : A and p, q : x = y and r : p = q and also points u : P(x) and
v : P(y) and dependent paths h : u =P

p v and k : u =P
q v. By our definition of dependent paths,

this means h : p∗(u) = v and k : q∗(u) = v. Thus, it is reasonable to define the type of dependent
2-paths over r to be

(h =P
r k) :≡ (h = transport2(r, u) � k).

We can now state the dependent version of Lemma 6.4.4.

176 CHAPTER 6. HIGHER INDUCTIVE TYPES

Lemma 6.4.6. Given P : A → U and x, y : A and p, q : x = y and r : p = q and a function
f : ∏(x:A) P(x), we have apd2

f (r) : apd f (p) =P
r apd f (q).

Proof. Path induction.

Now we can state the induction principle for S2: suppose we are given P : S2 → U with
b : P(base) and s : reflb =

Q
surf reflb where Q :≡ λp. b =P

p b. Then there is a function f : ∏(x:S2) P(x)
such that f (base) ≡ b and apd2

f (surf) = s.
Of course, this explicit approach gets more and more complicated as we go up in dimension.

Thus, if we want to define n-spheres for all n, we need some more systematic idea. One approach
is to work with n-dimensional loops directly, rather than general n-dimensional paths.

Recall from §2.1 the definitions of pointed types U∗, and the n-fold loop space Ωn : U∗ → U∗
(Definitions 2.1.7 and 2.1.8). Now we can define the n-sphere Sn to be the higher inductive type
generated by

• A point base : Sn, and

• An n-loop loopn : Ωn(Sn, base).

In order to write down the induction principle for this presentation, we would need to define
a notion of “dependent n-loop”, along with the action of dependent functions on n-loops. We
leave this to the reader (see Exercise 6.4); in the next section we will discuss a different way to
define the spheres that is sometimes more tractable.

6.5 Suspensions

The suspension of a type A is the universal way of making the points of A into paths (and hence
the paths in A into 2-paths, and so on). It is a type ΣA defined by the following generators:2

• a point N : ΣA,

• a point S : ΣA, and

• a function merid : A→ (N =ΣA S).

The names are intended to suggest a “globe” of sorts, with a north pole, a south pole, and an A’s
worth of meridians from one to the other. Indeed, as we will see, if A = S1, then its suspension
is equivalent to the surface of an ordinary sphere, S2.

The recursion principle for ΣA says that given a type B together with

• points n, s : B and

• a function m : A→ (n = s),

we have a function f : ΣA → B such that f (N) ≡ n and f (S) ≡ s, and for all a : A we have
f (merid(a)) = m(a). Similarly, the induction principle says that given P : ΣA→ U together with

• a point n : P(N),
• a point s : P(S), and

• for each a : A, a path m(a) : n =P
merid(a) s,

2There is an unfortunate clash of notation with dependent pair types, which of course are also written with a Σ.
However, context usually disambiguates.

6.5 SUSPENSIONS 177

there exists a function f : ∏(x:ΣA) P(x) such that f (N) ≡ n and f (S) ≡ s and for each a : A we
have apd f (merid(a)) = m(a).

Our first observation about suspension is that it gives another way to define the circle.

Lemma 6.5.1. Σ2 ≃ S1.

Proof. Define f : Σ2 → S1 by recursion such that f (N) :≡ base and f (S) :≡ base, while
f (merid(02)) := loop but f (merid(12)) := reflbase. Define g : S1 → Σ2 by recursion such that
g(base) :≡ N and g(loop) := merid(02) � merid(12)

−1. We now show that f and g are quasi-
inverses.

First we show by induction that g(f (x)) = x for all x : Σ2. If x ≡ N, then g(f (N)) ≡
g(base) ≡ N, so we have reflN : g(f (N)) = N. If x ≡ S, then g(f (S)) ≡ g(base) ≡ N, and
we choose the equality merid(12) : g(f (S)) = S. It remains to show that for any y : 2, these
equalities are preserved as x varies along merid(y), which is to say that when reflN is transported
along merid(y) it yields merid(12). By transport in path spaces and pulled back fibrations, this
means we are to show that

g(f (merid(y)))−1 � reflN �merid(y) = merid(12).

Of course, we may cancel reflN. Now by 2-induction, we may assume either y ≡ 02 or y ≡ 12. If
y ≡ 02, then we have

g(f (merid(02)))
−1 �merid(02) = g(loop)−1 �merid(02)

= (merid(02) �merid(12)
−1)
−1 �merid(02)

= merid(12) �merid(02)
−1 �merid(02)

= merid(12)

while if y ≡ 12, then we have

g(f (merid(12)))
−1 �merid(12) = g(reflbase)

−1 �merid(12)

= reflN
−1 �merid(12)

= merid(12).

Thus, for all x : Σ2, we have g(f (x)) = x.
Now we show by induction that f (g(x)) = x for all x : S1. If x ≡ base, then f (g(base)) ≡

f (N) ≡ base, so we have reflbase : f (g(base)) = base. It remains to show that this equality is
preserved as x varies along loop, which is to say that it is transported along loop to itself. Again,
by transport in path spaces and pulled back fibrations, this means to show that

f (g(loop))−1 � reflbase � loop = reflbase.

However, we have

f (g(loop)) = f
(
merid(02) �merid(12)

−1
)

= f (merid(02)) � f (merid(12))
−1

= loop � reflbase

so this follows easily.

178 CHAPTER 6. HIGHER INDUCTIVE TYPES

Topologically, the two-point space 2 is also known as the 0-dimensional sphere, S0. (For in-
stance, it is the space of points at distance 1 from the origin in R1, just as the topological 1-sphere
is the space of points at distance 1 from the origin in R2.) Thus, Lemma 6.5.1 can be phrased sug-
gestively as ΣS0 ≃ S1. In fact, this pattern continues: we can define all the spheres inductively
by

S0 :≡ 2 and Sn+1 :≡ ΣSn. (6.5.2)

We can even start one dimension lower by defining S−1 :≡ 0, and observe that Σ0 ≃ 2.
To prove carefully that this agrees with the definition of Sn from the previous section would

require making the latter more explicit. However, we can show that the recursive definition has
the same universal property that we would expect the other one to have. If (A, a0) and (B, b0)

are pointed types (with basepoints often left implicit), let Map∗(A, B) denote the type of based
maps:

Map∗(A, B) :≡ ∑
f :A→B

(f (a0) = b0).

Note that any type A gives rise to a pointed type A+ :≡ A+ 1 with basepoint inr(⋆); this is called
adjoining a disjoint basepoint.

Lemma 6.5.3. For a type A and a pointed type (B, b0), we have

Map∗(A+, B) ≃ (A→ B)

Note that on the right we have the ordinary type of unbased functions from A to B.

Proof. From left to right, given f : A+ → B with p : f (inr(⋆)) = b0, we have f ◦ inl : A → B.
And from right to left, given g : A → B we define g′ : A+ → B by g′(inl(a)) :≡ g(a) and
g′(inr(u)) :≡ b0. We leave it to the reader to show that these are quasi-inverse operations.

In particular, note that 2 ≃ 1+. Thus, for any pointed type B we have

Map∗(2, B) ≃ (1→ B) ≃ B.

Now recall that the loop space operation Ω acts on pointed types, with definition Ω(A, a0) :≡
(a0 =A a0, refla0). We can also make the suspension Σ act on pointed types, by Σ(A, a0) :≡
(ΣA,N).

Lemma 6.5.4. For pointed types (A, a0) and (B, b0) we have

Map∗(ΣA, B) ≃ Map∗(A, ΩB).

Proof. We first observe the following chain of equivalences:

Map∗(ΣA, B) :≡ ∑
f :ΣA→B

(f (N) = b0)

≃ ∑
f :∑(bn :B) ∑(bs :B)(A→(bn=bs))

(pr1(f) = b0)

≃ ∑
(bn :B)

∑
(bs :B)

(
A→ (bn = bs)

)
× (bn = b0)

≃ ∑
(p:∑(bn :B)(bn=b0))

∑
(bs :B)

(A→ (pr1(p) = bs))

≃ ∑
bs :B

(A→ (b0 = bs))

6.6 CELL COMPLEXES 179

The first equivalence is by the universal property of suspensions, which says that(
ΣA→ B

)
≃
(

∑
(bn :B)

∑
(bs :B)

(A→ (bn = bs))
)

with the function from right to left given by the recursor (see Exercise 6.11). The second and
third equivalences are by Exercise 2.10, along with a reordering of components. Finally, the last
equivalence follows from Lemma 3.11.9, since by Lemma 3.11.8, ∑(bn :B)(bn = b0) is contractible
with center (b0, reflb0).

The proof is now completed by the following chain of equivalences:

∑
bs :B

(A→ (b0 = bs)) ≃ ∑
(bs :B)

∑
(g:A→(b0=bs))

∑
(q:b0=bs)

(g(a0) = q)

≃ ∑
(r:∑(bs :B)(b0=bs))

∑
(g:A→(b0=pr1(r)))

(g(a0) = pr2(r))

≃ ∑
g:A→(b0=b0)

(g(a0) = reflb0)

≡ Map∗(A, ΩB).

Similar to before, the first and last equivalences are by Lemmas 3.11.8 and 3.11.9, and the second
is by Exercise 2.10 and reordering of components.

In particular, for the spheres defined as in (6.5.2) we have

Map∗(S
n, B) ≃ Map∗(S

n−1, ΩB) ≃ · · · ≃ Map∗(2, ΩnB) ≃ ΩnB.

Thus, these spheres Sn have the universal property that we would expect from the spheres de-
fined directly in terms of n-fold loop spaces as in §6.4.

6.6 Cell complexes

In classical topology, a cell complex is a space obtained by successively attaching discs along their
boundaries. It is called a CW complex if the boundary of an n-dimensional disc is constrained to
lie in the discs of dimension strictly less than n (the (n− 1)-skeleton).

Any finite CW complex can be presented as a higher inductive type, by turning n-dimensional
discs into n-dimensional paths and partitioning the image of the attaching map into a source and
a target, with each written as a composite of lower dimensional paths. Our explicit definitions
of S1 and S2 in §6.4 had this form.

Another example is the torus T2, which is generated by:

• a point b : T2,
• a path p : b = b,
• another path q : b = b, and
• a 2-path t : p � q = q � p.

Perhaps the easiest way to see that this is a torus is to start with a rectangle, having four corners
a, b, c, d, four edges p, q, r, s, and an interior which is manifestly a 2-path t from p � q to r � s:

a
p

r ⇓t

b

q

c s d

180 CHAPTER 6. HIGHER INDUCTIVE TYPES

Figure 6.3: A 2-disc made out of a hub and spokes

Now identify the edge r with q and the edge s with p, resulting in also identifying all four corners.
Topologically, this identification can be seen to produce a torus.

The induction principle for the torus is the trickiest of any we’ve written out so far. Given
P : T2 → U , for a section ∏(x:T2) P(x) we require

• a point b′ : P(b),

• a path p′ : b′ =P
p b′,

• a path q′ : b′ =P
q b′, and

• a 2-path t′ between the “composites” p′ � q′ and q′ � p′, lying over t.

In order to make sense of this last datum, we need a composition operation for dependent paths,
but this is not hard to define. Then the induction principle gives a function f : ∏(x:T2) P(x) such
that f (b) ≡ b′ and apd f (p) = p′ and apd f (q) = q′ and something like “apd2

f (t) = t′”. However,
this is not well-typed as it stands, firstly because the equalities apd f (p) = p′ and apd f (q) = q′ are
not judgmental, and secondly because apd f only preserves path concatenation up to homotopy.
We leave the details to the reader (see Exercise 6.1).

Of course, another definition of the torus is T2 :≡ S1 × S1 (in Exercise 6.3 we ask the reader
to verify the equivalence of the two). The cell-complex definition, however, generalizes easily to
other spaces without such descriptions, such as the Klein bottle, the projective plane, etc. But it
does get increasingly difficult to write down the induction principles, requiring us to define no-
tions of dependent n-paths and of apd acting on n-paths. Fortunately, once we have the spheres
in hand, there is a way around this.

6.7 Hubs and spokes

In topology, one usually speaks of building CW complexes by attaching n-dimensional discs
along their (n− 1)-dimensional boundary spheres. However, another way to express this is by
gluing in the cone on an (n− 1)-dimensional sphere. That is, we regard a disc as consisting of a
cone point (or “hub”), with meridians (or “spokes”) connecting that point to every point on the
boundary, continuously, as shown in Figure 6.3.

We can use this idea to express higher inductive types containing n-dimensional path con-
structors for n > 1 in terms of ones containing only 1-dimensional path constructors. The
point is that we can obtain an n-dimensional path as a continuous family of 1-dimensional paths
parametrized by an (n− 1)-dimensional object. The simplest (n− 1)-dimensional object to use
is the (n − 1)-sphere, although in some cases a different one may be preferable. (Recall that

6.8 PUSHOUTS 181

we were able to define the spheres in §6.5 inductively using suspensions, which involve only
1-dimensional path constructors. Indeed, suspension can also be regarded as an instance of
this idea, since it involves a family of 1-dimensional paths parametrized by the type being sus-
pended.)

For instance, the torus T2 from the previous section could be defined instead to be generated
by:

• a point b : T2,

• a path p : b = b,

• another path q : b = b,

• a point h : T2, and

• for each x : S1, a path s(x) : f (x) = h, where f : S1 → T2 is defined by f (base) :≡ b and
f (loop) := p � q � p−1 � q−1.

The induction principle for this version of the torus says that given P : T2 → U , for a section
∏(x:T2) P(x) we require

• a point b′ : P(b),

• a path p′ : b′ =P
p b′,

• a path q′ : b′ =P
q b′,

• a point h′ : P(h), and

• for each x : S1, a path g(x) =P
s(x) h′, where g : ∏(x:S1) P(f (x)) is defined by g(base) :≡ b′ and

apdg(loop) := t(p′ � q′ � (p′)−1 � (q′)−1). In the latter, � denotes concatenation of dependent

paths, and the definition of t : (b′ =P
f (loop) b′) ≃ (b′ =P◦ f

loop b′) is left to the reader.

Note that there is no need for dependent 2-paths or apd2. We leave it to the reader to write out
the computation rules.

Remark 6.7.1. One might question the need for introducing the hub point h; why couldn’t we in-
stead simply add paths continuously relating the boundary of the disc to a point on that bound-
ary, as shown in Figure 6.4? However, this does not work without further modification. For
if, given some f : S1 → X, we give a path constructor connecting each f (x) to f (base), then
what we end up with is more like the picture in Figure 6.5 of a cone whose vertex is twisted
around and glued to some point on its base. The problem is that the specified path from f (base)
to itself may not be reflexivity. We could remedy the problem by adding a 2-dimensional path
constructor to ensure this, but using a separate hub avoids the need for any path constructors of
dimension above 1.

Remark 6.7.2. Note also that this “translation” of higher paths into 1-paths does not preserve
judgmental computation rules for these paths, though it does preserve propositional ones.

6.8 Pushouts

From a category-theoretic point of view, one of the important aspects of any foundational system
is the ability to construct limits and colimits. In set-theoretic foundations, these are limits and
colimits of sets, whereas in our case they are limits and colimits of types. We have seen in §2.15

182 CHAPTER 6. HIGHER INDUCTIVE TYPES

Figure 6.4: Hubless spokes Figure 6.5: Hubless spokes, II

that cartesian product types have the correct universal property of a categorical product of types,
and in Exercise 2.9 that coproduct types likewise have their expected universal property.

As remarked in §2.15, more general limits can be constructed using identity types and Σ-
types, e.g. the pullback of f : A → C and g : B → C is ∑(a:A) ∑(b:B)(f (a) = g(b)) (see Exer-
cise 2.11). However, more general colimits require identifying elements coming from different
types, for which higher inductives are well-adapted. Since all our constructions are homotopy-
invariant, all our colimits are necessarily homotopy colimits, but we drop the ubiquitous adjective
in the interests of concision.

In this section we discuss pushouts, as perhaps the simplest and one of the most useful colim-
its. Indeed, one expects all finite colimits (for a suitable homotopical definition of “finite”) to be
constructible from pushouts and finite coproducts. It is also possible to give a direct construction
of more general colimits using higher inductive types, but this is somewhat technical, and also
not completely satisfactory since we do not yet have a good fully general notion of homotopy
coherent diagrams.

Suppose given a span of types and functions:

D =

C
g
//

f
��

B

A

The pushout of this span is the higher inductive type A ⊔C B presented by

• a function inl : A→ A ⊔C B,

• a function inr : B→ A ⊔C B, and

• for each c : C a path glue(c) : (inl(f (c)) = inr(g(c))).

In other words, A ⊔C B is the disjoint union of A and B, together with for every c : C a witness
that f (c) and g(c) are equal. The recursion principle says that if D is another type, we can define
a map s : A ⊔C B→ D by defining

• for each a : A, the value of s(inl(a)) : D,

• for each b : B, the value of s(inr(b)) : D, and

• for each c : C, the value of aps(glue(c)) : s(inl(f (c))) = s(inr(g(c))).

6.8 PUSHOUTS 183

We leave it to the reader to formulate the induction principle. It also implies the uniqueness
principle that if s, s′ : A ⊔C B→ D are two maps such that

s(inl(a)) = s′(inl(a))

s(inr(b)) = s′(inr(b))

aps(glue(c)) = aps′(glue(c)) (modulo the previous two equalities)

for every a, b, c, then s = s′.
To formulate the universal property of a pushout, we introduce the following.

Definition 6.8.1. Given a span D = (A
f←− C

g−→ B) and a type D, a cocone under D with vertex
D consists of functions i : A→ D and j : B→ D and a homotopy h : ∏(c:C)(i(f (c)) = j(g(c))):

C
g
//

f
��

<Dh

B

j
��

A
i
// D

We denote by coconeD (D) the type of all such cocones, i.e.

coconeD (D) :≡ ∑
(i:A→D)

∑
(j:B→D)

∏
(c:C)

(i(f (c)) = j(g(c))).

Of course, there is a canonical cocone under D with vertex A ⊔C B consisting of inl, inr, and
glue.

C
g

//

f
��

?Gglue

B

inr
��

A
inl
// A ⊔C B

The following lemma says that this is the universal such cocone.

Lemma 6.8.2. For any type E, there is an equivalence

(A ⊔C B→ E) ≃ coconeD (E).

Proof. Let’s consider an arbitrary type E : U . There is a canonical function c⊔ defined by{
(A ⊔C B→ E) −→ coconeD (E)

t 7−→ (t ◦ inl, t ◦ inr, apt ◦ glue)

We write informally t 7→ t ◦ c⊔ for this function. We show that this is an equivalence.
Firstly, given a c = (i, j, h) : coconeD (E), we need to construct a map s(c) from A ⊔C B to E.

C
g
//

f
��

;Ch

B

j
��

A
i
// E

184 CHAPTER 6. HIGHER INDUCTIVE TYPES

The map s(c) is defined in the following way

s(c)(inl(a)) :≡ i(a),

s(c)(inr(b)) :≡ j(b),

aps(c)(glue(x)) := h(x).

We have defined a map {
coconeD (E) −→ (A ⊔C B→ E)

c 7−→ s(c)

and we need to prove that this map is an inverse to t 7→ t ◦ c⊔. On the one hand, if c = (i, j, h) :
coconeD (E), we have

s(c) ◦ c⊔ = (s(c) ◦ inl, s(c) ◦ inr, aps(c) ◦ glue)
= (λa. s(c)(inl(a)), λb. s(c)(inr(b)), λx. aps(c)(glue(x)))

= (λa. i(a), λb. j(b), λx. h(x))

≡ (i, j, h)

= c.

On the other hand, if t : A ⊔C B→ E, we want to prove that s(t ◦ c⊔) = t. For a : A, we have

s(t ◦ c⊔)(inl(a)) = t(inl(a))

because the first component of t ◦ c⊔ is t ◦ inl. In the same way, for b : B we have

s(t ◦ c⊔)(inr(b)) = t(inr(b))

and for x : C we have
aps(t◦c⊔)(glue(x)) = apt(glue(x))

hence s(t ◦ c⊔) = t.
This proves that c 7→ s(c) is a quasi-inverse to t 7→ t ◦ c⊔, as desired.

A number of standard homotopy-theoretic constructions can be expressed as (homotopy)
pushouts.

• The pushout of the span 1← A→ 1 is the suspension ΣA (see §6.5).

• The pushout of A
pr1←− A× B

pr2−→ B is called the join of A and B, written A ∗ B.

• The pushout of 1← A
f−→ B is the cone or cofiber of f .

• If A and B are equipped with basepoints a0 : A and b0 : B, then the pushout of A
a0←− 1

b0−→ B
is the wedge A ∨ B.

• If A and B are pointed as before, define f : A ∨ B → A × B by f (inl(a)) :≡ (a, b0) and
f (inr(b)) :≡ (a0, b), with f (glue) := refl(a0,b0). Then the cone of f is called the smash product
A ∧ B.

We will discuss pushouts further in Chapters 7 and 8.

6.9 TRUNCATIONS 185

Remark 6.8.3. As remarked in §3.7, the notations ∧ and ∨ for the smash product and wedge of
pointed spaces are also used in logic for “and” and “or”, respectively. Since types in homotopy
type theory can behave either like spaces or like propositions, there is technically a potential
for conflict — but since they rarely do both at once, context generally disambiguates. Further-
more, the smash product and wedge only apply to pointed spaces, while the only pointed mere
proposition is ⊤ ≡ 1 — and we have 1 ∧ 1 = 1 and 1 ∨ 1 = 1 for either meaning of ∧ and ∨.

Remark 6.8.4. Note that colimits do not in general preserve truncatedness. For instance, S0 and
1 are both sets, but the pushout of 1 ← S0 → 1 is S1, which is not a set. If we are interested in
colimits in the category of n-types, therefore (and, in particular, in the category of sets), we need
to “truncate” the colimit somehow. We will return to this point in §6.9 and Chapters 7 and 10.

6.9 Truncations

In §3.7 we introduced the propositional truncation as a new type forming operation; we now
observe that it can be obtained as a special case of higher inductive types. This reduces the
problem of understanding truncations to the problem of understanding higher inductives, which
at least are amenable to a systematic treatment. It is also interesting because it provides our first
example of a higher inductive type which is truly recursive, in that its constructors take inputs
from the type being defined (as does the successor succ : N→N).

Let A be a type; we define its propositional truncation ∥A∥ to be the higher inductive type
generated by:

• A function |– | : A→ ∥A∥, and
• for each x, y : ∥A∥, a path x = y.

Note that the second constructor is by definition the assertion that ∥A∥ is a mere proposition.
Thus, the definition of ∥A∥ can be interpreted as saying that ∥A∥ is freely generated by a function
A→ ∥A∥ and the fact that it is a mere proposition.

The recursion principle for this higher inductive definition is easy to write down: it says that
given any type B together with

• a function g : A→ B, and
• for any x, y : B, a path x =B y,

there exists a function f : ∥A∥ → B such that

• f (|a|) ≡ g(a) for all a : A, and
• for any x, y : ∥A∥, the function ap f takes the specified path x = y in ∥A∥ to the specified

path f (x) = f (y) in B (propositionally).

These are exactly the hypotheses that we stated in §3.7 for the recursion principle of propositional
truncation — a function A → B such that B is a mere proposition — and the first part of the
conclusion is exactly what we stated there as well. The second part (the action of ap f) was not
mentioned previously, but it turns out to be vacuous in this case, because B is a mere proposition,
so any two paths in it are automatically equal.

There is also an induction principle for ∥A∥, which says that given any B : ∥A∥ → U together
with

• a function g : ∏(a:A) B(|a|), and

186 CHAPTER 6. HIGHER INDUCTIVE TYPES

• for any x, y : ∥A∥ and u : B(x) and v : B(y), a dependent path q : u =B
p(x,y) v, where p(x, y)

is the path coming from the second constructor of ∥A∥,

there exists f : ∏(x:∥A∥) B(x) such that f (|a|) ≡ g(a) for a : A, and also another computation
rule. However, because there can be at most one function between any two mere propositions
(up to homotopy), this induction principle is not really useful (see also Exercise 3.17).

We can, however, extend this idea to construct similar truncations landing in n-types, for any
n. For instance, we might define the 0-truncation ∥A∥0 to be generated by

• A function |– |0 : A→ ∥A∥0, and
• For each x, y : ∥A∥0 and each p, q : x = y, a path p = q.

Then ∥A∥0 would be freely generated by a function A → ∥A∥0 together with the assertion that
∥A∥0 is a set. A natural induction principle for it would say that given B : ∥A∥0 → U together
with

• a function g : ∏(a:A) B(|a|0), and
• for any x, y : ∥A∥0 with z : B(x) and w : B(y), and each p, q : x = y with r : z =B

p w and

s : z =B
q w, a 2-path v : r =z=B

−w
u(x,y,p,q) s, where u(x, y, p, q) : p = q is obtained from the second

constructor of ∥A∥0,

there exists f : ∏(x:∥A∥0)
B(x) such that f (|a|0) ≡ g(a) for all a : A, and also apd2

f (u(x, y, p, q))
is the 2-path specified above. (As in the propositional case, the latter condition turns out to be
uninteresting.) From this, however, we can prove a more useful induction principle.

Lemma 6.9.1. Suppose given B : ∥A∥0 → U together with g : ∏(a:A) B(|a|0), and assume that each
B(x) is a set. Then there exists f : ∏(x:∥A∥0)

B(x) such that f (|a|0) ≡ g(a) for all a : A.

Proof. It suffices to construct, for any x, y, z, w, p, q, r, s as above, a 2-path v : r =B
u(x,y,p,q) s. How-

ever, by the definition of dependent 2-paths, this is an ordinary 2-path in the fiber B(y). Since
B(y) is a set, a 2-path exists between any two parallel paths.

This implies the expected universal property.

Lemma 6.9.2. For any set B and any type A, composition with |– |0 : A → ∥A∥0 determines an
equivalence

(∥A∥0 → B) ≃ (A→ B).

Proof. The special case of Lemma 6.9.1 when B is the constant family gives a map from right to
left, which is a right inverse to the “compose with |– |0” function from left to right. To show that
it is also a left inverse, let h : ∥A∥0 → B, and define h′ : ∥A∥0 → B by applying Lemma 6.9.1 to
the composite a 7→ h(|a|0). Thus, h′(|a|0) = h(|a|0).

However, since B is a set, for any x : ∥A∥0 the type h(x) = h′(x) is a mere proposition, and
hence also a set. Therefore, by Lemma 6.9.1, the observation that h′(|a|0) = h(|a|0) for any a : A
implies h(x) = h′(x) for any x : ∥A∥0, and hence h = h′.

For instance, this enables us to construct colimits of sets. We have seen that if A
f←− C

g−→ B
is a span of sets, then the pushout A ⊔C B may no longer be a set. (For instance, if A and B are 1
and C is 2, then the pushout is S1.) However, we can construct a pushout that is a set, and has
the expected universal property with respect to other sets, by truncating.

6.10 QUOTIENTS 187

Lemma 6.9.3. Let A
f←− C

g−→ B be a span of sets. Then for any set E, there is a canonical equivalence(∥∥∥A ⊔C B
∥∥∥

0
→ E

)
≃ coconeD (E).

Proof. Compose the equivalences in Lemmas 6.8.2 and 6.9.2.

We refer to
∥∥A ⊔C B

∥∥
0 as the set-pushout of f and g, to distinguish it from the (homotopy)

pushout A ⊔C B. Alternatively, we could modify the definition of the pushout in §6.8 to include
the 0-truncation constructor directly, avoiding the need to truncate afterwards. Similar remarks
apply to any sort of colimit of sets; we will explore this further in Chapter 10.

However, while the above definition of the 0-truncation works — it gives what we want, and
is consistent — it has a couple of issues. Firstly, it doesn’t fit so nicely into the general theory
of higher inductive types. In general, it is tricky to deal directly with constructors such as the
second one we have given for ∥A∥0, whose inputs involve not only elements of the type being
defined, but paths in it.

This can be gotten round fairly easily, however. Recall in §5.1 we mentioned that we can
allow a constructor of an inductive type W to take “infinitely many arguments” of type W by
having it take a single argument of type N → W. There is a general principle behind this: to
model a constructor with funny-looking inputs, use an auxiliary inductive type (such as N) to
parametrize them, reducing the input to a simple function with inductive domain.

For the 0-truncation, we can consider the auxiliary higher inductive type S generated by two
points a, b : S and two paths p, q : a = b. Then the fishy-looking constructor of ∥A∥0 can be
replaced by the unobjectionable

• For every f : S→ ∥A∥0, a path ap f (p) = ap f (q).

Since to give a map out of S is the same as to give two points and two parallel paths between
them, this yields the same induction principle.

A more serious problem with our current definition of 0-truncation, however, is that it doesn’t
generalize very well. If we want to describe a notion of definition of “n-truncation” into n-types
uniformly for all n : N, then this approach is unfeasible, since the second constructor would
need a number of arguments that increases with n. In §7.3, therefore, we will use a different idea
to construct these, based on the observation that the type S introduced above is equivalent to the
circle S1. This includes the 0-truncation as a special case, and satisfies generalized versions of
Lemmas 6.9.1 and 6.9.2.

6.10 Quotients

A particularly important sort of colimit of sets is the quotient by a relation. That is, let A be a set
and R : A× A → Prop a family of mere propositions (a mere relation). Its quotient should be
the set-coequalizer of the two projections

∑(a,b:A)R(a, b) ⇒ A.

We can also describe this directly, as the higher inductive type A/R generated by

• A function q : A→ A/R;

• For each a, b : A such that R(a, b), an equality q(a) = q(b); and

188 CHAPTER 6. HIGHER INDUCTIVE TYPES

• The 0-truncation constructor: for all x, y : A/R and r, s : x = y, we have r = s.

We will sometimes refer to this higher inductive type A/R as the set-quotient of A by R, to
emphasize that it produces a set by definition. (There are more general notions of “quotient” in
homotopy theory, but they are mostly beyond the scope of this book. However, in §9.9 we will
consider the “quotient” of a type by a 1-groupoid, which is the next level up from set-quotients.)

Remark 6.10.1. It is not actually necessary for the definition of set-quotients, and most of their
properties, that A be a set. However, this is generally the case of most interest.

Lemma 6.10.2. The function q : A→ A/R is surjective.

Proof. We must show that for any x : A/R there merely exists an a : A with q(a) = x. We use the
induction principle of A/R. The first case is trivial: if x is q(a), then of course there merely exists
an a such that q(a) = q(a). And since the goal is a mere proposition, it automatically respects all
path constructors, so we are done.

We can now prove that the set-quotient has the expected universal property of a (set-)coequalizer.

Lemma 6.10.3. For any set B, precomposing with q yields an equivalence

(A/R→ B) ≃
(

∑
(f :A→B)

∏
(a,b:A)

R(a, b)→ (f (a) = f (b))
)

.

Proof. The quasi-inverse of – ◦ q, going from right to left, is just the recursion principle for A/R.
That is, given f : A → B such that ∏(a,b:A) R(a, b) → (f (a) = f (b)), we define f̄ : A/R → B by
f̄ (q(a)) :≡ f (a). This defining equation says precisely that (f 7→ f̄) is a right inverse to (– ◦ q).

For it to also be a left inverse, we must show that for any g : A/R→ B and x : A/R we have
g(x) = g ◦ q(x). However, by Lemma 6.10.2 there merely exists a such that q(a) = x. Since our
desired equality is a mere proposition, we may assume there purely exists such an a, in which
case g(x) = g(q(a)) = g ◦ q(q(a)) = g ◦ q(x).

Of course, classically the usual case to consider is when R is an equivalence relation, i.e. we
have

• reflexivity: ∏(a:A) R(a, a),
• symmetry: ∏(a,b:A) R(a, b)→ R(b, a), and
• transitivity: ∏(a,b,c:C) R(a, b)× R(b, c)→ R(a, c).

In this case, the set-quotient A/R has additional good properties, as we will see in §10.1: for
instance, we have R(a, b) ≃ (q(a) =A/R q(b)). We often write an equivalence relation R(a, b)
infix as a ∼ b.

The quotient by an equivalence relation can also be constructed in other ways. The set theo-
retic approach is to consider the set of equivalence classes, as a subset of the power set of A. We
can mimic this “impredicative” construction in type theory as well.

Definition 6.10.4. A predicate P : A → Prop is an equivalence class of a relation R : A× A →
Prop if there merely exists an a : A such that for all b : A we have R(a, b) ≃ P(b).

As R and P are mere propositions, the equivalence R(a, b) ≃ P(b) is the same thing as impli-
cations R(a, b) → P(b) and P(b) → R(a, b). And of course, for any a : A we have the canonical
equivalence class Pa(b) :≡ R(a, b).

6.10 QUOTIENTS 189

Definition 6.10.5. We define

A � R :≡ { P : A→ Prop | P is an equivalence class of R } .

The function q′ : A→ A � R is defined by q′(a) :≡ Pa.

Theorem 6.10.6. For any equivalence relation R on A, the type A � R is equivalent to the set-quotient
A/R.

Proof. First, note that if R(a, b), then since R is an equivalence relation we have R(a, c)⇔ R(b, c)
for any c : A. Thus, R(a, c) = R(b, c) by univalence, hence Pa = Pb by function extensionality, i.e.
q′(a) = q′(b). Therefore, by Lemma 6.10.3 we have an induced map f : A/R → A � R such that
f ◦ q = q′.

We show that f is injective and surjective, hence an equivalence. Surjectivity follows imme-
diately from the fact that q′ is surjective, which in turn is true essentially by definition of A � R.
For injectivity, if f (x) = f (y), then to show the mere proposition x = y, by surjectivity of q we
may assume x = q(a) and y = q(b) for some a, b : A. Then R(a, c) = f (q(a))(c) = f (q(b))(c) =
R(b, c) for any c : A, and in particular R(a, b) = R(b, b). But R(b, b) is inhabited, since R is an
equivalence relation, hence so is R(a, b). Thus q(a) = q(b) and so x = y.

In §10.1.3 we will give an alternative proof of this theorem. Note that unlike A/R, the con-
struction A � R raises universe level: if A : Ui and R : A → A → PropUi

, then in the definition
of A � R we must also use PropUi

to include all the equivalence classes, so that A � R : Ui+1. Of
course, we can avoid this if we assume the propositional resizing axiom from §3.5.

Remark 6.10.7. The previous two constructions provide quotients in generality, but in particular
cases there may be easier constructions. For instance, we may define the integers Z as a set-
quotient

Z :≡ (N×N)/∼

where ∼ is the equivalence relation defined by

(a, b) ∼ (c, d) :≡ (a + d = b + c).

In other words, a pair (a, b) represents the integer a− b. In this case, however, there are canonical
representatives of the equivalence classes: those of the form (n, 0) or (0, n).

The following lemma says that when this sort of thing happens, we don’t need either general
construction of quotients. (A function r : A→ A is called idempotent if r ◦ r = r.)

Lemma 6.10.8. Suppose ∼ is a relation on a set A, and there exists an idempotent r : A → A such that
(r(x) = r(y)) ≃ (x ∼ y) for all x, y : A. (This implies ∼ is an equivalence relation.) Then the type

(A/∼) :≡
(
∑
x:A

r(x) = x
)

satisfies the universal property of the set-quotient of A by ∼, and hence is equivalent to it. In other words,
there is a map q : A→ (A/∼) such that for every set B, precomposition with q induces an equivalence(

(A/∼)→ B
)
≃
(

∑
(g:A→B)

∏
(x,y:A)

(x ∼ y)→ (g(x) = g(y))
)

. (6.10.9)

190 CHAPTER 6. HIGHER INDUCTIVE TYPES

Proof. Let i : ∏(x:A) r(r(x)) = r(x) witness idempotence of r. The map q : A→ (A/∼) is defined
by q(x) :≡ (r(x), i(x)). Note that since A is a set, we have q(x) = q(y) if and only if r(x) = r(y),
hence (by assumption) if and only if x ∼ y. We define a map e from left to right in (6.10.9) by

e(f) :≡ (f ◦ q,),

where the underscore denotes the following proof: if x, y : A and x ∼ y, then q(x) = q(y) as
observed above, hence f (q(x)) = f (q(y)). To see that e is an equivalence, consider the map e′ in
the opposite direction defined by

e′(g, s)(x, p) :≡ g(x).

Given any f : (A/∼)→ B,

e′(e(f))(x, p) ≡ f (q(x)) ≡ f (r(x), i(x)) = f (x, p)

where the last equality holds because p : r(x) = x and so (x, p) = (r(x), i(x)) because A is a set.
Similarly we compute

e(e′(g, s)) ≡ e(g ◦ pr1) ≡ (g ◦ pr1 ◦ q,).

Because B is a set we need not worry about the part, while for the first component we have

g(pr1(q(x))) ≡ g(r(x)) = g(x),

where the last equation holds because r(x) ∼ x, and g respects ∼ by the assumption s.

Corollary 6.10.10. Suppose p : A → B is a retraction between sets. Then B is the quotient of A by the
equivalence relation ∼ defined by

(a1 ∼ a2) :≡ (p(a1) = p(a2)).

Proof. Suppose s : B → A is a section of p. Then s ◦ p : A → A is an idempotent which satisfies
the condition of Lemma 6.10.8 for this ∼, and s induces an isomorphism from B to its set of fixed
points.

Remark 6.10.11. Lemma 6.10.8 applies to Z with the idempotent r : N×N→N×N defined by

r(a, b) =

{
(a− b, 0) if a ≥ b,

(0, b− a) otherwise.

(This is a valid definition even constructively, since the relation ≥ on N is decidable.) Thus a
non-negative integer is canonically represented as (k, 0) and a non-positive one by (0, m), for
k, m : N. This division into cases implies the following “induction principle” for integers, which
will be useful in Chapter 8. (As usual, we identify a natural number n with the corresponding
non-negative integer, i.e. with the image of (n, 0) : N×N in Z.)

Lemma 6.10.12. Suppose P : Z→ U is a type family and that we have

• d0 : P(0),
• d+ : ∏(n:N) P(n)→ P(succ(n)), and
• d− : ∏(n:N) P(−n)→ P(−succ(n)).

6.10 QUOTIENTS 191

Then we have f : ∏(z:Z) P(z) such that

• f (0) = d0,
• f (succ(n)) = d+(n, f (n)) for all n : N, and
• f (−succ(n)) = d−(n, f (−n)) for all n : N.

Proof. For purposes of this proof, let Z denote ∑(x:N×N)(r(x) = x), where r is the above idem-
potent. (We can then transport the result to any equivalent definition of Z.) Let q : N×N→ Z

be the quotient map, defined by q(x) = (r(x), i(x)) as in Lemma 6.10.8. Now define Q :≡ P ◦ q :
N×N→ U . By transporting the given data across appropriate equalities, we obtain

d′0 : Q(0, 0)

d′+ : ∏
n:N

Q(n, 0)→ Q(succ(n), 0)

d′− : ∏
n:N

Q(0, n)→ Q(0, succ(n)).

Note also that since q(n, m) = q(succ(n), succ(m)), we have an induced equivalence

en,m : Q(n, m) ≃ Q(succ(n), succ(m)).

We can then construct g : ∏(x:N×N) Q(x) by double induction on x:

g(0, 0) :≡ d′0,

g(succ(n), 0) :≡ d′+(n, g(n, 0)),

g(0, succ(m)) :≡ d′−(m, g(0, m)),

g(succ(n), succ(m)) :≡ en,m(g(n, m)).

Now we have pr1 : Z → N×N, with the property that q ◦ pr1 = id. In particular, therefore, we
have Q ◦ pr1 = P, and hence a family of equivalences s : ∏(z:Z) Q(pr1(z)) ≃ P(z). Thus, we can
define f (z) = s(z, g(pr1(z))) to obtain f : ∏(z:Z) P(z), and verify the desired equalities.

We will sometimes denote a function f : ∏(z:Z) P(z) obtained from Lemma 6.10.12 with a
pattern-matching syntax, involving the three cases d0, d+, and d−:

f (0) := d0

f (succ(n)) := d+(n, f (n))

f (−succ(n)) := d−(n, f (−n))

We use := rather than :≡, as we did for the path constructors of higher inductive types, to in-
dicate that the “computation” rules implied by Lemma 6.10.12 are only propositional equalities.
For example, in this way we can define the n-fold concatenation of a loop for any integer n.

Corollary 6.10.13. Let A be a type with a : A and p : a = a. There is a function ∏(n:Z)(a = a), denoted
n 7→ pn, defined by

p0 := refla

pn+1 := pn � p for n ≥ 0

pn−1 := pn � p−1 for n ≤ 0.

We will discuss the integers further in §§6.11 and 11.1.

192 CHAPTER 6. HIGHER INDUCTIVE TYPES

6.11 Algebra

In addition to constructing higher-dimensional objects such as spheres and cell complexes, higher
inductive types are also very useful even when working only with sets. We have seen one exam-
ple already in Lemma 6.9.3: they allow us to construct the colimit of any diagram of sets, which
is not possible in the base type theory of Chapter 1. Higher inductive types are also very useful
when we study sets with algebraic structure.

As a running example in this section, we consider groups, which are familiar to most mathe-
maticians and exhibit the essential phenomena (and will be needed in later chapters). However,
most of what we say applies equally well to any sort of algebraic structure.

Definition 6.11.1. A monoid is a set G together with

• a multiplication function G× G → G, written infix as (x, y) 7→ x · y; and
• a unit element e : G; such that
• for any x : G, we have x · e = x and e · x = x; and
• for any x, y, z : G, we have x · (y · z) = (x · y) · z.

A group is a monoid G together with

• an inversion function i : G → G, written x 7→ x−1; such that
• for any x : G we have x · x−1 = e and x−1 · x = e.

Remark 6.11.2. Note that we require a group to be a set. We could consider a more general notion
of “∞-group” which is not a set, but this would take us further afield than is appropriate at the
moment. With our current definition, we may expect the resulting “group theory” to behave
similarly to the way it does in set-theoretic mathematics (with the caveat that, unless we assume
LEM, it will be “constructive” group theory).

Example 6.11.3. The natural numbers N are a monoid under addition, with unit 0, and also under
multiplication, with unit 1. If we define the arithmetical operations on the integers Z in the
obvious way, then as usual they are a group under addition and a monoid under multiplication
(and, of course, a ring). For instance, if u, v ∈ Z are represented by (a, b) and (c, d), respectively,
then u + v is represented by (a + c, b + d), −u is represented by (b, a), and uv is represented by
(ac + bd, ad + bc).

Example 6.11.4. We essentially observed in §2.1 that if (A, a) is a pointed type, then its loop space
Ω(A, a) :≡ (a =A a) has all the structure of a group, except that it is not in general a set. It should
be an “∞-group” in the sense mentioned in Remark 6.11.2, but we can also make it a group by
truncation. Specifically, we define the fundamental group of A based at a : A to be

π1(A, a) :≡ ∥Ω(A, a)∥0.

This inherits a group structure; for instance, the multiplication π1(A, a)× π1(A, a) → π1(A, a)
is defined by double induction on truncation from the concatenation of paths.

More generally, the nth homotopy group of (A, a) is πn(A, a) :≡ ∥Ωn(A, a)∥0. Then πn(A, a) =
π1(Ωn−1(A, a)) for n ≥ 1, so it is also a group. (When n = 0, we have π0(A) ≡ ∥A∥0, which
is not a group.) Moreover, the Eckmann–Hilton argument (Theorem 2.1.6) implies that if n ≥ 2,
then πn(A, a) is an abelian group, i.e. we have x · y = y · x for all x, y. Chapter 8 will be largely
the study of these groups.

6.11 ALGEBRA 193

One important notion in group theory is that of the free group generated by a set, or more
generally of a group presented by generators and relations. It is well-known in type theory that
some free algebraic objects can be defined using ordinary inductive types. For instance, the free
monoid on a set A can be identified with the type List(A) of finite lists of elements of A, which is
inductively generated by

• a constructor nil : List(A), and
• for each ℓ : List(A) and a : A, an element cons(a, ℓ) : List(A).

We have an obvious inclusion η : A→ List(A) defined by a 7→ cons(a, nil). The monoid operation
on List(A) is concatenation, defined recursively by

nil · ℓ :≡ ℓ

cons(a, ℓ1) · ℓ2 :≡ cons(a, ℓ1 · ℓ2).

It is straightforward to prove, using the induction principle for List(A), that List(A) is a set and
that concatenation of lists is associative and has nil as a unit. Thus, List(A) is a monoid.

Lemma 6.11.5. For any set A, the type List(A) is the free monoid on A. In other words, for any monoid
G, composition with η is an equivalence

homMonoid(List(A), G) ≃ (A→ G),

where homMonoid(– , –) denotes the set of monoid homomorphisms (functions which preserve the multi-
plication and unit).

Proof. Given f : A→ G, we define f̄ : List(A)→ G by recursion:

f̄ (nil) :≡ e

f̄ (cons(a, ℓ)) :≡ f (a) · f̄ (ℓ).

It is straightforward to prove by induction that f̄ is a monoid homomorphism, and that f 7→ f̄
is a quasi-inverse of (– ◦ η); see Exercise 6.8.

This construction of the free monoid is possible essentially because elements of the free
monoid have computable canonical forms (namely, finite lists). However, elements of other
free (and presented) algebraic structures — such as groups — do not in general have computable
canonical forms. For instance, equality of words in group presentations is algorithmically unde-
cidable. However, we can still describe free algebraic objects as higher inductive types, by simply
asserting all the axiomatic equations as path constructors.

For example, let A be a set, and define a higher inductive type F(A) with the following
generators.

• A function η : A→ F(A).
• A function m : F(A)× F(A)→ F(A).
• An element e : F(A).
• A function i : F(A)→ F(A).
• For each x, y, z : F(A), an equality m(x, m(y, z)) = m(m(x, y), z).
• For each x : F(A), equalities m(x, e) = x and m(e, x) = x.

194 CHAPTER 6. HIGHER INDUCTIVE TYPES

• For each x : F(A), equalities m(x, i(x)) = e and m(i(x), x) = e.
• The 0-truncation constructor: for any x, y : F(A) and p, q : x = y, we have p = q.

The first constructor says that A maps to F(A). The next three give F(A) the operations of
a group: multiplication, an identity element, and inversion. The three constructors after that
assert the axioms of a group: associativity, unitality, and inverses. Finally, the last constructor
asserts that F(A) is a set.

Therefore, F(A) is a group. It is also straightforward to prove:

Theorem 6.11.6. F(A) is the free group on A. In other words, for any (set) group G, composition with
η : A→ F(A) determines an equivalence

homGroup(F(A), G) ≃ (A→ G)

where homGroup(– , –) denotes the set of group homomorphisms between two groups.

Proof. The recursion principle of the higher inductive type F(A) says precisely that if G is a group
and we have f : A → G, then we have f̄ : F(A) → G. Its computation rules say that f̄ ◦ η ≡ f ,
and that f̄ is a group homomorphism. Thus, (– ◦ η) : homGroup(F(A), G) → (A → G) has a
right inverse. It is straightforward to use the induction principle of F(A) to show that this is also
a left inverse.

It is worth taking a step back to consider what we have just done. We have proven that the
free group on any set exists without giving an explicit construction of it. Essentially all we had to
do was write down the universal property that it should satisfy. In set theory, we could achieve a
similar result by appealing to black boxes such as the adjoint functor theorem; type theory builds
such constructions into the foundations of mathematics.

Of course, it is sometimes also useful to have a concrete description of free algebraic struc-
tures. In the case of free groups, we can provide one, using quotients. Consider List(A + A),
where in A + A we write inl(a) as a, and inr(a) as â (intended to stand for the formal inverse of
a). The elements of List(A + A) are words for the free group on A.

Theorem 6.11.7. Let A be a set, and let F′(A) be the set-quotient of List(A + A) by the following
relations.

(. . . , a1, a2, â2, a3, . . .) = (. . . , a1, a3, . . .)

(. . . , a1, â2, a2, a3, . . .) = (. . . , a1, a3, . . .).

Then F′(A) is also the free group on the set A.

Proof. First we show that F′(A) is a group. We have seen that List(A + A) is a monoid; we
claim that the monoid structure descends to the quotient. We define F′(A) × F′(A) → F′(A)

by double quotient recursion; it suffices to check that the equivalence relation generated by the
given relations is preserved by concatenation of lists. Similarly, we prove the associativity and
unit laws by quotient induction.

In order to define inverses in F′(A), we first define reverse : List(B) → List(B) by recursion
on lists:

reverse(nil) :≡ nil,

reverse(cons(b, ℓ)) :≡ reverse(ℓ) · cons(b, nil).

6.11 ALGEBRA 195

Now we define i : F′(A) → F′(A) by quotient recursion, acting on a list ℓ : List(A + A) by
switching the two copies of A and reversing the list. This preserves the relations, hence descends
to the quotient. And we can prove that i(x) · x = e for x : F′(A) by induction. First, quotient
induction allows us to assume x comes from ℓ : List(A + A), and then we can do list induction;
if we write q : List(A + A)→ F′(A) for the quotient map, the cases are

i(q(nil)) � q(nil) = q(nil) � q(nil)

= q(nil)

i(q(cons(a, ℓ))) � q(cons(a, ℓ)) = i(q(ℓ)) � q(cons(â, nil)) � q(cons(a, ℓ))

= i(q(ℓ)) � q(cons(â, cons(a, ℓ)))

= i(q(ℓ)) � q(ℓ)

= q(nil). (by the inductive hypothesis)

(We have omitted a number of fairly evident lemmas about the behavior of concatenation of lists,
etc.)

This completes the proof that F′(A) is a group. Now if G is any group with a function f : A→
G, we can define A + A → G to be f on the first copy of A and f composed with the inversion
map of G on the second copy. Now the fact that G is a monoid yields a monoid homomorphism
List(A + A) → G. And since G is a group, this map respects the relations, hence descends to
a map F′(A) → G. It is straightforward to prove that this is a group homomorphism, and the
unique one which restricts to f on A.

If A has decidable equality (such as if we assume excluded middle), then the quotient defin-
ing F′(A) can be obtained from an idempotent as in Lemma 6.10.8. We define a word, which we
recall is just an element of List(A + A), to be reduced if it contains no adjacent pairs of the form
(a, â) or (â, a). When A has decidable equality, it is straightforward to define the reduction of a
word, which is an idempotent generating the appropriate quotient; we leave the details to the
reader.

If A :≡ 1, which has decidable equality, a reduced word must consist either entirely of ⋆’s or
entirely of ⋆̂’s. Thus, the free group on 1 is equivalent to the integers Z, with 0 corresponding
to nil, the positive integer n corresponding to a reduced word of n ⋆’s, and the negative integer
(−n) corresponding to a reduced word of n ⋆̂’s. One could also, of course, show directly that Z

has the universal property of F(1).

Remark 6.11.8. Nowhere in the construction of F(A) and F′(A), and the proof of their universal
properties, did we use the assumption that A is a set. Thus, we can actually construct the free
group on an arbitrary type. Comparing universal properties, we conclude that F(A) ≃ F(∥A∥0).

We can also use higher inductive types to construct colimits of algebraic objects. For instance,
suppose f : G → H and g : G → K are group homomorphisms. Their pushout in the category of
groups, called the amalgamated free product H ∗G K, can be constructed as the higher inductive
type generated by

• Functions h : H → H ∗G K and k : K → H ∗G K.
• The operations and axioms of a group, as in the definition of F(A).
• Axioms asserting that h and k are group homomorphisms.
• For x : G, we have h(f (x)) = k(g(x)).
• The 0-truncation constructor.

196 CHAPTER 6. HIGHER INDUCTIVE TYPES

On the other hand, it can also be constructed explicitly, as the set-quotient of List(H + K) by the
following relations:

(. . . , x1, x2, . . .) = (. . . , x1 · x2, . . .) for x1, x2 : H

(. . . , y1, y2, . . .) = (. . . , y1 · y2, . . .) for y1, y2 : K

(. . . , 1G, . . .) = (. . . , . . .)

(. . . , 1H, . . .) = (. . . , . . .)

(. . . , f (x), . . .) = (. . . , g(x), . . .) for x : G.

We leave the proofs to the reader. In the special case that G is the trivial group, the last relation is
unnecessary, and we obtain the free product H ∗K, the coproduct in the category of groups. (This
notation unfortunately clashes with that for the join of types, as in §6.8, but context generally
disambiguates.)

Note that groups defined by presentations can be regarded as a special case of colimits. Sup-
pose given a set (or more generally a type) A, and a pair of functions R ⇒ F(A). We regard R as
the type of “relations”, with the two functions assigning to each relation the two words that it sets
equal. For instance, in the presentation ⟨a | a2 = e⟩ we would have A :≡ 1 and R :≡ 1, with the
two morphisms R ⇒ F(A) picking out the list (a, a) and the empty list nil, respectively. Then by
the universal property of free groups, we obtain a pair of group homomorphisms F(R) ⇒ F(A).
Their coequalizer in the category of groups, which can be built just like the pushout, is the group
presented by this presentation.

Note that all these sorts of construction only apply to algebraic theories, which are theories
whose axioms are (universally quantified) equations referring to variables, constants, and oper-
ations from a given signature. They can be modified to apply also to what are called essentially
algebraic theories: those whose operations are partially defined on a domain specified by equal-
ities between previous operations. They do not apply, for instance, to the theory of fields, in
which the “inversion” operation is partially defined on a domain { x | x # 0 } specified by an
apartness # between previous operations, see Theorem 11.2.4. And indeed, it is well-known that
the category of fields has no initial object.

On the other hand, these constructions do apply just as well to infinitary algebraic theories,
whose “operations” can take infinitely many inputs. In such cases, there may not be any pre-
sentation of free algebras or colimits of algebras as a simple quotient, unless we assume the
axiom of choice. This means that higher inductive types represent a significant strengthening
of constructive type theory (not necessarily in terms of proof-theoretic strength, but in terms
of practical power), and indeed are stronger in some ways than Zermelo–Fraenkel set theory
(without choice) [Bla83].

6.12 The flattening lemma

As we will see in Chapter 8, amazing things happen when we combine higher inductive types
with univalence. The principal way this comes about is that if W is a higher inductive type and U
is a type universe, then we can define a type family P : W → U by using the recursion principle
for W. When we come to the clauses of the recursion principle dealing with the path constructors
of W, we will need to supply paths in U , and this is where univalence comes in.

For example, suppose we have a type X and a self-equivalence e : X ≃ X. Then we can

6.12 THE FLATTENING LEMMA 197

define a type family P : S1 → U by using S1-recursion:

P(base) :≡ X and P(loop) := ua(e).

The type X thus appears as the fiber P(base) of P over the basepoint. The self-equivalence e is
a little more hidden in P, but the following lemma says that it can be extracted by transporting
along loop.

Lemma 6.12.1. Given B : A → U and x, y : A, with a path p : x = y and an equivalence e : B(x) ≃
B(y) such that B(p) = ua(e), then for any u : B(x) we have

transportB(p, u) = e(u).

Proof. Applying Lemma 2.10.5, we have

transportB(p, u) = idtoeqv(B(p))(u)

= idtoeqv(ua(e))(u)

= e(u).

We have seen type families defined by recursion before: in §§2.12 and 2.13 we used them to
characterize the identity types of (ordinary) inductive types. In Chapter 8, we will use similar
ideas to calculate homotopy groups of higher inductive types.

In this section, we describe a general lemma about type families of this sort which will be
useful later on. We call it the flattening lemma: it says that if P : W → U is defined recursively
as above, then its total space ∑(x:W) P(x) is equivalent to a “flattened” higher inductive type,
whose constructors may be deduced from those of W and the definition of P. (From a category-
theoretic point of view, ∑(x:W) P(x) is the “Grothendieck construction” of P, and the flattening
lemma expresses its universal property as a “lax colimit”. Although because types in homotopy
type theory (like W) correspond categorically to ∞-groupoids (since all paths are invertible), in
this case the lax colimit is the same as a pseudo colimit.)

We prove here one general case of the flattening lemma, which directly implies many partic-
ular cases and suggests the method to prove others. Suppose we have A, B : U and f , g : B→ A,
and that the higher inductive type W is generated by

• c : A→W and
• p : ∏(b:B)(c(f (b)) =W c(g(b))).

Thus, W is the (homotopy) coequalizer of f and g. Using binary sums (coproducts) and depen-
dent sums (Σ-types), a lot of interesting nonrecursive higher inductive types can be represented
in this form. All point constructors have to be bundled in the type A and all path constructors in
the type B. For instance:

• The circle S1 can be represented by taking A :≡ 1 and B :≡ 1, with f and g the identity.
• The pushout of j : X → Y and k : X → Z can be represented by taking A :≡ Y + Z and

B :≡ X, with f :≡ inl ◦ j and g :≡ inr ◦ k.

Now suppose in addition that

• C : A→ U is a family of types over A, and
• D : ∏(b:B) C(f (b)) ≃ C(g(b)) is a family of equivalences over B.

198 CHAPTER 6. HIGHER INDUCTIVE TYPES

Define a type family P : W → U recursively by

P(c(a)) :≡ C(a)

P(p(b)) := ua(D(b)).

Let W̃ be the higher inductive type generated by

• c̃ : ∏(a:A) C(a)→ W̃ and

• p̃ : ∏(b:B) ∏(y:C(f (b)))(c̃(f (b), y) =W̃ c̃(g(b), D(b)(y))).

The flattening lemma is:

Lemma 6.12.2 (Flattening lemma). In the above situation, we have(
∑
x:W

P(x)
)
≃ W̃.

As remarked above, this equivalence can be seen as expressing the universal property of
∑(x:W) P(x) as a “lax colimit” of P over W. It can also be seen as part of the stability and descent
property of colimits, which characterizes higher toposes.

The proof of Lemma 6.12.2 occupies the rest of this section. It is somewhat technical and can
be skipped on a first reading. But it is also a good example of “proof-relevant mathematics”, so
we recommend it on a second reading.

The idea is to show that ∑(x:W) P(x) has the same universal property as W̃. We begin by
showing that it comes with analogues of the constructors c̃ and p̃.

Lemma 6.12.3. There are functions

• c̃′ : ∏(a:A) C(a)→ ∑(x:W) P(x) and

• p̃′ : ∏(b:B) ∏(y:C(f (b)))

(
c̃′(f (b), y) =∑(w:W) P(w) c̃

′(g(b), D(b)(y))
)

.

Proof. The first is easy; define c̃′(a, x) :≡ (c(a), x) and note that by definition P(c(a)) ≡ C(a).
For the second, suppose given b : B and y : C(f (b)); we must give an equality

(c(f (b)), y) = (c(g(b)), D(b)(y)).

Since we have p(b) : c(f (b)) = c(g(b)), by equalities in Σ-types it suffices to give an equality
p(b)∗(y) = D(b)(y). But this follows from Lemma 6.12.1, using the definition of P.

Now the following lemma says to define a section of a type family over ∑(w:W) P(w), it suf-
fices to give analogous data as in the case of W̃.

Lemma 6.12.4. Suppose Q :
(

∑(x:W) P(x)
)
→ U is a type family and that we have

• c : ∏(a:A) ∏(x:C(a)) Q(c̃′(a, x)) and

• p : ∏(b:B) ∏(y:C(f (b)))

(
p̃′(b, y)∗(c(f (b), y)) = c(g(b), D(b)(y))

)
.

Then there exists k : ∏(z:∑(w:W) P(w)) Q(z) such that k(c̃′(a, x)) ≡ c(a, x).

6.12 THE FLATTENING LEMMA 199

Proof. Suppose given w : W and x : P(w); we must produce an element k(w, x) : Q(w, x).
By induction on w, it suffices to consider two cases. When w ≡ c(a), then we have x : C(a),
and so c(a, x) : Q(c(a), x) as desired. (This part of the definition also ensures that the stated
computational rule holds.)

Now we must show that this definition is preserved by transporting along p(b) for any b : B.
Since what we are defining, for all w : W, is a function of type ∏(x:P(w)) Q(w, x), by Lemma 2.9.7
it suffices to show that for any y : C(f (b)), we have

transportQ(pair=(p(b), reflp(b)∗(y)), c(f (b), y)) = c(g(b), p(b)∗(y)).

Let q : p(b)∗(y) = D(b)(y) be the path obtained from Lemma 6.12.1. Then we have

c(g(b), p(b)∗(y)) = transportx 7→Q(c̃′(g(b),x))(q−1, c(g(b), D(b)(y))) (by apdx 7→c(g(b),x)(q−1)
−1)

= transportQ(apx 7→c̃′(g(b),x)(q
−1), c(g(b), D(b)(y))). (by Lemma 2.3.10)

Thus, it suffices to show

transportQ
(
pair=(p(b), reflp(b)∗(y)), c(f (b), y)

)
=

transportQ
(
apx 7→c̃′(g(b),x)(q

−1), c(g(b), D(b)(y))
)

.

Moving the right-hand transport to the other side, and combining two transports, this is equiv-
alent to

transportQ
(
pair=(p(b), reflp(b)∗(y))

� apx 7→c̃′(g(b),x)(q), c(f (b), y)
)
= c(g(b), D(b)(y)).

However, we have

pair=(p(b), reflp(b)∗(y))
� apx 7→c̃′(g(b),x)(q) =

pair=(p(b), reflp(b)∗(y))
� pair=(reflc(g(b)), q) = pair=(p(b), q) = p̃′(b, y)

so the construction is completed by the assumption p(b, y) of type

transportQ(p̃′(b, y), c(f (b), y)) = c(g(b), D(b)(y)).

Lemma 6.12.4 almost gives ∑(w:W) P(w) the same induction principle as W̃. The missing bit is
the equality apdk(p̃

′(b, y)) = p(b, y). In order to prove this, we would need to analyze the proof
of Lemma 6.12.4, which of course is the definition of k.

It should be possible to do this, but it turns out that we only need the computation rule for the
non-dependent recursion principle. Thus, we now give a somewhat simpler direct construction
of the recursor, and a proof of its computation rule.

Lemma 6.12.5. Suppose Q is a type and that we have

• c : ∏(a:A) C(a)→ Q and

• p : ∏(b:B) ∏(y:C(f (b)))

(
c(f (b), y) =Q c(g(b), D(b)(y))

)
.

Then there exists k :
(

∑(w:W) P(w)
)
→ Q such that k(c̃′(a, x)) ≡ c(a, x).

200 CHAPTER 6. HIGHER INDUCTIVE TYPES

Proof. As in Lemma 6.12.4, we define k(w, x) by induction on w : W. When w ≡ c(a), we define
k(c(a), x) :≡ c(a, x). Now by Lemma 2.9.6, it suffices to consider, for b : B and y : C(f (b)), the
composite path

transportx 7→Q(p(b), c(f (b), y)) = c(g(b), transportP(p(b), y)) (6.12.6)

defined as the composition

transportx 7→Q(p(b), c(f (b), y)) = c(f (b), y) (by Lemma 2.3.5)

= c(g(b), D(b)(y)) (by p(b, y))

= c(g(b), transportP(p(b), y)). (by Lemma 6.12.1)

The computation rule k(c̃′(a, x)) ≡ c(a, x) follows by definition, as before.

For the second computation rule, we need the following lemma.

Lemma 6.12.7. Let Y : X → U be a type family and let k : (∑(x:X) Y(x))→ Z be defined componentwise
by k(x, y) :≡ d(x)(y) for a curried function d : ∏(x:X) Y(x) → Z. Then for any s : x1 =X x2 and any
y1 : Y(x1) and y2 : Y(x2) with a path r : s∗(y1) = y2, the path

apk(pair
=(s, r)) : k(x1, y1) = k(x2, y2)

is equal to the composite

k(x1, y1) ≡ d(x1)(y1)

= transportx 7→Z(s, d(x1)(y1)) (by (Lemma 2.3.5)−1)

= transportx 7→Z(s, d(x1)(s−1
∗(s∗(y1))))

=
(
transportx 7→(Y(x)→Z)(s, d(x1))

)
(s∗(y1)) (by (2.9.4))

= d(x2)(s∗(y1)) (by happly(apdd(s))(s∗(y1))

= d(x2)(y2) (by apd(x2)(r))

≡ k(x2, y2).

Proof. After path induction on s and r, both equalities reduce to reflexivities.

At first it may seem surprising that Lemma 6.12.7 has such a complicated statement, while
it can be proven so simply. The reason for the complication is to ensure that the statement is
well-typed: apk(pair

=(s, r)) and the composite path it is claimed to be equal to must both have
the same start and end points. Once we have managed this, the proof is easy by path induction.

Lemma 6.12.8. In the situation of Lemma 6.12.5, we have apk(p̃
′(b, y)) = p(b, y).

Proof. Recall that p̃′(b, y) :≡ pair=(p(b), q) where q : p(b)∗(y) = D(b)(y) comes from Lemma 6.12.1.
Thus, since k is defined componentwise, we may compute apk(p̃

′(b, y)) by Lemma 6.12.7, with

x1 :≡ c(f (b)) y1 :≡ y

x2 :≡ c(g(b)) y2 :≡ D(b)(y)

s :≡ p(b) r :≡ q.

The curried function d : ∏(w:W) P(w) → Q was defined by induction on w : W; to apply
Lemma 6.12.7 we need to understand apd(x2)(r) and happly(apdd(s), s∗(y1)).

6.13 THE GENERAL SYNTAX OF HIGHER INDUCTIVE DEFINITIONS 201

For the first, since d(c(a), x) ≡ c(a, x), we have

apd(x2)(r) ≡ apc(g(b),−)(q).

For the second, the computation rule for the induction principle of W tells us that apdd(p(b)) is
equal to the composite (6.12.6), passed across the equivalence of Lemma 2.9.6. Thus, the com-
putation rule given in Lemma 2.9.6 implies that happly(apdd(p(b)), p(b)∗(y)) is equal to the com-
posite (

p(b)∗(c(f (b),−))
)
(p(b)∗(y)) = p(b)∗

(
c(f (b), p(b)−1

∗(p(b)∗(y)))
)

(by (2.9.4))

= p(b)∗(c(f (b), y))

= c(f (b), y) (by Lemma 2.3.5)

= c(g(b), D(b)(y)) (by p(b, y))

= c(g(b), p(b)∗(y)). (by apc(g(b),−)(q)
−1)

Finally, substituting these values of apd(x2)(r) and happly(apdd(s), s∗(y1)) into Lemma 6.12.7, we
see that all the paths cancel out in pairs, leaving only p(b, y).

Now we are finally ready to prove the flattening lemma.

Proof of Lemma 6.12.2. We define h : W̃ → ∑(w:W) P(w) by using the recursion principle for W̃,
with c̃′ and p̃′ as input data. Similarly, we define k : (∑(w:W) P(w)) → W̃ by using the recursion
principle of Lemma 6.12.5, with c̃ and p̃ as input data.

On the one hand, we must show that for any z : W̃, we have k(h(z)) = z. By induction on z,
it suffices to consider the two constructors of W̃. But we have

k(h(c̃(a, x))) ≡ k(c̃′(a, x)) ≡ c̃(a, x)

by definition, while similarly

k(h(p̃(b, y))) = k
(
p̃′(b, y)

)
= p̃(b, y)

using the propositional computation rule for W̃ and Lemma 6.12.8.
On the other hand, we must show that for any z : ∑(w:W) P(w), we have h(k(z)) = z. But

this is essentially identical, using Lemma 6.12.4 for “induction on ∑(w:W) P(w)” and the same
computation rules.

6.13 The general syntax of higher inductive definitions

In §5.6, we discussed the conditions on a putative “inductive definition” which make it accept-
able, namely that all inductive occurrences of the type in its constructors are “strictly positive”.
In this section, we say something about the additional conditions required for higher inductive
definitions. Finding a general syntactic description of valid higher inductive definitions is an
area of current research, and all of the solutions proposed to date are somewhat technical in na-
ture; thus we only give a general description and not a precise definition. Fortunately, the corner
cases never seem to arise in practice.

Like an ordinary inductive definition, a higher inductive definition is specified by a list of
constructors, each of which is a (dependent) function. For simplicity, we may require the inputs

202 CHAPTER 6. HIGHER INDUCTIVE TYPES

of each constructor to satisfy the same condition as the inputs for constructors of ordinary induc-
tive types. In particular, they may contain the type being defined only strictly positively. Note
that this excludes definitions such as the 0-truncation as presented in §6.9, where the input of
a constructor contains not only the inductive type being defined, but its identity type as well.
It may be possible to extend the syntax to allow such definitions; but also, in §7.3 we will give
a different construction of the 0-truncation whose constructors do satisfy the more restrictive
condition.

The only difference between an ordinary inductive definition and a higher one, then, is that
the output type of a constructor may be, not the type being defined (W, say), but some identity
type of it, such as u =W v, or more generally an iterated identity type such as p =(u=W v) q.
Thus, when we give a higher inductive definition, we have to specify not only the inputs of each
constructor, but the expressions u and v (or u, v, p, and q, etc.) which determine the source and
target of the path being constructed.

Importantly, these expressions may refer to other constructors of W. For instance, in the defi-
nition of S1, the constructor loop has both u and v being base, the previous constructor. To make
sense of this, we require the constructors of a higher inductive type to be specified in order, and
we allow the source and target expressions u and v of each constructor to refer to previous con-
structors, but not later ones. (Of course, in practice the constructors of any inductive definition
are written down in some order, but for ordinary inductive types that order is irrelevant.)

Note that this order is not necessarily the order of “dimension”: in principle, a 1-dimensional
path constructor could refer to a 2-dimensional one and hence need to come after it. However, we
have not given the 0-dimensional constructors (point constructors) any way to refer to previous
constructors, so they might as well all come first. And if we use the hub-and-spoke construc-
tion (§6.7) to reduce all constructors to points and 1-paths, then we might assume that all point
constructors come first, followed by all 1-path constructors — but the order among the 1-path
constructors continues to matter.

The remaining question is, what sort of expressions can u and v be? We might hope that
they could be any expression at all involving the previous constructors. However, the following
example shows that a naive approach to this idea does not work.
Example 6.13.1. Consider a family of functions f : ∏(X:U)(X → X). Of course, fX might be just
idX for all X, but other such f s may also exist. For instance, nothing prevents f2 : 2 → 2 from
being the nonidentity automorphism (see Exercise 6.9).

Now suppose that we attempt to define a higher inductive type K generated by:

• two elements a, b : K, and
• a path σ : fK(a) = fK(b).

What would the induction principle for K say? We would assume a type family P : K → U , and
of course we would need x : P(a) and y : P(b). The remaining datum should be a dependent path
in P living over σ, which must therefore connect some element of P(fK(a)) to some element of
P(fK(b)). But what could these elements possibly be? We know that P(a) and P(b) are inhabited
by x and y, respectively, but this tells us nothing about P(fK(a)) and P(fK(b)).

Clearly some condition on u and v is required in order for the definition to be sensible. It
seems that, just as the domain of each constructor is required to be (among other things) a co-
variant functor, the appropriate condition on the expressions u and v is that they define natural
transformations. Making precise sense of this requirement is beyond the scope of this book, but in-
formally it means that u and v must only involve operations which are preserved by all functions
between types.

CHAPTER 6 NOTES 203

For instance, it is permissible for u and v to refer to concatenation of paths, as in the case of
the final constructor of the torus in §6.6, since all functions in type theory preserve path concate-
nation (up to homotopy). However, it is not permissible for them to refer to an operation like
the function f in Example 6.13.1, which is not necessarily natural: there might be some function
g : X → Y such that fY ◦ g ̸= g ◦ fX. (Univalence implies that fX must be natural with respect to
all equivalences, but not necessarily with respect to functions that are not equivalences.)

The intuition of naturality supplies only a rough guide for when a higher inductive definition
is permissible. Even if it were possible to give a precise specification of permissible forms of
such definitions in this book, such a specification would probably be out of date quickly, as
new extensions to the theory are constantly being explored. For instance, the presentation of n-
spheres in terms of “dependent n-loops” referred to in §6.4, and the “higher inductive-recursive
definitions” used in Chapter 11, were innovations introduced while this book was being written.
We encourage the reader to experiment — with caution.

Notes

The general idea of higher inductive types was conceived in discussions between Andrej Bauer,
Peter Lumsdaine, Mike Shulman, and Michael Warren at the Oberwolfach meeting in 2011, al-
though there are some suggestions of some special cases in earlier work. Subsequently, Guil-
laume Brunerie and Dan Licata contributed substantially to the general theory, especially by
finding convenient ways to represent them in computer proof assistants and do homotopy the-
ory with them (see Chapter 8).

A general discussion of the syntax of higher inductive types, and their semantics in higher-
categorical models, appears in [LS17]. As with ordinary inductive types, models of higher induc-
tive types can be constructed by transfinite iterative processes; a slogan is that ordinary inductive
types describe free monads while higher inductive types describe presentations of monads. The in-
troduction of path constructors also involves the model-category-theoretic equivalence between
“right homotopies” (defined using path spaces) and “left homotopies” (defined using cylinders)
— the fact that this equivalence is generally only up to homotopy provides a semantic reason to
prefer propositional computation rules for path constructors.

Another (temporary) reason for this preference comes from the limitations of existing com-
puter implementations. Proof assistants like COQ and AGDA have ordinary inductive types
built in, but not yet higher inductive types. We can of course introduce them by assuming lots
of axioms, but this results in only propositional computation rules. However, there is a trick
due to Dan Licata which implements higher inductive types using private data types; this yields
judgmental rules for point constructors but not path constructors.

The type-theoretic description of higher spheres using loop spaces and suspensions in §§6.4
and 6.5 is largely due to Brunerie and Licata; Hou has given a type-theoretic version of the alter-
native description that uses n-dimensional paths. The reduction of higher paths to 1-dimensional
paths with hubs and spokes (§6.7) is due to Lumsdaine and Shulman. The description of trunca-
tion as a higher inductive type is due to Lumsdaine; the (−1)-truncation is closely related to the
“bracket types” of [AB04]. The flattening lemma was first formulated in generality by Brunerie.

Quotient types are unproblematic in extensional type theory, such as NUPRL [CAB+86].
They are often added by passing to an extended system of setoids. However, quotients are a
trickier issue in intensional type theory (the starting point for homotopy type theory), because
one cannot simply add new propositional equalities without specifying how they are to behave.

204 CHAPTER 6. HIGHER INDUCTIVE TYPES

Some solutions to this problem have been studied [Hof95, Alt99, AMS07], and several differ-
ent notions of quotient types have been considered. The construction of set-quotients using
higher-inductives provides an argument for our particular approach (which is similar to some
that have previously been considered), because it arises as an instance of a general mechanism.
Our construction does not yet provide a new solution to all the computational problems related
to quotients, since we still lack a good computational understanding of higher inductive types
in general—but it does mean that ongoing work on the computational interpretation of higher
inductives applies to the quotients as well. The construction of quotients in terms of equivalence
classes is, of course, a standard set-theoretic idea, and a well-known aspect of elementary topos
theory; its use in type theory (which depends on the univalence axiom, at least for mere propo-
sitions) was proposed by Voevodsky. The fact that quotient types in intensional type theory
imply function extensionality was proved by [Hof95], inspired by the work of [Car95] on exact
completions; Lemma 6.3.2 is an adaptation of such arguments.

Exercises

Exercise 6.1. Define concatenation of dependent paths, prove that application of dependent func-
tions preserves concatenation, and write out the precise induction principle for the torus T2 with
its computation rules.
Exercise 6.2. Prove that ΣS1 ≃ S2, using the explicit definition of S2 in terms of base and surf given
in §6.4.
Exercise 6.3. Prove that the torus T2 as defined in §6.6 is equivalent to S1× S1. (Warning: the path
algebra for this is rather difficult.)
Exercise 6.4. Define dependent n-loops and the action of dependent functions on n-loops, and
write down the induction principle for the n-spheres as defined at the end of §6.4.
Exercise 6.5. Prove that ΣSn ≃ Sn+1, using the definition of Sn in terms of Ωn from §6.4.
Exercise 6.6. Prove that if the type S2 belongs to some universe U , then U is not a 2-type.
Exercise 6.7. Prove that if G is a monoid and x : G, then ∑(y:G)((x · y = e)× (y · x = e)) is a mere
proposition. Conclude, using the principle of unique choice (Corollary 3.9.2), that it would be
equivalent to define a group to be a monoid such that for every x : G, there merely exists a y : G
such that x · y = e and y · x = e.
Exercise 6.8. Prove that if A is a set, then List(A) is a monoid. Then complete the proof of
Lemma 6.11.5.
Exercise 6.9. Assuming LEM, construct a family f : ∏(X:U)(X → X) such that f2 : 2 → 2 is the
nonidentity automorphism.
Exercise 6.10. Show that the map constructed in Lemma 6.3.2 is in fact a quasi-inverse to happly,
so that an interval type implies the full function extensionality axiom. (You may have to use
Exercise 2.16.)
Exercise 6.11. Prove the universal property of suspension:(

ΣA→ B
)
≃
(

∑
(bn :B)

∑
(bs :B)

(A→ (bn = bs))
)

Exercise 6.12. Show that Z ≃ N + 1 + N. Show that if we were to define Z as N + 1 + N, then
we could obtain Lemma 6.10.12 with judgmental computation rules.
Exercise 6.13. Show that we can also prove Lemma 6.3.2 by using ∥2∥ instead of I.

Chapter 7

Homotopy n-types

One of the basic notions of homotopy theory is that of a homotopy n-type: a space containing no
interesting homotopy above dimension n. For instance, a homotopy 0-type is essentially a set,
containing no nontrivial paths, while a homotopy 1-type may contain nontrivial paths, but no
nontrivial paths between paths. Homotopy n-types are also called n-truncated spaces. We have
mentioned this notion already in §3.1; our first goal in this chapter is to give it a precise definition
in homotopy type theory.

A dual notion to truncatedness is connectedness: a space is n-connected if it has no interest-
ing homotopy in dimensions n and below. For instance, a space is 0-connected (also called just
“connected”) if it has only one connected component, and 1-connected (also called “simply con-
nected”) if it also has no nontrivial loops (though it may have nontrivial higher loops between
loops).

The duality between truncatedness and connectedness is most easily seen by extending both
notions to maps. We call a map n-truncated or n-connected if all its fibers are so. Then n-connected
and n-truncated maps form the two classes of maps in an orthogonal factorization system, i.e. every
map factors uniquely as an n-connected map followed by an n-truncated one.

In the case n = −1, the n-truncated maps are the embeddings and the n-connected maps
are the surjections, as defined in §4.6. Thus, the n-connected factorization system is a massive
generalization of the standard image factorization of a function between sets into a surjection
followed by an injection. At the end of this chapter, we sketch briefly an even more general
theory: any type-theoretic modality gives rise to an analogous factorization system.

7.1 Definition of n-types

As mentioned in §§3.1 and 3.11, it turns out to be convenient to define n-types starting two levels
below zero, with the (−1)-types being the mere propositions and the (−2)-types the contractible
ones.

Definition 7.1.1. Define the predicate is-n-type : U → U for n ≥ −2 by recursion as follows:

is-n-type(X) :≡
{
isContr(X) if n = −2,

∏(x,y:X) is-n′-type(x =X y) if n = n′ + 1.

We say that X is an n-type, or sometimes that it is n-truncated, if is-n-type(X) is inhabited.

206 CHAPTER 7. HOMOTOPY n-TYPES

Remark 7.1.2. The number n in Definition 7.1.1 ranges over all integers greater than or equal to
−2. We could make sense of this formally by defining a type Z≥−2 of such integers (a type whose
induction principle is identical to that of N), or instead defining a predicate is-(k− 2)-type for
k : N. Either way, we can prove theorems about n-types by induction on n, with n = −2 as the
base case.

Example 7.1.3. We saw in Lemma 3.11.10 that X is a (−1)-type if and only if it is a mere proposi-
tion. Therefore, X is a 0-type if and only if it is a set.

We have also seen that there are types which are not sets (Example 3.1.9). So far, however,
we have not shown for any n > 0 that there exist types which are not n-types. In Chapter 8,
however, we will show that the (n + 1)-sphere Sn+1 is not an n-type. (Kraus has also shown
that the nth nested univalent universe is also not an n-type, without using any higher inductive
types.) Moreover, in §8.8 will give an example of a type that is not an n-type for any (finite)
number n.

We begin the general theory of n-types by showing they are closed under certain operations
and constructors.

Theorem 7.1.4. Let p : X → Y be a retraction and suppose that X is an n-type, for any n ≥ −2. Then
Y is also an n-type.

Proof. We proceed by induction on n. The base case n = −2 is handled by Lemma 3.11.7.
For the inductive step, assume that any retract of an n-type is an n-type, and that X is an

(n + 1)-type. Let y, y′ : Y; we must show that y = y′ is an n-type. Let s be a section of p, and let
ϵ be a homotopy ϵ : p ◦ s ∼ 1. Since X is an (n + 1)-type, s(y) =X s(y′) is an n-type. We claim
that y = y′ is a retract of s(y) =X s(y′). For the section, we take

aps : (y = y′)→ (s(y) = s(y′)).

For the retraction, we define t : (s(y) = s(y′))→ (y = y′) by

t(q) :≡ ϵy
−1 � p(q) � ϵy′ .

To show that t is a retraction of aps, we must show that

ϵy
−1 � p(s(r)) � ϵy′ = r

for any r : y = y′. But this follows from Lemma 2.4.3.

As an immediate corollary we obtain the stability of n-types under equivalence (which is also
immediate from univalence):

Corollary 7.1.5. If X ≃ Y and X is an n-type, then so is Y.

Recall also the notion of embedding from §4.6.

Theorem 7.1.6. If f : X → Y is an embedding and Y is an n-type for some n ≥ −1, then so is X.

Proof. Let x, x′ : X; we must show that x =X x′ is an (n− 1)-type. But since f is an embedding,
we have (x =X x′) ≃ (f (x) =Y f (x′)), and the latter is an (n− 1)-type by assumption.

Note that this theorem fails when n = −2: the map 0 → 1 is an embedding, but 1 is a
(−2)-type while 0 is not.

7.1 DEFINITION OF n-TYPES 207

Theorem 7.1.7. The hierarchy of n-types is cumulative in the following sense: given a number n ≥ −2,
if X is an n-type, then it is also an (n + 1)-type.

Proof. We proceed by induction on n.
For n = −2, we need to show that a contractible type, say, A, has contractible path spaces.

Let a0 : A be the center of contraction of A, and let x, y : A. We show that x =A y is contractible.
By contractibility of A we have a path contrx � contry

−1 : x = y, which we choose as the center
of contraction for x = y. Given any p : x = y, we need to show p = contrx � contry

−1. By path
induction, it suffices to show that reflx = contrx � contrx

−1, which is trivial.
For the inductive step, we need to show that x =X y is an (n + 1)-type, provided that X is an

(n + 1)-type. Applying the inductive hypothesis to x =X y yields the desired result.

We now show that n-types are preserved by most of the type forming operations.

Theorem 7.1.8. Let n ≥ −2, and let A : U and B : A → U . If A is an n-type and for all a : A, B(a) is
an n-type, then so is ∑(x:A) B(x).

Proof. We proceed by induction on n.
For n = −2, we choose the center of contraction for ∑(x:A) B(x) to be the pair (a0, b0), where

a0 : A is the center of contraction of A and b0 : B(a0) is the center of contraction of B(a0). Given
any other element (a, b) of ∑(x:A) B(x), we provide a path (a, b) = (a0, b0) by contractibility of A
and B(a0), respectively.

For the inductive step, suppose that A is an (n + 1)-type and for any a : A, B(a) is an (n + 1)-
type. We show that ∑(x:A) B(x) is an (n + 1)-type: fix (a1, b1) and (a2, b2) in ∑(x:A) B(x), we show
that (a1, b1) = (a2, b2) is an n-type. By Theorem 2.7.2 we have

((a1, b1) = (a2, b2)) ≃ ∑
p:a1=a2

(p∗(b1) =B(a2) b2)

and by preservation of n-types under equivalences (Corollary 7.1.5) it suffices to prove that the
latter is an n-type. This follows from the inductive hypothesis.

As a special case, if A and B are n-types, so is A× B. Note also that Theorem 7.1.7 implies
that if A is an n-type, then so is x =A y for any x, y : A. Combining this with Theorem 7.1.8, we
see that for any functions f : A→ C and g : B→ C between n-types, their pullback

A×C B :≡ ∑
(x:A)

∑
(y:B)

(f (x) = g(y))

(see Exercise 2.11) is also an n-type. More generally, n-types are closed under all limits.

Theorem 7.1.9. Let n ≥ −2, and let A : U and B : A → U . If for all a : A, B(a) is an n-type, then so
is ∏(x:A) B(x).

Proof. We proceed by induction on n. For n = −2, the result is simply Lemma 3.11.6.
For the inductive step, assume the result is true for n-types, and that each B(a) is an (n + 1)-

type. Let f , g : ∏(a:A) B(a). We need to show that f = g is an n-type. By function extensionality
and closure of n-types under equivalence, it suffices to show that ∏(a:A)(f (a) =B(a) g(a)) is an
n-type. This follows from the inductive hypothesis.

As a special case of the above theorem, the function space A → B is an n-type provided that
B is an n-type. We can now generalize our observations in Chapter 2 that isSet(A) and isProp(A)

are mere propositions.

208 CHAPTER 7. HOMOTOPY n-TYPES

Theorem 7.1.10. For any n ≥ −2 and any type X, the type is-n-type(X) is a mere proposition.

Proof. We proceed by induction with respect to n.
For the base case, we need to show that for any X, the type isContr(X) is a mere proposition.

This is Lemma 3.11.4.
For the inductive step we need to show

∏
X:U

isProp(is-n-type(X))→∏
X:U

isProp(is-(n + 1)-type(X)).

To show the conclusion of this implication, we need to show that for any type X, the type

∏
x,x′ :X

is-n-type(x = x′)

is a mere proposition. By Example 3.6.2 or Theorem 7.1.9, it suffices to show that for any x, x′ : X,
the type is-n-type(x =X x′) is a mere proposition. But this follows from the inductive hypothesis
applied to the type (x =X x′).

Finally, we show that the type of n-types is itself an (n + 1)-type. We define this to be:

n-Type :≡ ∑
X:U

is-n-type(X).

If necessary, we may specify the universe U by writing n-TypeU . In particular, we have Prop :≡
(−1)-Type and Set :≡ 0-Type, as defined in Chapter 2. Note that just as for Prop and Set, because
is-n-type(X) is a mere proposition, by Lemma 3.5.1 for any (X, p), (X′, p′) : n-Type we have(

(X, p) =n-Type (X′, p′)
)
≃ (X =U X′)

≃ (X ≃ X′).

Theorem 7.1.11. For any n ≥ −2, the type n-Type is an (n + 1)-type.

Proof. Let (X, p), (X′, p′) : n-Type; we need to show that (X, p) = (X′, p′) is an n-type. By the
above observation, this type is equivalent to X ≃ X′. Next, we observe that the projection

(X ≃ X′)→ (X → X′).

is an embedding, so that if n ≥ −1, then by Theorem 7.1.6 it suffices to show that X → X′ is an
n-type. But since n-types are preserved under the arrow type, this reduces to an assumption that
X′ is an n-type.

In the case n = −2, this argument shows that X ≃ X′ is a (−1)-type — but it is also inhabited,
since any two contractible types are equivalent to 1, and hence to each other. Thus, X ≃ X′ is
also a (−2)-type.

7.2 Uniqueness of identity proofs and Hedberg’s theorem

In §3.1 we defined a type X to be a set if for all x, y : X and p, q : x =X y we have p = q.
In conventional type theory, this property goes by the name of uniqueness of identity proofs
(UIP). We have seen also that it is equivalent to being a 0-type in the sense of the previous section.
Here is another equivalent characterization, involving Streicher’s “Axiom K” [Str93]:

7.2 UNIQUENESS OF IDENTITY PROOFS AND HEDBERG’S THEOREM 209

Theorem 7.2.1. A type X is a set if and only if it satisfies Axiom K: for all x : X and p : (x =A x) we
have p = reflx.

Proof. Clearly Axiom K is a special case of UIP. Conversely, if X satisfies Axiom K, let x, y : X
and p, q : (x = y); we want to show p = q. But induction on q reduces this goal precisely to
Axiom K.

We stress that we are not assuming UIP or the K principle as axioms! They are simply proper-
ties which a particular type may or may not satisfy (which are equivalent to being a set). Recall
from Example 3.1.9 that not all types are sets.

The following theorem is another useful way to show that types are sets.

Theorem 7.2.2. Suppose R is a reflexive mere relation on a type X implying identity. Then X is a set,
and R(x, y) is equivalent to x =X y for all x, y : X.

Proof. Let ρ : ∏(x:X) R(x, x) witness reflexivity of R, and let f : ∏(x,y:X) R(x, y) → (x =X y) be a
witness that R implies identity. Note first that the two statements in the theorem are equivalent.
For on one hand, if X is a set, then x =X y is a mere proposition, and since it is logically equiva-
lent to the mere proposition R(x, y) by hypothesis, it must also be equivalent to it. On the other
hand, if x =X y is equivalent to R(x, y), then like the latter it is a mere proposition for all x, y : X,
and hence X is a set.

We give two proofs of this theorem. The first shows directly that X is a set; the second shows
directly that R(x, y) ≃ (x = y).

First proof: we show that X is a set. The idea is the same as that of Lemma 3.3.4: the func-
tion f must be continuous in its arguments x and y. However, it is slightly more notationally
complicated because we have to deal with the additional argument of type R(x, y).

Firstly, for any x : X and p : x =X x, consider apd f (x)(p). This is a dependent path from
f (x, x) to itself. Since f (x, x) is still a function R(x, x) → (x =X x), by Lemma 2.9.6 this yields
for any r : R(x, x) a path

p∗(f (x, x, r)) = f (x, x, p∗(r)).

On the left-hand side, we have transport in an identity type, which is concatenation. And on
the right-hand side, we have p∗(r) = r, since both lie in the mere proposition R(x, x). Thus,
substituting r :≡ ρ(x), we obtain

f (x, x, ρ(x)) � p = f (x, x, ρ(x)).

By cancellation, p = reflx. So X satisfies Axiom K, and hence is a set.
Second proof: we show that each f (x, y) : R(x, y) → x =X y is an equivalence. By Theo-

rem 4.7.7, it suffices to show that f induces an equivalence of total spaces:(
∑
y:X

R(x, y)
)
≃
(
∑
y:X

x =X y
)

.

By Lemma 3.11.8, the type on the right is contractible, so it suffices to show that the type on the
left is contractible. As the center of contraction we take the pair (x, ρ(x)). It remains to show, for
every y : X and every H : R(x, y) that

(x, ρ(x)) = (y, H).

But since R(x, y) is a mere proposition, by Theorem 2.7.2 it suffices to show that x =X y, which
we get from f (H).

210 CHAPTER 7. HOMOTOPY n-TYPES

Corollary 7.2.3. If a type X has the property that ¬¬(x = y) → (x = y) for any x, y : X, then X is a
set.

Another convenient way to show that a type is a set is the following. Recall from §3.4 that a
type X is said to have decidable equality if for all x, y : X we have

(x =X y) + ¬(x =X y).

This is a very strong condition: it says that a path x = y can be chosen, when it exists, continu-
ously (or computably, or functorially) in x and y. This turns out to imply that X is a set, by way
of Theorem 7.2.2 and the following lemma.

Lemma 7.2.4. For any type A we have (A + ¬A)→ (¬¬A→ A).

Proof. This was essentially already proven in Corollary 3.2.7, but we repeat the argument. Sup-
pose x : A + ¬A. We have two cases to consider. If x is inl(a) for some a : A, then we have the
constant function ¬¬A → A which maps everything to a. If x is inr(t) for some t : ¬A, we have
g(t) : 0 for every g : ¬¬A. Hence we may use ex falso quodlibet, that is rec0, to obtain an element
of A for any g : ¬¬A.

Theorem 7.2.5 (Hedberg). If X has decidable equality, then X is a set.

Proof. If X has decidable equality, it follows that ¬¬(x = y) → (x = y) for any x, y : X. There-
fore, Hedberg’s theorem follows from Corollary 7.2.3.

There is, of course, a strong connection between this theorem and Corollary 3.2.7. The state-
ment LEM∞ that is denied by Corollary 3.2.7 clearly implies that every type has decidable equal-
ity, and hence is a set, which we know is not the case. Note that the consistent axiom LEM from
§3.4 implies only that every type has merely decidable equality, i.e. that for any A we have

∏
a,b:A

(∥a = b∥ + ¬∥a = b∥).

As an example application of Theorem 7.2.5, recall that in Example 3.1.4 we observed that N

is a set, using our characterization of its equality types in §2.13. A more traditional proof of this
theorem uses only (2.13.2) and (2.13.3), rather than the full characterization of Theorem 2.13.1,
with Theorem 7.2.5 to fill in the blanks.

Theorem 7.2.6. The type N of natural numbers has decidable equality, and hence is a set.

Proof. Let x, y : N be given; we proceed by induction on x and case analysis on y to prove
(x = y) + ¬(x = y). If x ≡ 0 and y ≡ 0, we take inl(refl0). If x ≡ 0 and y ≡ succ(n), then
by (2.13.2) we get ¬(0 = succ(n)).

For the inductive step, let x ≡ succ(n). If y ≡ 0, we use (2.13.2) again. Finally, if y ≡ succ(m),
the inductive hypothesis gives (m = n) + ¬(m = n). In the first case, if p : m = n, then
succ(p) : succ(m) = succ(n). And in the second case, (2.13.3) yields ¬(succ(m) = succ(n)).

Although Hedberg’s theorem appears rather special to sets (0-types), “Axiom K” generalizes
naturally to n-types. Note that the ordinary Axiom K (as a property of a type X) states that for
all x : X, the loop space Ω(X, x) (see Definition 2.1.8) is contractible. Since Ω(X, x) is always
inhabited (by reflx), this is equivalent to its being a mere proposition (a (−1)-type). Since 0 =

(−1) + 1, this suggests the following generalization.

7.2 UNIQUENESS OF IDENTITY PROOFS AND HEDBERG’S THEOREM 211

Theorem 7.2.7. For any n ≥ −1, a type X is an (n + 1)-type if and only if for all x : X, the type
Ω(X, x) is an n-type.

Before proving this, we prove an auxiliary lemma:

Lemma 7.2.8. Given n ≥ −1 and X : U . If, given any inhabitant of X it follows that X is an n-type,
then X is an n-type.

Proof. Let f : X → is-n-type(X) be the given map. We need to show that for any x, x′ : X, the
type x = x′ is an (n− 1)-type. But then f (x) shows that X is an n-type, hence all its path spaces
are (n− 1)-types.

Proof of Theorem 7.2.7. The “only if” direction is obvious, since Ω(X, x) :≡ (x =X x). Conversely,
in order to show that X is an (n + 1)-type, we need to show that for any x, x′ : X, the type x = x′

is an n-type. Following Lemma 7.2.8 it suffices to give a map

(x = x′)→ is-n-type(x = x′).

By path induction, it suffices to do this when x ≡ x′, in which case it follows from the assumption
that Ω(X, x) is an n-type.

By induction and some slightly clever whiskering, we can obtain a generalization of the K
property to n > 0.

Theorem 7.2.9. For every n ≥ −1, a type A is an n-type if and only if Ωn+1(A, a) is contractible for all
a : A.

Proof. Recalling that Ω0(A, a) = (A, a), the case n = −1 is Exercise 3.5. The case n = 0 is
Theorem 7.2.1. Now we use induction; suppose the statement holds for n : N. By Theorem 7.2.7,
A is an (n + 1)-type iff Ω(A, a) is an n-type for all a : A. By the inductive hypothesis, the latter
is equivalent to saying that Ωn+1(Ω(A, a), p) is contractible for all p : Ω(A, a).

Since Ωn+2(A, a) :≡ Ωn+1(Ω(A, a), refla), and Ωn+1 = Ωn ◦ Ω, it will suffice to show that
Ω(Ω(A, a), p) is equal to Ω(Ω(A, a), refla), in the type U• of pointed types. For this, it suffices to
give an equivalence

g : Ω(Ω(A, a), p) ≃ Ω(Ω(A, a), refla)

which carries the basepoint reflp to the basepoint reflrefla . For q : p = p, define g(q) : refla = refla

to be the following composite:

refla = p � p−1 q
= p � p−1 = refla,

where the path labeled “q” is actually apλr. r � p−1(q). Then g is an equivalence because it is a
composite of equivalences

(p = p)
ap

λr. r � p−1
−−−−−→ (p � p−1 = p � p−1)

i �− � i−1

−−−−→ (refla = refla).

using Example 2.4.8 and Theorem 2.11.1, where i : refla = p � p−1 is the canonical equality. And
it is evident that g(reflp) = reflrefla .

212 CHAPTER 7. HOMOTOPY n-TYPES

7.3 Truncations

In §3.7 we introduced the propositional truncation, which makes the “best approximation” of
a type that is a mere proposition, i.e. a (−1)-type. In §6.9 we constructed this truncation as a
higher inductive type, and gave one way to generalize it to a 0-truncation. We now explain a
better generalization of this, which truncates any type into an n-type for any n ≥ −2; in classical
homotopy theory this would be called its nth Postnikov section.

The idea is to make use of Theorem 7.2.9, which states that A is an n-type just when Ωn+1(A, a)
is contractible for all a : A, and Lemma 6.5.4, which implies that Ωn+1(A, a) ≃ Map∗(S

n+1, (A, a)),
where Sn+1 is equipped with some basepoint which we may as well call base. However, con-
tractibility of Map∗(S

n+1, (A, a)) is something that we can ensure directly by giving path con-
structors.

We will use the “hub and spoke” construction as in §6.7. Thus, for n ≥ −1, we take ∥A∥n to
be the higher inductive type generated by:

• a function |– |n : A→ ∥A∥n,

• for each r : Sn+1 → ∥A∥n, a hub point h(r) : ∥A∥n, and

• for each r : Sn+1 → ∥A∥n and each x : Sn+1, a spoke path sr(x) : r(x) = h(r).

The existence of these constructors is now enough to show:

Lemma 7.3.1. ∥A∥n is an n-type.

Proof. By Theorem 7.2.9, it suffices to show that Ωn+1(∥A∥n, b) is contractible for all b : ∥A∥n,
which by Lemma 6.5.4 is equivalent to Map∗(S

n+1, (∥A∥n, b)). As center of contraction for the
latter, we choose the function cb : Sn+1 → ∥A∥n which is constant at b, together with reflb :
cb(base) = b.

Now, an arbitrary element of Map∗(S
n+1, (∥A∥n, b)) consists of a map r : Sn+1 → ∥A∥n to-

gether with a path p : r(base) = b. By function extensionality, to show r = cb it suffices to give,
for each x : Sn+1, a path r(x) = cb(x) ≡ b. We choose this to be the composite sr(x) � sr(base)

−1 � p,
where sr(x) is the spoke at x.

Finally, we must show that when transported along this equality r = cb, the path p becomes
reflb. By transport in path types, this means we need

(sr(base) � sr(base)
−1 � p)

−1 � p = reflb.

But this is immediate from path operations.

(This construction fails for n = −2, but in that case we can simply define ∥A∥−2 :≡ 1 for all
A. From now on we assume n ≥ −1.)

To show the desired universal property of the n-truncation, we need the induction principle.
We extract this from the constructors in the usual way; it says that given P : ∥A∥n → U together
with

• For each a : A, an element g(a) : P(|a|n),
• For each r : Sn+1 → ∥A∥n and r′ : ∏(x:Sn+1) P(r(x)), an element h′(r, r′) : P(h(r)),

• For each r : Sn+1 → ∥A∥n and r′ : ∏(x:Sn+1) P(r(x)), and each x : Sn+1, a dependent path
r′(x) =P

sr(x) h′(r, r′),

7.3 TRUNCATIONS 213

there exists a section f : ∏(x:∥A∥n)
P(x) with f (|a|n) ≡ g(a) for all a : A. To make this more

useful, we reformulate it as follows.

Theorem 7.3.2. For any type family P : ∥A∥n → U such that each P(x) is an n-type, and any function
g : ∏(a:A) P(|a|n), there exists a section f : ∏(x:∥A∥n)

P(x) such that f (|a|n) :≡ g(a) for all a : A.

Proof. It will suffice to construct the second and third data listed above, since g has exactly the
type of the first datum. Given r : Sn+1 → ∥A∥n and r′ : ∏(x:Sn+1) P(r(x)), we have h(r) : ∥A∥n
and sr : ∏(x:Sn+1)(r(x) = h(r)). Define t : Sn+1 → P(h(r)) by t(x) :≡ sr(x)∗(r

′(x)). Then since
P(h(r)) is n-truncated, there exists a point u : P(h(r)) and a contraction v : ∏(x:Sn+1)(t(x) = u).
Define h′(r, r′) :≡ u, giving the second datum. Then (recalling the definition of dependent paths),
v has exactly the type required of the third datum.

In particular, if E is some n-type, we can consider the constant family of types equal to E for
every point of A. Thus, every map f : A → E can be extended to a map ext(f) : ∥A∥n → E
defined by ext(f)(|a|n) :≡ f (a); this is the recursion principle for ∥A∥n.

The induction principle also implies a uniqueness principle for functions of this form. Namely,
if E is an n-type and g, g′ : ∥A∥n → E are such that g(|a|n) = g′(|a|n) for every a : A, then
g(x) = g′(x) for all x : ∥A∥n, since the type g(x) = g′(x) is an n-type. Thus, g = g′. (In fact, this
uniqueness principle holds more generally when E is an (n + 1)-type.) This yields the following
universal property.

Lemma 7.3.3 (Universal property of truncations). Let n ≥ −2, A : U and B : n-Type. The following
map is an equivalence: {

(∥A∥n → B) −→ (A→ B)
g 7−→ g ◦ |– |n

Proof. Given that B is n-truncated, any f : A → B can be extended to a map ext(f) : ∥A∥n → B.
The map ext(f) ◦ |– |n is equal to f , because for every a : A we have ext(f)(|a|n) = f (a) by
definition. And the map ext(g ◦ |– |n) is equal to g, because they both send |a|n to g(|a|n).

In categorical language, this says that the n-types form a reflective subcategory of the category
of types. (To state this fully precisely, one ought to use the language of (∞, 1)-categories.) In par-
ticular, this implies that the n-truncation is functorial: given f : A → B, applying the recursion

principle to the composite A
f−→ B→ ∥B∥n yields a map ∥ f ∥n : ∥A∥n → ∥B∥n. By definition, we

have a homotopy
nat

f
n : ∏

a:A
∥ f ∥n(|a|n) = | f (a)|n, (7.3.4)

expressing naturality of the maps |– |n.
Uniqueness implies functoriality laws such as ∥g ◦ f ∥n = ∥g∥n ◦ ∥ f ∥n and ∥idA∥n = id∥A∥n

,
with attendant coherence laws. We also have higher functoriality, for instance:

Lemma 7.3.5. Given f , g : A → B and a homotopy h : f ∼ g, there is an induced homotopy ∥h∥n :
∥ f ∥n ∼ ∥g∥n such that the composite

| f (a)|n
nat

f
n(a)

−1

∥ f ∥n(|a|n)
∥h∥n(|a|n) ∥g∥n(|a|n)

nat
g
n(a)

|g(a)|n (7.3.6)

is equal to ap|– |n(h(a)).

214 CHAPTER 7. HOMOTOPY n-TYPES

Proof. First, we indeed have a homotopy with components ap|– |n(h(a)) : | f (a)|n = |g(a)|n. Com-
posing on either sides with the paths | f (a)|n = ∥ f ∥n(|a|n) and |g(a)|n = ∥g∥n(|a|n), which arise
from the definitions of ∥ f ∥n and ∥g∥n, we obtain a homotopy (∥ f ∥n ◦ |– |n) ∼ (∥g∥n ◦ |– |n),
and hence an equality by function extensionality. But since (– ◦ |– |n) is an equivalence, there
must be a path ∥ f ∥n = ∥g∥n inducing it, and the coherence laws for function extensionality
imply (7.3.6).

The following observation about reflective subcategories is also standard.

Corollary 7.3.7. A type A is an n-type if and only if |– |n : A→ ∥A∥n is an equivalence.

Proof. “If” follows from closure of n-types under equivalence. On the other hand, if A is an
n-type, we can define ext(idA) : ∥A∥n → A. Then we have ext(idA) ◦ |– |n = idA : A → A
by definition. In order to prove that |– |n ◦ ext(idA) = id∥A∥n

, we only need to prove that |– |n ◦
ext(idA) ◦ |– |n = id∥A∥n

◦ |– |n. This is again true:

A
|– |n //

idA
""

∥A∥n

ext(idA)��

id∥A∥n

yy

A

|– |n
��

∥A∥n

The category of n-types also has some special properties not possessed by all reflective sub-
categories. For instance, the reflector ∥−∥n preserves finite products.

Theorem 7.3.8. For any types A and B, the induced map ∥A× B∥n → ∥A∥n×∥B∥n is an equivalence.

Proof. It suffices to show that ∥A∥n × ∥B∥n has the same universal property as ∥A× B∥n. Thus,
let C be an n-type; we have

(∥A∥n × ∥B∥n → C) = (∥A∥n → (∥B∥n → C))

= (∥A∥n → (B→ C))

= (A→ (B→ C))

= (A× B→ C)

using the universal properties of ∥B∥n and ∥A∥n, along with the fact that B→ C is an n-type since
C is. It is straightforward to verify that this equivalence is given by composing with |– |n × |– |n,
as needed.

The following related fact about dependent sums is often useful.

Theorem 7.3.9. Let P : A→ U be a family of types. Then there is an equivalence∥∥∥∑
x:A
∥P(x)∥n

∥∥∥
n
≃
∥∥∥∑

x:A
P(x)

∥∥∥
n
.

7.3 TRUNCATIONS 215

Proof. We use the induction principle of n-truncation several times to construct functions

φ :
∥∥∥∑

x:A
∥P(x)∥n

∥∥∥
n
→
∥∥∥∑

x:A
P(x)

∥∥∥
n

ψ :
∥∥∥∑

x:A
P(x)

∥∥∥
n
→
∥∥∥∑

x:A
∥P(x)∥n

∥∥∥
n

and homotopies H : φ ◦ ψ ∼ id and K : ψ ◦ φ ∼ id exhibiting them as quasi-inverses. We define
φ by setting φ(|(x, |u|n)|n) :≡ |(x, u)|n. We define ψ by setting ψ(|(x, u)|n) :≡ |(x, |u|n)|n. Then
we define H(|(x, u)|n) :≡ refl|(x,u)|n and K(|(x, |u|n)|n) :≡ refl|(x,|u|n)|n .

Corollary 7.3.10. If A is an n-type and P : A→ U is any type family, then

∑
a:A
∥P(a)∥n ≃

∥∥∥∑
a:A

P(a)
∥∥∥

n

Proof. If A is an n-type, then the left-hand type above is already an n-type, hence equivalent to
its n-truncation; thus this follows from Theorem 7.3.9.

We can characterize the path spaces of a truncation using the same method that we used
in §§2.12 and 2.13 for coproducts and natural numbers (and which we will use in Chapter 8 to
calculate homotopy groups). Unsurprisingly, the path spaces in the (n + 1)-truncation of A are
the n-truncations of the path spaces of A. Indeed, for any x, y : A there is a canonical map

f :
∥∥x =A y

∥∥
n →

(
|x|n+1 =∥A∥n+1

|y|n+1

)
(7.3.11)

defined by
f (|p|n) :≡ ap|– |n+1

(p).

This definition uses the recursion principle for ∥–∥n, which is correct because ∥A∥n+1 is (n + 1)-
truncated, so that the codomain of f is n-truncated.

Theorem 7.3.12. For any A and x, y : A and n ≥ −2, the map (7.3.11) is an equivalence; thus we have∥∥x =A y
∥∥

n ≃
(
|x|n+1 =∥A∥n+1

|y|n+1

)
.

Proof. The proof is a simple application of the encode-decode method: As in previous situations,
we cannot directly define a quasi-inverse to the map (7.3.11) because there is no way to induct on
an equality between |x|n+1 and |y|n+1. Thus, instead we generalize its type, in order to have gen-
eral elements of the type ∥A∥n+1 instead of |x|n+1 and |y|n+1. Define P : ∥A∥n+1 → ∥A∥n+1 →
n-Type by

P(|x|n+1, |y|n+1) :≡ ∥x =A y∥n

This definition is correct because ∥x =A y∥n is n-truncated, and n-Type is (n + 1)-truncated by
Theorem 7.1.11. Now for every u, v : ∥A∥n+1, there is a map

decode : P(u, v)→
(
u =∥A∥n+1

v
)

defined for u = |x|n+1 and v = |y|n+1 and p : x = y by

decode(|p|n) :≡ ap|– |n+1
(p).

216 CHAPTER 7. HOMOTOPY n-TYPES

Since the codomain of decode is n-truncated, it suffices to define it only for u and v of this form,
and then it’s just the same definition as before. We also define a function

r : ∏
u:∥A∥n+1

P(u, u)

by induction on u, where r(|x|n+1) :≡ |reflx|n.
Now we can define an inverse map

encode : (u =∥A∥n+1
v)→ P(u, v)

by
encode(p) :≡ transportv 7→P(u,v)(p, r(u)).

To show that the composite

(u =∥A∥n+1
v) encode−−−→ P(u, v) decode−−−→ (u =∥A∥n+1

v)

is the identity function, by path induction it suffices to check it for reflu : u = u, in which case
what we need to know is that decode(r(u)) = reflu. But since this is an (n− 1)-type, hence also an
(n + 1)-type, we may assume u ≡ |x|n+1, in which case it follows by definition of r and decode.
Finally, to show that

P(u, v) decode−−−→ (u =∥A∥n+1
v) encode−−−→ P(u, v)

is the identity function, since this goal is again an (n− 1)-type, we may assume that u = |x|n+1
and v = |y|n+1 and that we are considering |p|n : P(|x|n+1, |y|n+1) for some p : x = y. Then we
have

encode(decode(|p|n)) = encode(ap|– |n+1
(p))

= transportv 7→P(|x|n+1,v)(ap|– |n+1
(p), |reflx|n)

= transporty 7→∥x=y∥n(p, |reflx|n)

=
∣∣∣transporty 7→(x=y)(p, reflx)

∣∣∣
n

= |p|n,

using Lemmas 2.3.10 and 2.3.11. (Alternatively, we could do path induction on p; the desired
equality would then hold judgmentally.) This completes the proof that decode and encode are
quasi-inverses. The stated result is then the special case where u = |x|n+1 and v = |y|n+1.

Corollary 7.3.13. Let n ≥ −2 and (A, a) be a pointed type. Then∥∥Ω(A, a)
∥∥

n = Ω
(
∥(A, a)∥n+1

)
Proof. This is a special case of the previous lemma where x = y = a.

Corollary 7.3.14. Let n ≥ −2 and k ≥ 0 and (A, a) a pointed type. Then∥∥Ωk(A, a)
∥∥

n = Ωk(∥(A, a)∥n+k
)

.

Proof. By induction on k, using the recursive definition of Ωk.

7.4 COLIMITS OF n-TYPES 217

We also observe that “truncations are cumulative”: if we truncate to an n-type and then to a
k-type with k ≤ n, then we might as well have truncated directly to a k-type.

Lemma 7.3.15. Let k, n ≥ −2 with k ≤ n and A : U . Then ∥∥A∥n∥k = ∥A∥k.

Proof. We define two maps f : ∥∥A∥n∥k → ∥A∥k and g : ∥A∥k → ∥∥A∥n∥k by

f (||a|n|k) :≡ |a|k and g(|a|k) :≡ ||a|n|k.

The map f is well-defined because ∥A∥k is k-truncated and also n-truncated (because k ≤ n),
and the map g is well-defined because ∥∥A∥n∥k is k-truncated.

The composition f ◦ g : ∥A∥k → ∥A∥k satisfies (f ◦ g)(|a|k) = |a|k, hence f ◦ g = id∥A∥k
.

Similarly, we have (g ◦ f)(||a|n|k) = ||a|n|k and hence g ◦ f = id∥∥A∥n∥k
.

7.4 Colimits of n-types

Recall that in §6.8, we used higher inductive types to define pushouts of types, and proved their
universal property. In general, a (homotopy) colimit of n-types may no longer be an n-type (for
an extreme counterexample, see Exercise 7.2). However, if we n-truncate it, we obtain an n-type
which satisfies the correct universal property with respect to other n-types.

In this section we prove this for pushouts, which are the most important and nontrivial case
of colimits. Recall the following definitions from §6.8.

Definition 7.4.1. A span is a 5-tuple D = (A, B, C, f , g) with f : C → A and g : C → B.

D =

C
g
//

f
��

B

A

Definition 7.4.2. Given a span D = (A, B, C, f , g) and a type D, a cocone under D with base D
is a triple (i, j, h) with i : A→ D, j : B→ D and h : ∏(c:C) i(f (c)) = j(g(c)):

C
g
//

f
��

<Dh

B

j
��

A
i
// D

We denote by coconeD (D) the type of all such cocones.

The type of cocones is (covariantly) functorial. For instance, given D, E and a map t : D → E,
there is a map {

coconeD (D) −→ coconeD (E)
c 7−→ t ◦ c

defined by:
t ◦ (i, j, h) = (t ◦ i, t ◦ j, apt ◦ h).

And given D, E, F, functions t : D → E, u : E→ F and c : coconeD (D), we have

idD ◦ c = c (7.4.3)

(u ◦ t) ◦ c = u ◦ (t ◦ c). (7.4.4)

218 CHAPTER 7. HOMOTOPY n-TYPES

Definition 7.4.5. Given a span D of n-types, an n-type D, and a cocone c : coconeD (D), the pair
(D, c) is said to be a pushout of D in n-types if for every n-type E, the map{

(D → E) −→ coconeD (E)
t 7−→ t ◦ c

is an equivalence.

In order to construct pushouts of n-types, we need to explain how to reflect spans and co-
cones.

Definition 7.4.6. Let

D =

C
g
//

f
��

B

A

be a span. We denote by ∥D∥n the following span of n-types:

∥D∥n :≡
∥C∥n

∥g∥n //

∥ f ∥n
��

∥B∥n

∥A∥n

Definition 7.4.7. Let D : U and c = (i, j, h) : coconeD (D). We define

∥c∥n = (∥i∥n, ∥j∥n, k) : cocone∥D∥n
(∥D∥n)

where k is the composite homotopy

∥i∥n ◦ ∥ f ∥n ∼ ∥i ◦ f ∥n ∼ ∥j ◦ g∥n ∼ ∥j∥n ◦ ∥g∥n

using Lemma 7.3.5 and the functoriality of ∥–∥n.

We now observe that the maps from each type to its n-truncation assemble into a map of
spans, in the following sense.

Definition 7.4.8. Let

D =

C
g
//

f
��

B

A

and D ′ =

C′
g′
//

f ′
��

B′

A′

be spans. A map of spans D → D ′ consists of functions α : A → A′, β : B → B′, and γ : C → C′

and homotopies ϕ : α ◦ f ∼ f ′ ◦ γ and ψ : β ◦ g ∼ g′ ◦ γ.

Thus, for any span D , we have a map of spans |– |Dn : D → ∥D∥n consisting of |– |An , |– |Bn ,
|– |Cn , and the naturality homotopies nat f

n and nat
g
n from (7.3.4).

We also need to know that maps of spans behave functorially. Namely, if (α, β, γ, ϕ, ψ) : D →
D ′ is a map of spans and D any type, then we have{

coconeD ′(D) −→ coconeD (D)

(i, j, h) 7−→ (i ◦ α, j ◦ β, k)

7.4 COLIMITS OF n-TYPES 219

where k : ∏(z:C) i(α(f (z))) = j(β(g(z))) is the composite

i(α(f (z)))
api(ϕ) i(f ′(γ(z)))

h(γ(z))
j(g′(γ(z)))

apj(ψ)
j(β(g(z))). (7.4.9)

We denote this cocone by (i, j, h) ◦ (α, β, γ, ϕ, ψ). Moreover, this functorial action commutes with
the other functoriality of cocones:

Lemma 7.4.10. Given (α, β, γ, ϕ, ψ) : D → D ′ and t : D → E, the following diagram commutes:

coconeD ′(D)
t◦– //

��

coconeD ′(E)

��

coconeD (D)
t◦–

// coconeD (E)

Proof. Given (i, j, h) : coconeD ′(D), note that both composites yield a cocone whose first two
components are t ◦ i ◦ α and t ◦ j ◦ β. Thus, it remains to verify that the homotopies agree. For
the top-right composite, the homotopy is (7.4.9) with (i, j, h) replaced by (t ◦ i, t ◦ j, apt ◦ h):

t i α f z
apt◦i(ϕ) t i f ′ γ z

apt(h(γ(z))) t j g′ γ z
apt◦j(ψ)

t j β g z

(For brevity, we are omitting the parentheses around the arguments of functions.) On the other
hand, for the left-bottom composite, the homotopy is apt applied to (7.4.9). Since ap respects
path-concatenation, this is equal to

t i α f z
apt(api(ϕ)) t i f ′ γ z

apt(h(γ(z))) t j g′ γ z
apt(apj(ψ))

t j β g z.

But apt ◦ api = apt◦i and similarly for j, so these two homotopies are equal.

Finally, note that since we defined ∥c∥n : cocone∥D∥n
(∥D∥n) using Lemma 7.3.5, the additional

condition (7.3.6) implies
|– |Dn ◦ c = ∥c∥n ◦ |– |

D
n . (7.4.11)

for any c : coconeD (D). Now we can prove our desired theorem.

Theorem 7.4.12. Let D be a span and (D, c) its pushout. Then (∥D∥n, ∥c∥n) is a pushout of ∥D∥n in
n-types.

Proof. Let E be an n-type, and consider the following diagram:

(∥D∥n → E)
–◦|– |Dn //

–◦∥c∥n
��

(D → E)

–◦c
��

cocone∥D∥n
(E)

–◦|– |Dn //

OO

ℓ1

coconeD (E)
OO

ℓ2

(∥A∥n → E)×(∥C∥n→E) (∥B∥n → E) // (A→ E)×(C→E) (B→ E)

220 CHAPTER 7. HOMOTOPY n-TYPES

The upper horizontal arrow is an equivalence since E is an n-type, while – ◦ c is an equivalence
since c is a pushout cocone. Thus, by the 2-out-of-3 property, to show that – ◦ ∥c∥n is an equiv-
alence, it will suffice to show that the upper square commutes and that the middle horizontal
arrow is an equivalence. To see that the upper square commutes, let t : ∥D∥n → E; then(

t ◦ ∥c∥n
)
◦ |– |Dn = t ◦

(
∥c∥n ◦ |– |

D
n
)

(by Lemma 7.4.10)

= t ◦
(
|– |Dn ◦ c

)
(by (7.4.11))

=
(
t ◦ |– |Dn

)
◦ c. (by (7.4.4))

To show that the middle horizontal arrow is an equivalence, consider the lower square. The two
lower vertical arrows are simply applications of happly:

ℓ1(i, j, p) :≡ (i, j, happly(p))

ℓ2(i, j, p) :≡ (i, j, happly(p))

and hence are equivalences by function extensionality. The lowest horizontal arrow is defined
by

(i, j, p) 7→
(
i ◦ |– |An , j ◦ |– |Bn , q

)
where q is the composite

i ◦ |– |An ◦ f = i ◦ ∥ f ∥n ◦ |– |
C
n (by funext(λz. api(nat

f
n(z))))

= j ◦ ∥g∥n ◦ |– |
C
n (by ap–◦|– |Cn (p))

= j ◦ |– |Bn ◦ g. (by funext(λz. apj(nat
g
n(z))))

This is an equivalence, because it is induced by an equivalence of cospans. Thus, by 2-out-of-3, it
will suffice to show that the lower square commutes. But the two composites around the lower
square agree definitionally on the first two components, so it suffices to show that for (i, j, p) in
the lower left corner and z : C, the path

happly(q, z) : i(| f (z)|n) = j(|g(z)|n)

(with q as above) is equal to the composite

i(| f (z)|n) = i(∥ f ∥n(|z|n)) (by api(nat
f
n(z)))

= j(∥g∥n(|z|n)) (by happly(p, |z|n))
= j(|g(z)|n). (by apj(nat

g
n(z)))

However, since happly is functorial, it suffices to check equality for the three component paths:

happly(funext(λz. api(nat
f
n(z))), z) = api(nat

f
n(z))

happly(ap–◦|– |Cn (p), z) = happly(p, |z|n)
happly(funext(λz. apj(nat

g
n(z))), z) = apj(nat

g
n(z)).

The first and third of these are just the fact that happly is quasi-inverse to funext, while the second
is an easy general lemma about happly and precomposition.

7.5 CONNECTEDNESS 221

7.5 Connectedness

An n-type is one that has no interesting information above dimension n. By contrast, an n-
connected type is one that has no interesting information below dimension n. It turns out to be
natural to study a more general notion for functions as well.

Definition 7.5.1. A function f : A→ B is said to be n-connected if for all b : B, the type
∥∥fib f (b)

∥∥
n

is contractible:
connn(f) :≡∏

b:B
isContr(

∥∥fib f (b)
∥∥

n).

A type A is said to be n-connected if the unique function A → 1 is n-connected, i.e. if ∥A∥n is
contractible.

Thus, a function f : A→ B is n-connected if and only if fib f (b) is n-connected for every b : B.
Of course, every function is (−2)-connected. At the next level, we have:

Lemma 7.5.2. A function f is (−1)-connected if and only if it is surjective in the sense of §4.6.

Proof. We defined f to be surjective if
∥∥fib f (b)

∥∥
−1 is inhabited for all b. But since it is a mere

proposition, inhabitation is equivalent to contractibility.

Thus, n-connectedness of a function for n ≥ 0 can be thought of as a strong form of surjectiv-
ity. Category-theoretically, (−1)-connectedness corresponds to essential surjectivity on objects,
while n-connectedness corresponds to essential surjectivity on k-morphisms for k ≤ n + 1.

Lemma 7.5.2 also implies that a type A is (−1)-connected if and only if it is merely inhabited.
When a type is 0-connected we may simply say that it is connected, and when it is 1-connected
we say it is simply connected.

Remark 7.5.3. While our notion of n-connectedness for types agrees with the standard notion
in homotopy theory, our notion of n-connectedness for functions is off by one from a common
indexing in classical homotopy theory. Whereas we say a function f is n-connected if all its
fibers are n-connected, some classical homotopy theorists would call such a function (n + 1)-
connected. (This is due to a historical focus on cofibers rather than fibers.)

We now observe a few closure properties of connected maps.

Lemma 7.5.4. Suppose that g is a retract of a n-connected function f . Then g is n-connected.

Proof. This is a direct consequence of Lemma 4.7.3.

Corollary 7.5.5. If g is homotopic to a n-connected function f , then g is n-connected.

Lemma 7.5.6. Suppose that f : A → B is n-connected. Then g : B → C is n-connected if and only if
g ◦ f is n-connected.

Proof. For any c : C, we have∥∥fibg◦ f (c)
∥∥

n ≃
∥∥∥ ∑

w:fibg(c)
fib f (pr1w)

∥∥∥
n

(by Exercise 4.4)

≃
∥∥∥ ∑

w:fibg(c)

∥∥fib f (pr1w)
∥∥

n

∥∥∥
n

(by Theorem 7.3.9)

≃
∥∥fibg(c)

∥∥
n. (since

∥∥fib f (pr1w)
∥∥

n is contractible)

It follows that
∥∥fibg(c)

∥∥
n is contractible if and only if

∥∥fibg◦ f (c)
∥∥

n is contractible.

222 CHAPTER 7. HOMOTOPY n-TYPES

Importantly, n-connected functions can be equivalently characterized as those which satisfy
an “induction principle” with respect to n-types. This idea will lead directly into our proof of
the Freudenthal suspension theorem in §8.6.

Lemma 7.5.7. For f : A→ B and P : B→ U , consider the following function:

λs. s ◦ f :
(
∏
b:B

P(b)
)
→
(
∏
a:A

P(f (a))
)

.

For a fixed f and n ≥ −2, the following are equivalent.

(i) f is n-connected.
(ii) For every P : B→ n-Type, the map λs. s ◦ f is an equivalence.

(iii) For every P : B→ n-Type, the map λs. s ◦ f has a section.

Proof. Suppose that f is n-connected and let P : B→ n-Type. Then we have the equivalences

∏
b:B

P(b) ≃∏
b:B

(∥∥fib f (b)
∥∥

n → P(b)
)

(since
∥∥fib f (b)

∥∥
n is contractible)

≃∏
b:B

(
fib f (b)→ P(b)

)
(since P(b) is an n-type)

≃ ∏
(b:B)

∏
(a:A)

∏
(p: f (a)=b)

P(b) (by the left universal property of Σ-types)

≃∏
a:A

P(f (a)). (by the left universal property of path types)

We omit the proof that this equivalence is indeed given by λs. s ◦ f . Thus, (i)⇒(ii), and clearly (ii)⇒(iii).
To show (iii)⇒(i), consider the type family

P(b) :≡
∥∥fib f (b)

∥∥
n.

Then (iii) yields a map c : ∏(b:B)
∥∥fib f (b)

∥∥
n with c(f (a)) =

∣∣∣(a, refl f (a))
∣∣∣
n
. To show that each∥∥fib f (b)

∥∥
n is contractible, we will find a function of type

∏
(b:B)

∏
(w:∥fib f (b)∥n

)

w = c(b).

By Theorem 7.3.2, for this it suffices to find a function of type

∏
(b:B)

∏
(a:A)

∏
(p: f (a)=b)

|(a, p)|n = c(b).

But by rearranging variables and path induction, this is equivalent to the type

∏
a:A

∣∣∣(a, refl f (a))
∣∣∣
n
= c(f (a)).

This property holds by our choice of c(f (a)).

Corollary 7.5.8. For any A, the canonical function |– |n : A→ ∥A∥n is n-connected.

Proof. By Theorem 7.3.2 and the associated uniqueness principle, the condition of Lemma 7.5.7
holds.

7.5 CONNECTEDNESS 223

For instance, when n = −1, Corollary 7.5.8 says that the map A → ∥A∥ from a type to its
propositional truncation is surjective.

Corollary 7.5.9. A type A is n-connected if and only if the map

λb. λa. b : B→ (A→ B)

is an equivalence for every n-type B. In other words, “every map from A to an n-type is constant”.

Proof. By Lemma 7.5.7 applied to a function with codomain 1.

Lemma 7.5.10. Let B be an n-type and let f : A → B be a function. Then the induced function
g : ∥A∥n → B is an equivalence if and only if f is n-connected.

Proof. By Corollary 7.5.8, |– |n is n-connected. Thus, since f = g ◦ |– |n, by Lemma 7.5.6 f is n-
connected if and only if g is n-connected. But since g is a function between n-types, its fibers are
also n-types. Thus, g is n-connected if and only if it is an equivalence.

We can also characterize connected pointed types in terms of connectivity of the inclusion of
their basepoint.

Lemma 7.5.11. Let A be a type and a0 : 1→ A a basepoint, with n ≥ −1. Then A is n-connected if and
only if the map a0 is (n− 1)-connected.

Proof. First suppose a0 : 1 → A is (n− 1)-connected and let B be an n-type; we will use Corol-
lary 7.5.9. The map λb. λa. b : B→ (A→ B) has a retraction given by f 7→ f (a0), so it suffices to
show it also has a section, i.e. that for any f : A→ B there is b : B such that f = λa. b. We choose
b :≡ f (a0). Define P : A → U by P(a) :≡ (f (a) = f (a0)). Then P is a family of (n− 1)-types
and we have P(a0); hence we have ∏(a:A) P(a) since a0 : 1 → A is (n − 1)-connected. Thus,
f = λa. f (a0) as desired.

Now suppose A is n-connected, and let P : A → (n− 1)-Type and u : P(a0) be given. By
Lemma 7.5.7, it will suffice to construct f : ∏(a:A) P(a) such that f (a0) = u. Now (n− 1)-Type is
an n-type and A is n-connected, so by Corollary 7.5.9, there is an n-type B such that P = λa. B.
Hence, we have a family of equivalences g : ∏(a:A)(P(a) ≃ B). Define f (a) :≡ ga

−1(ga0(u)); then
f : ∏(a:A) P(a) and f (a0) = u as desired.

In particular, a pointed type (A, a0) is 0-connected if and only if a0 : 1 → A is surjective,
which is to say ∏(x:A)∥x = a0∥. For a similar result in the not-necessarily-pointed case, see Exer-
cise 7.6.

A useful variation on Lemma 7.5.6 is:

Lemma 7.5.12. Let f : A → B be a function and P : A → U and Q : B → U be type families.
Suppose that g : ∏(a:A) P(a)→ Q(f (a)) is a fiberwise n-connected family of functions, i.e. each function
ga : P(a)→ Q(f (a)) is n-connected. If f is also n-connected, then so is the function

φ :
(
∑
a:A

P(a)
)
→
(
∑
b:B

Q(b)
)

φ(a, u) :≡ (f (a), ga(u)).

Conversely, if φ and each ga are n-connected, and moreover Q is fiberwise merely inhabited (i.e. we have
∥Q(b)∥ for all b : B), then f is n-connected.

224 CHAPTER 7. HOMOTOPY n-TYPES

Proof. For any b : B and v : Q(b) we have∥∥fibφ((b, v))
∥∥

n ≃
∥∥∥ ∑
(a:A)

∑
(u:P(a))

∑
(p: f (a)=b)

p∗(ga(u)) = v
∥∥∥

n

≃
∥∥∥ ∑
(w:fib f (b))

∑
(u:P(pr1(w)))

gpr1w(u) = pr2(w)−1
∗(v)

∥∥∥
n

≃
∥∥∥ ∑

w:fib f (b)
fibg(pr1w)(pr2(w)−1

∗(v))
∥∥∥

n

≃
∥∥∥ ∑

w:fib f (b)

∥∥∥fibg(pr1w)(pr2(w)−1
∗(v))

∥∥∥
n

∥∥∥
n

≃
∥∥fib f (b)

∥∥
n

where the transportations along f (p) and f (p)−1 are with respect to Q. Therefore, if either is
contractible, so is the other.

In particular, if f is n-connected, then
∥∥fib f (b)

∥∥
n is contractible for all b : B, and hence

so is
∥∥fibφ((b, v))

∥∥
n for all (b, v) : ∑(b:B) Q(b). On the other hand, if φ is n-connected, then∥∥fibφ((b, v))

∥∥
n is contractible for all (b, v), hence so is

∥∥fib f (b)
∥∥

n for any b : B such that there
exists some v : Q(b). Finally, since contractibility is a mere proposition, it suffices to merely have
such a v.

The converse direction of Lemma 7.5.12 can fail if Q is not fiberwise merely inhabited. For
example, if P and Q are both constant at 0, then φ and each ga are equivalences, but f could be
arbitrary.

In the other direction, we have

Lemma 7.5.13. Let P, Q : A→ U be type families and consider a fiberwise transformation

f : ∏
a:A

(
P(a)→ Q(a)

)
from P to Q. Then the induced map total(f) : ∑(a:A) P(a) → ∑(a:A) Q(a) is n-connected if and only if
each f (a) is n-connected.

Of course, the “only if” direction is also a special case of Lemma 7.5.12.

Proof. By Theorem 4.7.6, we have fibtotal(f)((x, v)) ≃ fib f (x)(v) for each x : A and v : Q(x). Hence∥∥∥fibtotal(f)((x, v))
∥∥∥

n
is contractible if and only if

∥∥∥fib f (x)(v)
∥∥∥

n
is contractible.

Another useful fact about connected maps is that they induce an equivalence on n-truncations:

Lemma 7.5.14. If f : A→ B is n-connected, then it induces an equivalence ∥A∥n ≃ ∥B∥n.

Proof. Let c be the proof that f is n-connected. From left to right, we use the map ∥ f ∥n : ∥A∥n →
∥B∥n. To define the map from right to left, by the universal property of truncations, it suffices to
give a map back : B→ ∥A∥n. We can define this map as follows:

back(y) :≡ ∥pr1∥n(pr1(c(y))).

By definition, c(y) has type isContr(
∥∥fib f (y)

∥∥
n), so its first component has type

∥∥fib f (y)
∥∥

n, and
we can obtain an element of ∥A∥n from this by projection.

7.6 ORTHOGONAL FACTORIZATION 225

Next, we show that the composites are the identity. In both directions, because the goal is a
path in an n-truncated type, it suffices to cover the case of the constructor |– |n.

In one direction, we must show that for all x : A,

∥pr1∥n(pr1(c(f (x)))) = |x|n.

But
∣∣∣(x, refl f (x))

∣∣∣
n

:
∥∥fib f (f (x))

∥∥
n, and c(f (x)) says that this type is contractible, so

pr1(c(f (x))) = |(x, refl)|n.

Applying ∥pr1∥n to both sides of this equation gives the result.
In the other direction, we must show that for all y : B,

∥ f ∥n(∥pr1∥n(pr1(c(y)))) = |y|n.

pr1(c(y)) has type
∥∥fib f (y)

∥∥
n, and the path we want is essentially the second component of the

fib f (y), but we need to make sure the truncations work out.

In general, suppose we are given p :
∥∥∥∑(x:A) B(x)

∥∥∥
n

and wish to prove P(∥pr1∥n(p)). By

truncation induction, it suffices to prove P(|a|n) for all a : A and b : B(a). Applying this principle
in this case, it suffices to prove

∥ f ∥n(|a|n) = |y|n

given a : A and b : f (a) = y. But the left-hand side equals | f (a)|n, so applying |– |n to both sides
of b gives the result.

One might guess that this fact characterizes the n-connected maps, but in fact being n-connected
is a bit stronger than this. For instance, the inclusion 02 : 1→ 2 induces an equivalence on (−1)-
truncations, but is not surjective (i.e. (−1)-connected). In §8.4 we will see that the difference in
general is an analogous extra bit of surjectivity.

7.6 Orthogonal factorization

In set theory, the surjections and the injections form a unique factorization system: every func-
tion factors essentially uniquely as a surjection followed by an injection. We have seen that
surjections generalize naturally to n-connected maps, so it is natural to inquire whether these
also participate in a factorization system. Here is the corresponding generalization of injections.

Definition 7.6.1. A function f : A→ B is n-truncated if the fiber fib f (b) is an n-type for all b : B.

In particular, f is (−2)-truncated if and only if it is an equivalence. And of course, A is an
n-type if and only if A → 1 is n-truncated. Moreover, n-truncated maps could equivalently be
defined recursively, like n-types.

Lemma 7.6.2. For any n ≥ −2, a function f : A→ B is (n + 1)-truncated if and only if for all x, y : A,
the map ap f : (x = y) → (f (x) = f (y)) is n-truncated. In particular, f is (−1)-truncated if and only
if it is an embedding in the sense of §4.6.

226 CHAPTER 7. HOMOTOPY n-TYPES

Proof. Note that for any (x, p), (y, q) : fib f (b), we have(
(x, p) = (y, q)

)
= ∑

r:x=y
(p = ap f (r) � q)

= ∑
r:x=y

(ap f (r) = p � q−1)

= fibap f (p � q−1).

Thus, any path space in any fiber of f is a fiber of ap f . On the other hand, choosing b :≡ f (y)
and q :≡ refl f (y) we see that any fiber of ap f is a path space in a fiber of f . The result follows,
since f is (n + 1)-truncated if all path spaces of its fibers are n-types.

We can now construct the factorization, in a fairly obvious way.

Definition 7.6.3. Let f : A→ B be a function. The n-image of f is defined as

imn(f) :≡∑
b:B

∥∥fib f (b)
∥∥

n.

When n = −1, we write simply im(f) and call it the image of f .

Lemma 7.6.4. For any function f : A → B, the canonical function f̃ : A → imn(f) is n-connected.
Consequently, any function factors as an n-connected function followed by an n-truncated function.

Proof. Note that A ≃ ∑(b:B) fib f (b). The function f̃ is the function on total spaces induced by the
canonical fiberwise transformation

∏
b:B

(
fib f (b)→

∥∥fib f (b)
∥∥

n

)
.

Since each map fib f (b) →
∥∥fib f (b)

∥∥
n is n-connected by Corollary 7.5.8, f̃ is n-connected by

Lemma 7.5.13. Finally, the projection pr1 : imn(f) → B is n-truncated, since its fibers are equiva-
lent to the n-truncations of the fibers of f .

In the following lemma we set up some machinery to prove the unique factorization theorem.

Lemma 7.6.5. Suppose we have a commutative diagram of functions

A
g1
//

g2

��

X1

h1
��

X2 h2

// B

with H : h1 ◦ g1 ∼ h2 ◦ g2, where g1 and g2 are n-connected and where h1 and h2 are n-truncated. Then
there is an equivalence

E(H, b) : fibh1(b) ≃ fibh2(b)

for any b : B, such that for any a : A we have an identification

E(H, a) : E(H, h1(g1(a)))(g1(a), reflh1(g1(a))) = (g2(a), H(a)−1).

7.6 ORTHOGONAL FACTORIZATION 227

Proof. Let b : B. Then we have the following equivalences:

fibh1(b) ≃ ∑
w:fibh1

(b)

∥∥fibg1(pr1w)
∥∥

n (since g1 is n-connected)

≃
∥∥∥ ∑

w:fibh1
(b)

fibg1(pr1w)
∥∥∥

n
(by Corollary 7.3.10, since h1 is n-truncated)

≃
∥∥fibh1◦g1(b)

∥∥
n (by Exercise 4.4)

and likewise for h2 and g2. Also, since we have a homotopy H : h1 ◦ g1 ∼ h2 ◦ g2, there is an
obvious equivalence fibh1◦g1(b) ≃ fibh2◦g2(b). Hence we obtain

fibh1(b) ≃ fibh2(b)

for any b : B. By analyzing the underlying functions, we get the following representation of what
happens to the element (g1(a), reflh1(g1(a))) after applying each of the equivalences of which E is
composed. Some of the identifications are definitional, but others (marked with a = below) are
only propositional; putting them together we obtain E(H, a).

(g1(a), reflh1(g1(a)))
=7→
(
(g1(a), reflh1(g1(a))),

∣∣∣(a, reflg1(a))
∣∣∣
n

)
7→
∣∣∣((g1(a), reflh1(g1(a))), (a, reflg1(a)))

∣∣∣
n

7→
∣∣∣(a, reflh1(g1(a)))

∣∣∣
n

=7→
∣∣∣(a, H(a)−1)

∣∣∣
n

7→
∣∣∣((g2(a), H(a)−1), (a, reflg2(a)))

∣∣∣
n

7→
(
(g2(a), H(a)−1),

∣∣∣(a, reflg2(a))
∣∣∣
n

)
7→ (g2(a), H(a)−1)

The first equality is because for general b, the map fibh1(b) → ∑(w:fibh1
(b))
∥∥fibg1(pr1w)

∥∥
n inserts

the center of contraction for
∥∥fibg1(pr1w)

∥∥
n supplied by the assumption that g1 is n-truncated;

whereas in the case in question this type has the obvious inhabitant
∣∣∣(a, reflg1(a))

∣∣∣
n
, which by

contractibility must be equal to the center. The second propositional equality is because the
equivalence fibh1◦g1(b) ≃ fibh2◦g2(b) concatenates the second components with H(a)−1, and we
have H(a)−1 � refl = H(a)−1. The reader may check that the other equalities are definitional
(assuming a reasonable solution to Exercise 4.4).

Combining Lemmas 7.6.4 and 7.6.5, we have the following unique factorization result:

Theorem 7.6.6. For each f : A→ B, the space factn(f) defined by

∑
(X:U)

∑
(g:A→X)

∑
(h:X→B)

(h ◦ g ∼ f)× connn(g)× truncn(h)

is contractible. Its center of contraction is the element

(imn(f), f̃ , pr1, θ, φ, ψ) : factn(f)

arising from Lemma 7.6.4, where θ : pr1 ◦ f̃ ∼ f is the canonical homotopy, where φ is the proof of
Lemma 7.6.4, and where ψ is the obvious proof that pr1 : imn(f)→ B has n-truncated fibers.

228 CHAPTER 7. HOMOTOPY n-TYPES

Proof. By Lemma 7.6.4 we know that there is an element of factn(f), hence it is enough to show
that factn(f) is a mere proposition. Suppose we have two n-factorizations

(X1, g1, h1, H1, φ1, ψ1) and (X2, g2, h2, H2, φ2, ψ2)

of f . Then we have the pointwise-concatenated homotopy

H :≡ (λa. H1(a) � H−1
2 (a)) : (h1 ◦ g1 ∼ h2 ◦ g2).

By univalence and the characterization of paths and transport in Σ-types, function types, and
path types, it suffices to show that

(i) there is an equivalence e : X1 ≃ X2,
(ii) there is a homotopy ζ : e ◦ g1 ∼ g2,

(iii) there is a homotopy η : h2 ◦ e ∼ h1,
(iv) for any a : A we have aph2

(ζ(a))−1 � η(g1(a)) � H1(a) = H2(a).

We prove these four assertions in that order.

(i) By Lemma 7.6.5, we have a fiberwise equivalence

E(H) : ∏
b:B

fibh1(b) ≃ fibh2(b).

This induces an equivalence of total spaces, i.e. we have(
∑
b:B

fibh1(b)
)
≃
(
∑
b:B

fibh2(b)
)

.

Of course, we also have the equivalences X1 ≃ ∑(b:B) fibh1(b) and X2 ≃ ∑(b:B) fibh2(b) from
Lemma 4.8.2. This gives us our equivalence e : X1 ≃ X2; the reader may verify that the
underlying function of e is given by

e(x) ≡ pr1(E(H, h1(x))(x, reflh1(x))).

(ii) By Lemma 7.6.5, we may choose ζ(a) :≡ appr1
(E(H, a)) : e(g1(a)) = g2(a).

(iii) For every x : X1, we have

pr2(E(H, h1(x))(x, reflh1(x))) : h2(e(x)) = h1(x),

giving us a homotopy η : h2 ◦ e ∼ h1.
(iv) By the characterization of paths in fibers (Lemma 4.2.5), the path E(H, a) from Lemma 7.6.5

gives us η(g1(a)) = aph2
(ζ(a)) � H(a)−1. The desired equality follows by substituting the

definition of H and rearranging paths.

By standard arguments, this yields the following orthogonality principle.

Theorem 7.6.7. Let e : A→ B be n-connected and m : C → D be n-truncated. Then the map

φ : (B→ C) → ∑
(h:A→C)

∑
(k:B→D)

(m ◦ h ∼ k ◦ e)

is an equivalence.

7.6 ORTHOGONAL FACTORIZATION 229

Sketch of proof. For any (h, k, H) in the codomain, let h = h2 ◦ h1 and k = k2 ◦ k1, where h1 and k1

are n-connected and h2 and k2 are n-truncated. Then f = (m ◦ h2) ◦ h1 and f = k2 ◦ (k1 ◦ e) are
both n-factorizations of m ◦ h = k ◦ e. Thus, there is a unique equivalence between them. It is
straightforward (if a bit tedious) to extract from this that fibφ((h, k, H)) is contractible.

We end by showing that images are stable under pullback.

Lemma 7.6.8. Suppose that the square
A //

f
��

C
g
��

B
h
// D

is a pullback square and let b : B. Then fib f (b) ≃ fibg(h(b)).

Proof. This follows from pasting of pullbacks (Exercise 2.12), since the type X in the diagram

X //

��

A //

f
��

C
g
��

1
b
// B

h
// D

is the pullback of the left square if and only if it is the pullback of the outer rectangle, while fib f (b)
is the pullback of the square on the left and fibg(h(b)) is the pullback of the outer rectangle.

Theorem 7.6.9. Consider functions f : A→ B, g : C → D and the diagram

A //

f̃n
��

C

g̃n
��

imn(f) //

pr1

��

imn(g)

pr1

��

B
h

// D

If the outer rectangle is a pullback, then so is the bottom square (and hence so is the top square, by Exer-
cise 2.12). Consequently, images are stable under pullbacks.

Proof. Assuming the outer square is a pullback, we have equivalences

B×D imn(g) ≡ ∑
(b:B)

∑
(w:imn(g))

h(b) = pr1w

≃ ∑
(b:B)

∑
(d:D)

∑
(w:∥fibg(d)∥n

)

h(b) = d

≃∑
b:B

∥∥fibg(h(b))
∥∥

n

≃∑
b:B

∥∥fib f (b)
∥∥

n (by Lemma 7.6.8)

≡ imn(f).

230 CHAPTER 7. HOMOTOPY n-TYPES

7.7 Modalities

Nearly all of the theory of n-types and connectedness can be done in much greater generality.
This section will not be used in the rest of the book.

Our first thought regarding generalizing the theory of n-types might be to take Lemma 7.3.3
as a definition.

Definition 7.7.1. A reflective subuniverse is a predicate P : U → Prop such that for every A : U
we have a type #A such that P(#A) and a map ηA : A → #A, with the property that for every
B : U with P(B), the following map is an equivalence:{

(#A→ B) −→ (A→ B)
f 7−→ f ◦ ηA

.

We write UP :≡ { A : U | P(A) }, so A : UP means that A : U and we have P(A). We also
write rec# for the quasi-inverse of the above map. The notation # may seem slightly odd, but it
will make more sense soon.

For any reflective subuniverse, we can prove all the familiar facts about reflective subcate-
gories from category theory, in the usual way. For instance, we have:

• A type A lies in UP if and only if ηA : A→ #A is an equivalence.
• UP is closed under retracts. In particular, A lies in UP as soon as ηA admits a retraction.
• The operation # is a functor in a suitable up-to-coherent-homotopy sense, which we can

make precise at as high levels as necessary.
• The types in UP are closed under all limits such as products and pullbacks. In particular,

for any A : UP and x, y : A, the identity type (x =A y) is also in UP, since it is a pullback of
two functions 1→ A.

• Colimits in UP can be constructed by applying # to ordinary colimits of types.

Importantly, closure under products extends also to “infinite products”, i.e. dependent func-
tion types.

Theorem 7.7.2. If B : A→ UP is any family of types in a reflective subuniverse UP, then ∏(x:A) B(x) is
also in UP.

Proof. For any x : A, consider the function evx : (∏(x:A) B(x))→ B(x) defined by evx(f) :≡ f (x).
Since B(x) lies in P, this extends to a function

rec#(evx) : #
(
∏
x:A

B(x)
)
→ B(x).

Thus we can define h : #(∏(x:A) B(x)) → ∏(x:A) B(x) by h(z)(x) :≡ rec#(evx)(z). Then h is a
retraction of η∏(x:A) B(x), so that ∏(x:A) B(x) is in UP.

In particular, if B : UP and A is any type, then (A → B) is in UP. In categorical language,
this means that any reflective subuniverse is an exponential ideal. This, in turn, implies by a
standard argument that the reflector preserves finite products.

Corollary 7.7.3. For any types A and B and any reflective subuniverse, the induced map #(A× B) →
#(A)×#(B) is an equivalence.

7.7 MODALITIES 231

Proof. It suffices to show that #(A)×#(B) has the same universal property as #(A× B). It lies
in UP by the above remark that types in UP are closed under limits. Now let C : UP; we have

(#(A)×#(B)→ C) = (#(A)→ (#(B)→ C))

= (#(A)→ (B→ C))

= (A→ (B→ C))

= (A× B→ C)

using the universal properties of #(B) and #(A), along with the fact that B → C is in UP since
C is. It is straightforward to verify that this equivalence is given by composing with ηA × ηB, as
needed.

It may seem odd that every reflective subcategory of types is automatically an exponential
ideal, with a product-preserving reflector. However, this is also the case classically in the cat-
egory of sets, for the same reasons. It’s just that this fact is not usually remarked on, since the
classical category of sets—in contrast to the category of homotopy types—does not have many
interesting reflective subcategories.

Two basic properties of n-types are not shared by general reflective subuniverses: Theo-
rem 7.1.8 (closure under Σ-types) and Theorem 7.3.2 (truncation induction). However, the ana-
logues of these two properties are equivalent to each other.

Theorem 7.7.4. For a reflective subuniverse UP, the following are logically equivalent.

(i) If A : UP and B : A→ UP, then ∑(x:A) B(x) is in UP.
(ii) for every A : U , type family B : #A → UP, and map g : ∏(a:A) B(η(a)), there exists f :

∏(z:#A) B(z) such that f (η(a)) = g(a) for all a : A.

Proof. Suppose (i). Then in the situation of (ii), the type ∑(z:#A) B(z) lies in UP, and we have g′ :
A → ∑(z:#A) B(z) defined by g′(a) :≡ (η(a), g(a)). Thus, we have rec#(g′) : #A → ∑(z:#A) B(z)
such that rec#(g′)(η(a)) = (η(a), g(a)).

Now consider the functions pr1 ◦ rec#(g′) : #A → #A and id#A. By assumption, these
become equal when precomposed with η. Thus, by the universal property of #, they are equal al-
ready, i.e. we have pz : pr1(rec#(g′)(z)) = z for all z. Now we can define f (z) :≡ pz∗(pr2(rec#(g′)(z))),
Using the adjunction property of the equivalence of definition 7.7.1, one can show that the first
component of rec#(g′)(η(a)) = (η(a), g(a)) is equal to pη(a). Thus, its second component yields
f (η(a)) = g(a), as needed.

Conversely, suppose (ii), and that A : UP and B : A→ UP. Let h be the composite

#
(
∑
x:A

B(x)
) #(pr1)−−−→ #A

(ηA)
−1

−−−→ A.

Then for z : ∑(x:A) B(x) we have

h(η(z)) = η−1(#(pr1)(η(z)))

= η−1(η(pr1(z)))

= pr1(z).

Denote this path by pz. Now if we define C : #(∑(x:A) B(x))→ U by C(w) :≡ B(h(w)), we have

g :≡ λz. pz∗(pr2(z)) : ∏
z:∑(x:A) B(x)

C(η(z)).

232 CHAPTER 7. HOMOTOPY n-TYPES

Thus, the assumption yields f : ∏(w:#(∑(x:A) B(x))) C(w) such that f (η(z)) = g(z). Together, h and
f give a function k : #(∑(x:A) B(x)) → ∑(x:A) B(x) defined by k(w) :≡ (h(w), f (w)), while pz

and the equality f (η(z)) = g(z) show that k is a retraction of η∑(x:A) B(x). Therefore, ∑(x:A) B(x) is
in UP.

Note the similarity to the discussion in §5.5. The universal property of the reflector of a
reflective subuniverse is like a recursion principle with its uniqueness property, while Theo-
rem 7.7.4(ii) is like the corresponding induction principle. Unlike in §5.5, the two are not equiv-
alent here, because of the restriction that we can only eliminate into types that lie in UP. Condi-
tion (i) of Theorem 7.7.4 is what fixes the disconnect.

Unsurprisingly, of course, if we have the induction principle, then we can derive the recur-
sion principle. We can also derive its uniqueness property, as long as we allow ourselves to
eliminate into path types. This suggests the following definition. Note that any reflective sub-
universe can be characterized by the operation # : U → U and the functions ηA : A→ #A, since
we have P(A) = isequiv(ηA).

Definition 7.7.5. A modality is an operation # : U → U for which there are

(i) functions η#
A : A→ #(A) for every type A.

(ii) for every A : U and every type family B : #(A)→ U , a function

ind# :
(
∏
a:A

#(B(η#
A (a)))

)
→ ∏

z:#(A)

#(B(z)).

(iii) A path ind#(f)(η#
A (a)) = f (a) for each f : ∏(a:A) #(B(η#

A (a))).

(iv) For any z, z′ : #(A), the function η#
z=z′ : (z = z′)→ #(z = z′) is an equivalence.

We say that A is modal for # if η#
A : A→ #(A) is an equivalence, and we write

U# :≡ { X : U | X is #-modal } (7.7.6)

for the type of modal types.

Conditions (ii) and (iii) are very similar to Theorem 7.7.4(ii), but phrased using #B(z) rather
than assuming B to be valued in UP. This allows us to state the condition purely in terms of the
operation #, rather than requiring the predicate P : U → Prop to be given in advance. (It is not
entirely satisfactory, since we still have to refer to P not-so-subtly in clause (iv). We do not know
whether (iv) follows from (i)–(iii).) However, the stronger-looking property of Theorem 7.7.4(ii)
follows from Definition 7.7.5(ii) and (iii), since for any C : #A → U# we have C(z) ≃ #C(z),
and we can pass back across this equivalence.

As with other induction principles, this implies a universal property.

Theorem 7.7.7. Let A be a type and let B : #(A)→ U#. Then the function

(– ◦ η#
A) :

(
∏

z:#(A)

B(z)
)
→
(
∏
a:A

B(η#
A (a))

)
is an equivalence.

CHAPTER 7 NOTES 233

Proof. By definition, the operation ind# is a right inverse to (– ◦ η#
A). Thus, we only need to find

a homotopy

∏
z:#(A)

s(z) = ind#(s ◦ η#
A)(z)

for each s : ∏(z:#(A)) B(z), exhibiting it as a left inverse as well. By assumption, each B(z) is
modal, and hence each type s(z) = R#

X(s ◦ η#
A)(z) is also modal. Thus, it suffices to find a

function of type

∏
a:A

s(η#
A (a)) = ind#(s ◦ η#

A)(η
#
A (a))

which follows from Definition 7.7.5(iii).

In particular, for every type A and every modal type B, we have an equivalence (#A→ B) ≃
(A→ B).

Corollary 7.7.8. For any modality #, the #-modal types form a reflective subuniverse satisfying the
equivalent conditions of Theorem 7.7.4.

Thus, modalities can be identified with reflective subuniverses closed under Σ-types. The
name modality comes, of course, from modal logic, which studies logic where we can form state-
ments such as “possibly A” (usually written ⋄A) or “necessarily A” (usually written 2A). The
symbol # is somewhat common for an arbitrary modal operator. Under the propositions-as-
types principle, a modality in the sense of modal logic corresponds to an operation on types,
and Definition 7.7.5 seems a reasonable candidate for how such an operation should be defined.
(More precisely, we should perhaps call these idempotent, monadic modalities; see the Notes.) As
mentioned in §3.10, we may in general use adverbs to speak informally about such modalities,
such as “merely” for the propositional truncation and “purely” for the identity modality (i.e. the
one defined by #A :≡ A).

For any modality #, we define a map f : A → B to be #-connected if #(fib f (b)) is con-
tractible for all b : B, and to be #-truncated if fib f (b) is modal for all b : B. All of the theory of
§§7.5 and 7.6 which doesn’t involve relating n-types for different values of n applies verbatim in
this generality. In particular, we have an orthogonal factorization system.

An important class of modalities which does not include the n-truncations is the left exact
modalities: those for which the functor # preserves pullbacks as well as finite products. These
are a categorification of “Lawvere-Tierney topologies” in elementary topos theory, and corre-
spond in higher-categorical semantics to sub-(∞, 1)-toposes. However, this is beyond the scope
of this book.

Some particular examples of modalities other than n-truncation can be found in the exercises.

Notes

The notion of homotopy n-type in classical homotopy theory is quite old. It was Voevodsky
who realized that the notion can be defined recursively in homotopy type theory, starting from
contractibility.

The property “Axiom K” was so named by Thomas Streicher, as a property of identity types
which comes after J, the latter being the traditional name for the eliminator of identity types.
Theorem 7.2.5 is due to Hedberg [Hed98]; [KECA13] contains more information and generaliza-
tions.

234 CHAPTER 7. HOMOTOPY n-TYPES

The notions of n-connected spaces and functions are also classical in homotopy theory, al-
though as mentioned before, our indexing for connectedness of functions is off by one from the
classical indexing. The importance of the resulting factorization system has been emphasized by
recent work in higher topos theory by Rezk, Lurie, and others. In particular, the results of this
chapter should be compared with [Lur09, §6.5.1]. In §8.6, the theory of n-connected maps will
be crucial to our proof of the Freudenthal suspension theorem.

Modal operators in simple type theory have been studied extensively; see e.g. [dPGM04]. In
the setting of dependent type theory, [AB04] treats the special case of propositional truncation
((−1)-truncation) as a modal operator. The development presented here greatly extends and
generalizes this work, while drawing also on ideas from topos theory.

Generally, modal operators come in (at least) two flavors: those such as ⋄ (“possibly”) for
which A ⇒ ⋄A, and those such as 2 (“necessarily”) for which 2A ⇒ A. When they are also
idempotent (i.e. ⋄A = ⋄⋄A or 2A = 22A), the former may be identified with reflective sub-
categories (or equivalently, idempotent monads), and the latter with coreflective subcategories
(or idempotent comonads). However, in dependent type theory it is trickier to deal with the
comonadic sort, since they are more rarely stable under pullback, and thus cannot be interpreted
as operations on the universe U . Sometimes there are ways around this (see e.g. [SS12]), but for
simplicity, here we stick to the monadic sort.

On the computational side, monads (and hence modalities) are used to model computational
effects in functional programming [Mog89]. A computation is said to be pure if its execution
results in no side effects (such as printing a message to the screen, playing music, or sending data
over the Internet). There exist “purely functional” programming languages, such as Haskell,
in which it is technically only possible to write pure functions: side effects are represented by
applying “monads” to output types. For instance, a function of type Int → Int is pure, while
a function of type Int → IO(Int) may perform input and output along the way to computing
its result; the operation IO is a monad. (This is the origin of our use of the adverb “purely” for
the identity monad, since it corresponds computationally to pure functions with no side-effects.)
The modalities we have considered in this chapter are all idempotent, whereas those used in
functional programming rarely are, but the ideas are still closely related.

Exercises

Exercise 7.1.

(i) Use Theorem 7.2.2 to show that if ∥A∥ → A for every type A, then every type is a set.
(ii) Show that if every surjective function (purely) splits, i.e. if ∏(b:B)

∥∥fib f (b)
∥∥ → ∏(b:B) fib f (b)

for every f : A→ B, then every type is a set.

Exercise 7.2. For this exercise, we consider the following general notion of colimit. Define a graph
Γ to consist of a type Γ0 and a family Γ1 : Γ0 → Γ0 → U . A diagram (of types) over a graph Γ
consists of a family F : Γ0 → U together with for each x, y : Γ0, a function Fx,y : Γ1(x, y) →
F(x)→ F(y). The colimit of such a diagram is the higher inductive type colim(F) generated by

• for each x : Γ0, a function incx : F(x)→ colim(F), and
• for each x, y : Γ0 and γ : Γ1(x, y) and a : F(x), a path incy(Fx,y(γ, a)) = incx(a).

There are more general kinds of colimits as well (see e.g. Exercise 7.16), but this is good enough
for many purposes.

CHAPTER 7 EXERCISES 235

(i) Exhibit a graph Γ such that colimits of Γ-diagrams can be identified with pushouts as de-
fined in §6.8. In other words, each span should induce a diagram over Γ whose colimit is
the pushout of the span.

(ii) Exhibit a graph Γ and a diagram F over Γ such that F(x) = 1 for all x, but such that
colim(F) = S2. Note that 1 is a (−2)-type, while S2 is not expected to be an n-type for any
finite n. See also Exercise 7.16.

Exercise 7.3. Show that if A is an n-type and B : A→ n-Type is a family of n-types, where n ≥ −1,
then the W-type W(a:A)B(a) (see §5.3) is also an n-type.

Exercise 7.4. Use Lemma 7.5.13 to extend Lemma 7.5.11 to any section-retraction pair.

Exercise 7.5. Show that Corollary 7.5.9 also works as a characterization in the other direction: B
is an n-type if and only if every map into B from an n-connected type is constant. Ideally, your
proof should work for any modality as in §7.7.

Exercise 7.6. Prove that for n ≥ −1, a type A is n-connected if and only if it is merely inhabited
and for all a, b : A the type a =A b is (n− 1)-connected. Thus, since every type is (−2)-connected,
n-connectedness of types can be defined inductively using only propositional truncations. (In
particular, A is 0-connected if and only if ∥A∥ and ∏(a,b:A)∥a = b∥.)

Exercise 7.7. For −1 ≤ n, m ≤ ∞, let LEMn,m denote the statement

∏
A:n-Type

∥A + ¬A∥m,

where ∞-Type :≡ U and ∥X∥∞ :≡ X. Show that:

(i) If n = −1 or m = −1, then LEMn,m is equivalent to LEM from §3.4.
(ii) If n ≥ 0 and m ≥ 0, then LEMn,m is inconsistent with univalence.

Exercise 7.8. For −1 ≤ n, m ≤ ∞, let ACn,m denote the statement

∏
(X:Set)

∏
(Y:X→n-Type)

(
∏
x:X
∥Y(x)∥m

)
→
∥∥∥∏

x:X
Y(x)

∥∥∥
m

,

with conventions as in Exercise 7.7. Thus AC0,−1 is the axiom of choice from §3.8, while AC∞,∞

is the identity function. (If we had formulated ACn,m analogously to (3.8.1) rather than (3.8.3),
AC∞,∞ would be like Theorem 2.15.7.) It is known that AC∞,−1 is consistent with univalence,
since it holds in Voevodsky’s simplicial model.

(i) Without using univalence, show that LEMn,∞ implies ACn,m for all m. (On the other hand,
in §10.1.5 we will show that AC = AC0,−1 implies LEM = LEM−1,−1.)

(ii) Of course, ACn,m ⇒ ACk,m if k ≤ n. Are there any other implications between the principles
ACn,m? Is ACn,m consistent with univalence for any m ≥ 0 and any n? (These are open
questions.)

Exercise 7.9. Show that ACn,−1 implies that for any n-type A, there merely exists a set B and a
surjection B→ A.

Exercise 7.10. Define the n-connected axiom of choice to be the statement

If X is a set and Y : X → U is a family of types such that each Y(x) is n-connected,
then ∏(x:X) Y(x) is n-connected.

236 CHAPTER 7. HOMOTOPY n-TYPES

Note that the (−1)-connected axiom of choice is AC∞,−1 from Exercise 7.8.

(i) Prove that the (−1)-connected axiom of choice implies the n-connected axiom of choice for
all n ≥ −1.

(ii) Are there any other implications between the n-connected axioms of choice and the princi-
ples ACn,m? (This is an open question.)

Exercise 7.11. Show that the n-truncation modality is not left exact for any n ≥ −1. That is,
exhibit a pullback which it fails to preserve.

Exercise 7.12. Show that X 7→ (¬¬X) is a modality.

Exercise 7.13. Let P be a mere proposition.

(i) Show that X 7→ (P → X) is a left exact modality. This is called the open modality associ-
ated to P.

(ii) Show that X 7→ P ∗ X is a left exact modality, where ∗ denotes the join (see §6.8). This is
called the closed modality associated to P.

Exercise 7.14. Let f : A → B be a map; a type Z is f -local if (– ◦ f) : (B → Z) → (A → Z) is an
equivalence.

(i) Prove that the f -local types form a reflective subuniverse. You will want to use a higher
inductive type to define the reflector (localization).

(ii) Prove that if B = 1, then this subuniverse is a modality.

Exercise 7.15. Show that in contrast to Remark 6.7.1, we could equivalently define ∥A∥n to be
generated by a function |– |n : A → ∥A∥n together with for each r : Sn+1 → ∥A∥n and each
x : Sn+1, a path sr(x) : r(x) = r(base).

Exercise 7.16. In this exercise, we consider a slightly fancier notion of colimit than in Exercise 7.2.
Define a graph with composition Γ to be a graph as in Exercise 7.2 together with for each
x, y, z : Γ0, a function Γ1(y, z) → Γ1(x, y) → Γ1(x, z), written as δ 7→ γ 7→ δ ◦ γ. (For instance,
any precategory as in Chapter 9 is a graph with composition.) A diagram F over a graph with
composition Γ consists of a diagram over the underlying graph, together with for each x, y, z : Γ0

and γ : Γ1(x, y) and δ : Γ1(y, z), a homotopy cmpx,y,z(δ, γ) : Fy,z(δ) ◦ Fx,y(γ) ∼ Fx,z(δ ◦ γ). The
colimit of such a diagram is the higher inductive type colim(F) generated by

• for each x : Γ0, a function incx : F(x)→ colim(F),
• for each x, y : Γ0 and γ : Γ1(x, y) and a : F(x), a path gluex,y(γ, a) : incy(Fx,y(γ, a)) = incx(a),

and

• for each x, y, z : Γ0 and γ : Γ1(x, y) and δ : Γ1(y, z) and a : F(x), a path

incz

(
cmpx,y,z(δ, γ, a)

)
� gluex,z(δ ◦ γ, a) = gluey,z(δ, Fx,y(γ, a)) � gluex,y(γ, a).

(This is a “second-order approximation” to a fully homotopy-theoretic notions of diagram and
colimit, which ought to involve “coherence paths” of this sort at all higher levels. Defining such
things in type theory is an important open problem.)

Exhibit a graph with composition Γ such that Γ0 is a set and each type Γ1(x, y) is a mere
proposition, and a diagram F over Γ such that F(x) = 1 for all x, for which colim(F) = S2.

CHAPTER 7 EXERCISES 237

Exercise 7.17. Comparing Lemmas 7.5.12 and 7.5.13, one might be tempted to conjecture that
if f : A → B is n-connected and g : ∏(a:A) P(a) → Q(f (a)) induces an n-connected map(

∑(a:A) P(a)
)
→
(

∑(b:B) Q(b)
)

, then g is fiberwise n-connected. Give a counterexample to show
that this is false. (In fact, when generalized to modalities, this property characterizes the left
exact ones; see Exercise 7.13.)

Exercise 7.18. Show that if f : A → B is n-connected, then ∥ f ∥k : ∥A∥k → ∥B∥k is also n-
connected.

Exercise 7.19. We say a type A is categorically connected if for every types B, C the canonical
map eA,B,C : ((A→ B) + (A→ C))→ (A→ B + C) defined by

eA,B,C(inl(g)) :≡ λx. inl(g(x)),

eA,B,C(inr(g)) :≡ λx. inr(g(x))

is an equivalence.

(i) Show that any connected type is categorically connected.
(ii) Show that all categorically connected types are connected if and only if LEM holds. (Hint:

consider A :≡ ΣP such that ¬¬P holds.)

PART II

MATHEMATICS

Chapter 8

Homotopy theory

In this chapter, we develop some homotopy theory within type theory. We use the synthetic
approach to homotopy theory introduced in Chapter 2: Spaces, points, paths, and homotopies are
basic notions, which are represented by types and elements of types, particularly the identity
type. The algebraic structure of paths and homotopies is represented by the natural ∞-groupoid
structure on types, which is generated by the rules for the identity type. Using higher inductive
types, as introduced in Chapter 6, we can describe spaces directly by their universal properties.

There are several interesting aspects of this synthetic approach. First, it combines advantages
of concrete models (such as topological spaces or simplicial sets) with advantages of abstract
categorical frameworks for homotopy theory (such as Quillen model categories). On the one
hand, our proofs feel elementary, and refer concretely to points, paths, and homotopies in types.
On the other hand, our approach nevertheless abstracts away from any concrete presentation
of these objects — for example, associativity of path concatenation is proved by path induction,
rather than by reparametrization of maps [0, 1] → X or by horn-filling conditions. Type theory
seems to be a very convenient way to study the abstract homotopy theory of ∞-groupoids: by
using the rules for the identity type, we can avoid the complicated combinatorics involved in
many definitions of ∞-groupoids, and explicate only as much of the structure as is needed in
any particular proof.

The abstract nature of type theory means that our proofs apply automatically in a variety of
settings. In particular, as mentioned previously, homotopy type theory has one interpretation
in Kan simplicial sets, which is one model for the homotopy theory of ∞-groupoids. Thus,
our proofs apply to this model, and transferring them along the geometric realization functor
from simplicial sets to topological spaces gives proofs of corresponding theorems in classical
homotopy theory. However, though the details are work in progress, we can also interpret type
theory in a wide variety of other categories that look like the category of ∞-groupoids, such as
(∞, 1)-toposes. Thus, proving a result in type theory will show that it holds in these settings
as well. This sort of extra generality is well-known as a property of ordinary categorical logic:
univalent foundations extends it to homotopy theory as well.

Second, our synthetic approach has suggested new type-theoretic methods and proofs. Some
of our proofs are fairly direct transcriptions of classical proofs. Others have a more type-theoretic
feel, and consist mainly of calculations with ∞-groupoid operations, in a style that is very sim-
ilar to how computer scientists use type theory to reason about computer programs. One thing
that seems to have permitted these new proofs is the fact that type theory emphasizes differ-
ent aspects of homotopy theory than other approaches: while tools like path induction and the

242 CHAPTER 8. HOMOTOPY THEORY

universal properties of higher inductives are available in a setting like Kan simplicial sets, type
theory elevates their importance, because they are the only primitive tools available for working
with these types. Focusing on these tools had led to new descriptions of familiar constructions
such as the universal cover of the circle and the Hopf fibration, using just the recursion prin-
ciples for higher inductive types. These descriptions are very direct, and many of the proofs
in this chapter involve computational calculations with such fibrations. Another new aspect of
our proofs is that they are constructive (assuming univalence and higher inductives types are
constructive); we describe an application of this to homotopy groups of spheres in §8.10.

Third, our synthetic approach is very amenable to computer-checked proofs in proof assis-
tants such as COQ and AGDA. Almost all of the proofs described in this chapter have been
computer-checked, and many of these proofs were first given in a proof assistant, and then “un-
formalized” for this book. The computer-checked proofs are comparable in length and effort to
the informal proofs presented here, and in some cases they are even shorter and easier to do.

Before turning to the presentation of our results, we briefly review some basic concepts and
theorems from homotopy theory for the benefit of the reader who is not familiar with them. We
also give an overview of the results proved in this chapter.

Homotopy theory is a branch of algebraic topology, and uses tools from abstract algebra, such
as group theory, to investigate properties of spaces. One question homotopy theorists investigate
is how to tell whether two spaces are the same, where “the same” means homotopy equivalence
(continuous maps back and forth that compose to the identity up to homotopy—this gives the
opportunity to “correct” maps that don’t exactly compose to the identity). One common way to
tell whether two spaces are the same is to calculate algebraic invariants associated with a space,
which include its homotopy groups and homology and cohomology groups. Equivalent spaces have
isomorphic homotopy/(co)homology groups, so if two spaces have different groups, then they
are not equivalent. Thus, these algebraic invariants provide global information about a space,
which can be used to tell spaces apart, and complements the local information provided by
notions such as continuity. For example, the torus locally looks like the 2-sphere, but it has a
global difference, because it has a hole in it, and this difference is visible in the homotopy groups
of these two spaces.

The simplest example of a homotopy group is the fundamental group of a space, which is
written π1(X, x0): Given a space X and a point x0 in it, one can make a group whose elements
are loops at x0 (continuous paths from x0 to x0), considered up to homotopy, with the group
operations given by the identity path (standing still), path concatenation, and path reversal. For
example, the fundamental group of the 2-sphere is trivial, but the fundamental group of the torus
is not, which shows that the sphere and the torus are not homotopy equivalent. The intuition is
that every loop on the sphere is homotopic to the identity, because its inside can be filled in. In
contrast, a loop on the torus that goes through the donut’s hole is not homotopic to the identity,
so there are non-trivial elements in the fundamental group.

The higher homotopy groups provide additional information about a space. Fix a point x0 in X,
and consider the constant path reflx0 . Then the homotopy classes of homotopies between reflx0

and itself form a group π2(X, x0), which tells us something about the two-dimensional structure
of the space. Then π3(X, x0) is the group of homotopy classes of homotopies between homo-
topies, and so on. One of the basic problems of algebraic topology is calculating the homotopy
groups of a space X, which means giving a group isomorphism between πk(X, x0) and some more
direct description of a group (e.g., by a multiplication table or presentation). Somewhat surpris-
ingly, this is a very difficult question, even for spaces as simple as the spheres. As can be seen

243

from Table 8.1, some patterns emerge in the higher homotopy groups of spheres, but there is no
general formula, and many homotopy groups of spheres are currently still unknown.

S0 S1 S2 S3 S4 S5 S6 S7 S8

π1 0 Z 0 0 0 0 0 0 0

π2 0 0 Z 0 0 0 0 0 0

π3 0 0 Z Z 0 0 0 0 0

π4 0 0 Z2 Z2 Z 0 0 0 0

π5 0 0 Z2 Z2 Z2 Z 0 0 0

π6 0 0 Z12 Z12 Z2 Z2 Z 0 0

π7 0 0 Z2 Z2 Z×Z12 Z2 Z2 Z 0

π8 0 0 Z2 Z2 Z2
2 Z24 Z2 Z2 Z

π9 0 0 Z3 Z3 Z2
2 Z2 Z24 Z2 Z2

π10 0 0 Z15 Z15 Z24×Z3 Z2 0 Z24 Z2

π11 0 0 Z2 Z2 Z15 Z2 Z 0 Z24

π12 0 0 Z2
2 Z2

2 Z2 Z30 Z2 0 0

π13 0 0 Z12×Z2 Z12×Z2 Z3
2 Z2 Z60 Z2 0

Table 8.1: Homotopy groups of spheres [Wik13]. The kth homotopy group πk of the n-
dimensional sphere Sn is isomorphic to the group listed in each entry, where Z is the additive
group of integers, and Zm is the cyclic group of order m.

One way of understanding this complexity is through the correspondence between spaces
and ∞-groupoids introduced in Chapter 2. As discussed in §6.4, the 2-sphere is presented by
a higher inductive type with one point and one 2-dimensional loop. Thus, one might wonder
why π3(S2) is Z, when the type S2 has no generators creating 3-dimensional cells. It turns out
that the generating element of π3(S2) is constructed using the interchange law described in the
proof of Theorem 2.1.6: the algebraic structure of an ∞-groupoid includes non-trivial interactions
between levels, and these interactions create elements of higher homotopy groups.

Type theory provides a natural setting for investigating this structure, as we can easily define
the higher homotopy groups. Recall from Definition 2.1.8 that for n : N, the n-fold iterated loop
space of a pointed type (A, a) is defined recursively by:

Ω0(A, a) = (A, a)

Ωn+1(A, a) = Ωn(Ω(A, a)).

This gives a space (i.e. a type) of n-dimensional loops, which itself has higher homotopies. We
obtain the set of n-dimensional loops by truncation (this was also defined as an example in §6.11):

Definition 8.0.1 (Homotopy Groups). Given n ≥ 1 and (A, a) a pointed type, we define the
homotopy groups of A at a by

πn(A, a) :≡
∥∥∥Ωn(A, a)

∥∥∥
0

Since n ≥ 1, the path concatenation and inversion operations on Ωn(A) induce operations on
πn(A) making it into a group in a straightforward way. If n ≥ 2, then the group πn(A) is abelian,

244 CHAPTER 8. HOMOTOPY THEORY

by the Eckmann–Hilton argument (Theorem 2.1.6). It is convenient to also write π0(A) :≡ ∥A∥0,
but this case behaves somewhat differently: not only is it not a group, it is defined without
reference to any basepoint in A.

This definition is a suitable one for investigating homotopy groups because the (higher) in-
ductive definition of a type X presents X as a free type, analogous to a free ∞-groupoid, and this
presentation determines but does not explicitly describe the higher identity types of X. The identity
types are populated by both the generators (loop, for the circle) and the results of applying to
them all of the groupoid operations (identity, composition, inverses, associativity, interchange,
. . .). Thus, the higher-inductive presentation of a space allows us to pose the question “what
does the identity type of X really turn out to be?” though it can take some significant mathe-
matics to answer it. This is a higher-dimensional generalization of a familiar fact in type theory:
characterizing the identity type of X can take some work, even if X is an ordinary inductive type,
such as the natural numbers or booleans. For example, the theorem that 02 is different from 12

does not follow immediately from the definition; see §2.12.
The univalence axiom plays an essential role in calculating homotopy groups (without univa-

lence, type theory is compatible with an interpretation where all paths, including, for example,
the loop on the circle, are reflexivity). We will see this in the calculation of the fundamental
group of the circle below: the map from Ω(S1) to Z is defined by mapping a loop on the circle to
an automorphism of the set Z, so that, for example, loop � loop−1 is sent to successor � predecessor
(where successor and predecessor are automorphisms of Z viewed, by univalence, as paths in the
universe), and then applying the automorphism to 0. Univalence produces non-trivial paths in
the universe, and this is used to extract information from paths in higher inductive types.

In this chapter, we first calculate some homotopy groups of spheres, including πk(S
1) (§8.1),

πk(S
n) for k < n (§§8.2 and 8.3), π2(S2) and π3(S2) by way of the Hopf fibration (§8.5) and a

long-exact-sequence argument (§8.4), and πn(Sn) by way of the Freudenthal suspension theorem
(§8.6). Next, we discuss the van Kampen theorem (§8.7), which characterizes the fundamental
group of a pushout, and the status of Whitehead’s principle (when is a map that induces an
equivalence on all homotopy groups an equivalence?) (§8.8). Finally, we include brief summaries
of additional results that are not included in the book, such as πn+1(S

n) for n ≥ 3, the Blakers–
Massey theorem, and a construction of Eilenberg–Mac Lane spaces (§8.10). Prerequisites for this
chapter include Chapters 1, 2, 6 and 7 as well as parts of Chapter 3.

8.1 π1(S1)

In this section, our goal is to show that π1(S
1) = Z. In fact, we will show that the loop space

Ω(S1) is equivalent to Z. This is a stronger statement, because π1(S
1) =

∥∥Ω(S1)
∥∥

0 by definition;
so if Ω(S1) = Z, then

∥∥Ω(S1)
∥∥

0 = ∥Z∥0 by congruence, and Z is a set by definition (being a set-
quotient; see Remarks 6.10.7 and 6.10.11), so ∥Z∥0 = Z. Moreover, knowing that Ω(S1) is a set
will imply that πn(S1) is trivial for n > 1, so we will actually have calculated all the homotopy
groups of S1.

8.1.1 Getting started

It is not too hard to define functions in both directions between Ω(S1) and Z. By specializing
Corollary 6.10.13 to loop : base = base, we have a function loop– : Z → (base = base) defined

8.1 π1(S1) 245

R

S1

w

base

0

1

2

Figure 8.1: The winding map in classical topology

(loosely speaking) by

loopn =

loop � loop � · · · � loop︸ ︷︷ ︸
n

if n > 0,

loop−1 � loop−1 � · · · � loop−1︸ ︷︷ ︸
−n

if n < 0,

reflbase if n = 0.

Defining a function g : Ω(S1)→ Z in the other direction is a bit trickier. Note that the successor
function succ : Z → Z is an equivalence, and hence induces a path ua(succ) : Z = Z in the
universe U . Thus, the recursion principle of S1 induces a map c : S1 → U by c(base) :≡ Z

and apc(loop) := ua(succ). Then we have apc : (base = base) → (Z = Z), and we can define
g(p) :≡ transportX 7→X(apc(p), 0).

With these definitions, we can even prove that g(loopn) = n for any n : Z, using the induction
principle Lemma 6.10.12 for n. (We will prove something more general a little later on.) However,
the other equality loopg(p) = p is significantly harder. The obvious thing to try is path induction,
but path induction does not apply to loops such as p : (base = base) that have both endpoints
fixed! A new idea is required, one which can be explained both in terms of classical homotopy
theory and in terms of type theory. We begin with the former.

8.1.2 The classical proof

In classical homotopy theory, there is a standard proof of π1(S
1) = Z using universal covering

spaces. Our proof can be regarded as a type-theoretic version of this proof, with covering spaces
appearing here as fibrations whose fibers are sets. Recall that fibrations over a space B in homo-
topy theory correspond to type families B → U in type theory. In particular, for a point x0 : B,
the type family (x 7→ (x0 = x)) corresponds to the path fibration Px0 B → B, in which the points
of Px0 B are paths in B starting at x0, and the map to B selects the other endpoint of such a path.
This total space Px0 B is contractible, since we can “retract” any path to its initial endpoint x0 —
we have seen the type-theoretic version of this as Lemma 3.11.8. Moreover, the fiber over x0 is
the loop space Ω(B, x0) — in type theory this is obvious by definition of the loop space.

Now in classical homotopy theory, where S1 is regarded as a topological space, we may
proceed as follows. Consider the “winding” map w : R→ S1, which looks like a helix projecting
down onto the circle (see Figure 8.1). This map w sends each point on the helix to the point on
the circle that it is “sitting above”. It is a fibration, and the fiber over each point is isomorphic
to the integers. If we lift the path that goes counterclockwise around the loop on the bottom,

246 CHAPTER 8. HOMOTOPY THEORY

we go up one level in the helix, incrementing the integer in the fiber. Similarly, going clockwise
around the loop on the bottom corresponds to going down one level in the helix, decrementing
this count. This fibration is called the universal cover of the circle.

Now a basic fact in classical homotopy theory is that a map E1 → E2 of fibrations over B
which is a homotopy equivalence between E1 and E2 induces a homotopy equivalence on all
fibers. (We have already seen the type-theoretic version of this as well in Theorem 4.7.7.) Since
R and PbaseS1 are both contractible topological spaces, they are homotopy equivalent, and thus
their fibers Z and Ω(S1) over the basepoint are also homotopy equivalent.

8.1.3 The universal cover in type theory

Let us consider how we might express the preceding proof in type theory. We have already
remarked that the path fibration of S1 is represented by the type family (x 7→ (base = x)). We
have also already seen a good candidate for the universal cover of S1: it’s none other than the
type family c : S1 → U which we defined in §8.1.1! By definition, the fiber of this family over
base is Z, while the effect of transporting around loop is to add one — thus it behaves just as we
would expect from Figure 8.1.

However, since we don’t know yet that this family behaves like a universal cover is supposed
to (for instance, that its total space is simply connected), we use a different name for it. For
reference, therefore, we repeat the definition.

Definition 8.1.1 (Universal Cover of S1). Define code : S1 → U by circle-recursion, with

code(base) :≡ Z

apcode(loop) := ua(succ).

We emphasize briefly the definition of this family, since it is so different from how one usually
defines covering spaces in classical homotopy theory. To define a function by circle recursion,
we need to find a point and a loop in the codomain. In this case, the codomain is U , and the
point we choose is Z, corresponding to our expectation that the fiber of the universal cover
should be the integers. The loop we choose is the successor/predecessor isomorphism on Z,
which corresponds to the fact that going around the loop in the base goes up one level on the
helix. Univalence is necessary for this part of the proof, because we need to convert a non-trivial
equivalence on Z into an identity.

We call this the fibration of “codes”, because its elements are combinatorial data that act as
codes for paths on the circle: the integer n codes for the path which loops around the circle n
times.

From this definition, it is simple to calculate that transporting with code takes loop to the
successor function, and loop−1 to the predecessor function:

Lemma 8.1.2. transportcode(loop, x) = x + 1 and transportcode(loop−1, x) = x− 1.

Proof. For the first equation, we calculate as follows:

transportcode(loop, x) = transportA 7→A((code(loop)), x) (by Lemma 2.3.10)

= transportA 7→A(ua(succ), x) (by computation for recS1)

= x + 1. (by computation for ua)

The second equation follows from the first, because transportB(p, –) and transportB(p−1, –) are
always inverses, so transportcode(loop−1, –) must be the inverse of succ.

8.1 π1(S1) 247

We can now see what was wrong with our first approach: we defined f and g only on the
fibers Ω(S1) and Z, when we should have defined a whole morphism of fibrations over S1. In
type theory, this means we should have defined functions having types

∏
x:S1

((base = x)→ code(x)) and/or (8.1.3)

∏
x:S1

(code(x)→ (base = x)) (8.1.4)

instead of only the special cases of these when x is base. This is also an instance of a common
observation in type theory: when attempting to prove something about particular inhabitants of
some inductive type, it is often easier to generalize the statement so that it refers to all inhabitants
of that type, which we can then prove by induction. Looked at in this way, the proof of Ω(S1) =

Z fits into the same pattern as the characterization of the identity types of coproducts and natural
numbers in §§2.12 and 2.13.

At this point, there are two ways to finish the proof. We can continue mimicking the classical
argument by constructing (8.1.3) or (8.1.4) (it doesn’t matter which), proving that a homotopy
equivalence between total spaces induces an equivalence on fibers, and then that the total space
of the universal cover is contractible. The first type-theoretic proof of Ω(S1) = Z followed this
pattern; we call it the homotopy-theoretic proof.

Later, however, we discovered that there is an alternative proof, which has a more type-
theoretic feel and more closely follows the proofs in §§2.12 and 2.13. In this proof, we directly
construct both (8.1.3) and (8.1.4), and prove that they are mutually inverse by calculation. We
will call this the encode-decode proof, because we call the functions (8.1.3) and (8.1.4) encode and
decode respectively. Both proofs use the same construction of the cover given above. Where the
classical proof induces an equivalence on fibers from an equivalence between total spaces, the
encode-decode proof constructs the inverse map (decode) explicitly as a map between fibers. And
where the classical proof uses contractibility, the encode-decode proof uses path induction, circle
induction, and integer induction. These are the same tools used to prove contractibility—indeed,
path induction is essentially contractibility of the path fibration composed with transport—but
they are applied in a different way.

Since this is a book about homotopy type theory, we present the encode-decode proof first. A
homotopy theorist who gets lost is encouraged to skip to the homotopy-theoretic proof (§8.1.5).

8.1.4 The encode-decode proof

We begin with the function (8.1.3) that maps paths to codes:

Definition 8.1.5. Define encode : ∏(x:S1)(base = x)→ code(x) by

encode p :≡ transportcode(p, 0)

(we leave the argument x implicit).

Encode is defined by lifting a path into the universal cover, which determines an equivalence,
and then applying the resulting equivalence to 0. The interesting thing about this function is
that it computes a concrete number from a loop on the circle, when this loop is represented
using the abstract groupoidal framework of homotopy type theory. To gain an intuition for how
it does this, observe that by the above lemmas, transportcode(loop, x) is the successor map and

248 CHAPTER 8. HOMOTOPY THEORY

transportcode(loop−1, x) is the predecessor map. Further, transport is functorial (Chapter 2), so
transportcode(loop � loop, –) is

(transportcode(loop,−)) ◦ (transportcode(loop,−))

and so on. Thus, when p is a composition like

loop � loop−1 � loop � · · ·

transportcode(p, –) will compute a composition of functions like

succ ◦ pred ◦ succ ◦ · · ·

Applying this composition of functions to 0 will compute the winding number of the path—how
many times it goes around the circle, with orientation marked by whether it is positive or neg-
ative, after inverses have been canceled. Thus, the computational behavior of encode follows
from the reduction rules for higher-inductive types and univalence, and the action of transport
on compositions and inverses.

Note that the instance encode′ :≡ encodebase has type (base = base) → Z. This will be one
half of our desired equivalence; indeed, it is exactly the function g defined in §8.1.1.

Similarly, the function (8.1.4) is a generalization of the function loop– from §8.1.1.

Definition 8.1.6. Define decode : ∏(x:S1) code(x)→ (base = x) by circle induction on x. It suffices
to give a function code(base)→ (base = base), for which we use loop– , and to show that loop–

respects the loop.

Proof. To show that loop– respects the loop, it suffices to give a path from loop– to itself that lies
over loop. By the definition of dependent paths, this means a path from

transport(x′ 7→code(x′)→(base=x′))(loop, loop–)

to loop– . We define such a path as follows:

transport(x′ 7→code(x′)→(base=x′))(loop, loop–)

= transportx′ 7→(base=x′)(loop) ◦ loop– ◦ transportcode(loop−1)

= (− � loop) ◦ (loop–) ◦ transportcode(loop−1)

= (− � loop) ◦ (loop–) ◦ pred
= (n 7→ loopn−1 � loop).

On the first line, we apply the characterization of transport when the outer connective of the
fibration is →, which reduces the transport to pre- and post-composition with transport at the
domain and codomain types. On the second line, we apply the characterization of transport

when the type family is x 7→ base = x, which is post-composition of paths. On the third line, we
use the action of code on loop−1 from Lemma 8.1.2. And on the fourth line, we simply reduce the
function composition. Thus, it suffices to show that for all n, loopn−1 � loop = loopn. This is an
easy application of Lemma 6.10.12, using the groupoid laws.

We can now show that encode and decode are quasi-inverses. What used to be the difficult
direction is now easy!

8.1 π1(S1) 249

Lemma 8.1.7. For all x : S1 and p : base = x, decodex(encodex(p)) = p.

Proof. By path induction, it suffices to show that decodebase(encodebase(reflbase)) = reflbase. But
encodebase(reflbase) ≡ transportcode(reflbase, 0) ≡ 0, and decodebase(0) ≡ loop0 ≡ reflbase.

The other direction is not much harder.

Lemma 8.1.8. For all x : S1 and c : code(x), we have encodex(decodex(c)) = c.

Proof. The proof is by circle induction. It suffices to show the case for base, because the case for
loop is a path between paths in Z, which is immediate because Z is a set.

Thus, it suffices to show, for all n : Z, that

encode′(loopn) = n.

The proof is by induction, using Lemma 6.10.12.

• In the case for 0, the result is true by definition.

• In the case for n + 1,

encode′(loopn+1) = encode′(loopn � loop) (by definition of loop–)

= transportcode((loopn � loop), 0) (by definition of encode)

= transportcode(loop, (transportcode(loopn, 0))) (by functoriality)

= (transportcode(loopn, 0)) + 1 (by Lemma 8.1.2)

= n + 1. (by the inductive hypothesis)

• The case for negatives is analogous.

Finally, we conclude the theorem.

Theorem 8.1.9. There is a family of equivalences ∏(x:S1)((base = x) ≃ code(x)).

Proof. The maps encode and decode are quasi-inverses by Lemmas 8.1.7 and 8.1.8.

Instantiating at base gives

Corollary 8.1.10. Ω(S1, base) ≃ Z.

A simple induction shows that this equivalence takes addition to composition, so that Ω(S1) =

Z as groups.

Corollary 8.1.11. π1(S
1) = Z, while πn(S1) = 0 for n > 1.

Proof. For n = 1, we sketched the proof from Corollary 8.1.10 above. For n > 1, we have∥∥Ωn(S1)
∥∥

0 =
∥∥Ωn−1(ΩS1)

∥∥
0 =

∥∥Ωn−1(Z)
∥∥

0. And since Z is a set, Ωn−1(Z) is contractible, so
this is trivial.

250 CHAPTER 8. HOMOTOPY THEORY

8.1.5 The homotopy-theoretic proof

In §8.1.3, we defined the putative universal cover code : S1 → U in type theory, and in §8.1.4
we defined a map encode : ∏(x:S1)(base = x) → code(x) from the path fibration to the universal
cover. What remains for the classical proof is to show that this map induces an equivalence on
total spaces because both are contractible, and to deduce from this that it must be an equivalence
on each fiber.

In Lemma 3.11.8 we saw that the total space ∑(x:S1)(base = x) is contractible. For the other,
we have:

Lemma 8.1.12. The type ∑(x:S1) code(x) is contractible.

Proof. We apply the flattening lemma (Lemma 6.12.2) with the following values:

• A :≡ 1 and B :≡ 1, with f and g the obvious functions. Thus, the base higher inductive
type W in the flattening lemma is equivalent to S1.

• C : A→ U is constant at Z.
• D : ∏(b:B)(Z ≃ Z) is constant at succ.

Then the type family P : S1 → U defined in the flattening lemma is equivalent to code : S1 → U .
Thus, the flattening lemma tells us that ∑(x:S1) code(x) is equivalent to a higher inductive type
with the following generators, which we denote R:

• A function c : Z→ R.
• For each z : Z, a path pz : c(z) = c(succ(z)).

We might call this type the homotopical reals; it plays the same role as the topological space R

in the classical proof.
Thus, it remains to show that R is contractible. As center of contraction we choose c(0); we

must now show that x = c(0) for all x : R. We do this by induction on R. Firstly, when x
is c(z), we must give a path qz : c(0) = c(z), which we can do by induction on z : Z, using
Lemma 6.10.12:

q0 := reflc(0)

qn+1 := qn � pn for n ≥ 0

qn−1 := qn � pn−1
−1 for n ≤ 0.

Secondly, we must show that for any z : Z, the path qz is transported along pz to qz+1. By
transport of paths, this means we want qz � pz = qz+1. This is easy by induction on z, using the
definition of qz. This completes the proof that R is contractible, and thus so is ∑(x:S1) code(x).

Corollary 8.1.13. The map induced by encode:

∑(x:S1)(base = x)→ ∑(x:S1)code(x)

is an equivalence.

Proof. Both types are contractible.

Theorem 8.1.14. Ω(S1, base) ≃ Z.

Proof. Apply Theorem 4.7.7 to encode, using Corollary 8.1.13.

In essence, the two proofs are not very different: the encode-decode one may be seen as
a “reduction” or “unpackaging” of the homotopy-theoretic one. Each has its advantages; the
interplay between the two points of view is part of the interest of the subject.

8.1 π1(S1) 251

8.1.6 The universal cover as an identity system

Note that the fibration code : S1 → U together with 0 : code(base) is a pointed predicate in the sense
of Definition 5.8.1. From this point of view, we can see that the encode-decode proof in §8.1.4
consists of proving that code satisfies Theorem 5.8.2(iii), while the homotopy-theoretic proof in
§8.1.5 consists of proving that it satisfies Theorem 5.8.2(iv). This suggests a third approach.

Theorem 8.1.15. The pair (code, 0) is an identity system at base : S1 in the sense of Definition 5.8.1.

Proof. Let D : ∏(x:S1) code(x) → U and d : D(base, 0) be given; we want to define a function f :
∏(x:S1) ∏(c:code(x)) D(x, c). By circle induction, it suffices to specify f (base) : ∏(c:code(base)) D(base, c)
and verify that loop∗(f (base)) = f (base).

Of course, code(base) ≡ Z. By Lemma 8.1.2 and induction on n, we may obtain a path
pn : transportcode(loopn, 0) = n for any integer n. Therefore, by paths in Σ-types, we have a path
pair=(loopn, pn) : (base, 0) = (base, n) in ∑(x:S1) code(x). Transporting d along this path in the
fibration D̂ : (∑(x:S1) code(x)) → U associated to D, we obtain an element of D(base, n) for any
n : Z. We define this element to be f (base)(n):

f (base)(n) :≡ transportD̂(pair=(loopn, pn), d).

Now we need transportλx. ∏(c:code(x)) D(x,c)(loop, f (base)) = f (base). By Lemma 2.9.7, this means
we need to show that for any n : Z,

transportD̂(pair=(loop, reflloop∗(n)), f (base)(n)) =D(base,loop∗(n)) f (base)(loop∗(n)).

Now we have a path q : loop∗(n) = n + 1, so transporting along this, it suffices to show

transportD(base)(q, transportD̂(pair=(loop, reflloop∗(n)), f (base)(n)))

=D(base,n+1) transport
D(base)(q, f (base)(loop∗(n))).

By a couple of lemmas about transport and dependent application, this is equivalent to

transportD̂(pair=(loop, q), f (base)(n)) =D(base,n+1) f (base)(n + 1).

However, expanding out the definition of f (base), we have

transportD̂(pair=(loop, q), f (base)(n)) = transportD̂(pair=(loop, q), transportD̂(pair=(loopn, pn), d))

= transportD̂(pair=(loopn, pn) � pair=(loop, q), d)

= transportD̂(pair=(loopn+1, pn+1), d)

= f (base)(n + 1).

We have used the functoriality of transport, the characterization of composition in Σ-types (which
was an exercise for the reader), and a lemma relating pn and q to pn+1 which we leave it to the
reader to state and prove.

This completes the construction of f : ∏(x:S1) ∏(c:code(x)) D(x, c). Since

f (base, 0) ≡ pair=(loop0, p0)∗(d) = reflbase∗(d) = d,

we have shown that (code, 0) is an identity system.

252 CHAPTER 8. HOMOTOPY THEORY

Corollary 8.1.16. For any x : S1, we have (base = x) ≃ code(x).

Proof. By Theorem 5.8.2.

Of course, this proof also contains essentially the same elements as the previous two. Roughly,
we can say that it unifies the proofs of Definition 8.1.6 and Lemma 8.1.8, performing the requisite
inductive argument only once in a generic case.

Remark 8.1.17. Note that all of the above proofs that π1(S
1) ≃ Z use the univalence axiom in an

essential way. This is unavoidable: univalence or something like it is necessary in order to prove
π1(S

1) ≃ Z. In the absence of univalence, it is consistent to assume the statement “all types
are sets” (a.k.a. “uniqueness of identity proofs” or “Axiom K”, as discussed in §7.2), and this
statement implies instead that π1(S

1) ≃ 1. In fact, the (non)triviality of π1(S
1) detects exactly

whether all types are sets: the proof of Lemma 6.4.1 showed conversely that if loop = reflbase then
all types are sets.

8.2 Connectedness of suspensions

Recall from §7.5 that a type A is called n-connected if ∥A∥n is contractible. The aim of this section
is to prove that the operation of suspension from §6.5 increases connectedness.

Theorem 8.2.1. If A is n-connected then the suspension of A is (n + 1)-connected.

Proof. We remarked in §6.8 that the suspension of A is the pushout 1 ⊔A 1, so we need to prove
that the following type is contractible: ∥∥∥1 ⊔A 1

∥∥∥
n+1

.

By Theorem 7.4.12 we know that
∥∥1 ⊔A 1

∥∥
n+1 is a pushout in (n + 1)-Type of the diagram

∥A∥n+1

��

// ∥1∥n+1

∥1∥n+1

.

Given that ∥1∥n+1 = 1, the type
∥∥1 ⊔A 1

∥∥
n+1 is also a pushout of the following diagram in

(n + 1)-Type (because both diagrams are equal)

D =

∥A∥n+1

��

// 1

1

.

We will now prove that 1 is also a pushout of D in (n + 1)-Type. Let E be an (n + 1)-truncated
type; we need to prove that the following map is an equivalence{

(1→ E) −→ coconeD (E)
y 7−→ (y, y, λu. refly(⋆))

.

where we recall that coconeD (E) is the type

∑
(f :1→E)

∑
(g:1→E)

(∥A∥n+1 → (f (⋆) =E g(⋆))).

8.3 πk≤n OF AN n-CONNECTED SPACE AND πk<n(S
n) 253

The map
{

(1→ E) −→ E
f 7−→ f (⋆)

is an equivalence, hence we also have

coconeD (E) = ∑
(x:E)

∑
(y:E)

(∥A∥n+1 → (x =E y)).

Now A is n-connected hence so is ∥A∥n+1 because
∥∥∥A∥n+1

∥∥
n = ∥A∥n = 1, and (x =E y) is

n-truncated because E is (n + 1)-truncated. Hence by Corollary 7.5.9 the following map is an
equivalence {

(x =E y) −→ (∥A∥n+1 → (x =E y))
p 7−→ λz. p

Hence we have
coconeD (E) = ∑

(x:E)
∑
(y:E)

(x =E y).

But the following map is an equivalence{
E −→ ∑(x:E) ∑(y:E)(x =E y)
x 7−→ (x, x, reflx)

.

Hence
coconeD (E) = E.

Finally we get an equivalence
(1→ E) ≃ coconeD (E)

We can now unfold the definitions in order to get the explicit expression of this map, and we see
easily that this is exactly the map we had at the beginning.

Hence we proved that 1 is a pushout of D in (n + 1)-Type. Using uniqueness of pushouts we
get that

∥∥1 ⊔A 1
∥∥

n+1 = 1 which proves that the suspension of A is (n + 1)-connected.

Corollary 8.2.2. For all n : N, the sphere Sn is (n− 1)-connected.

Proof. We prove this by induction on n. For n = 0 we have to prove that S0 is merely inhabited,
which is clear. Let n : N be such that Sn is (n− 1)-connected. By definition Sn+1 is the suspension
of Sn, hence by the previous lemma Sn+1 is n-connected.

8.3 πk≤n of an n-connected space and πk<n(S
n)

Let (A, a) be a pointed type and n : N. Recall from Example 6.11.4 that if n > 0 the set πn(A, a)
has a group structure, and if n > 1 the group is abelian.

We can now say something about homotopy groups of n-truncated and n-connected types.

Lemma 8.3.1. If A is n-truncated and a : A, then πk(A, a) = 1 for all k > n.

Proof. The loop space of an n-type is an (n− 1)-type, hence Ωk(A, a) is an (n− k)-type, and we
have (n− k) ≤ −1 so Ωk(A, a) is a mere proposition. But Ωk(A, a) is inhabited, so it is actually
contractible and πk(A, a) =

∥∥Ωk(A, a)
∥∥

0 = ∥1∥0 = 1.

Lemma 8.3.2. If A is n-connected and a : A, then πk(A, a) = 1 for all k ≤ n.

254 CHAPTER 8. HOMOTOPY THEORY

Proof. We have the following sequence of equalities:

πk(A, a) =
∥∥∥Ωk(A, a)

∥∥∥
0
= Ωk(∥(A, a)∥k) = Ωk(∥∥(A, a)∥n∥k) = Ωk(∥1∥k) = Ωk(1) = 1.

The third equality uses the fact that k ≤ n in order to use that ∥–∥k ◦ ∥–∥n = ∥–∥k and the fourth
equality uses the fact that A is n-connected.

Corollary 8.3.3. πk(S
n) = 1 for k < n.

Proof. The sphere Sn is (n− 1)-connected by Corollary 8.2.2, so we can apply Lemma 8.3.2.

8.4 Fiber sequences and the long exact sequence

If the codomain of a function f : X → Y is equipped with a basepoint y0 : Y, then we refer to
the fiber F :≡ fib f (y0) of f over y0 as the fiber of f . (If Y is connected, then F is determined up
to mere equivalence; see Exercise 8.5.) We now show that if X is also pointed and f preserves
basepoints, then there is a relation between the homotopy groups of F, X, and Y in the form of a
long exact sequence. We derive this by way of the fiber sequence associated to such an f .

Definition 8.4.1. A pointed map between pointed types (X, x0) and (Y, y0) is a map f : X → Y
together with a path f0 : f (x0) = y0.

For any pointed types (X, x0) and (Y, y0), there is a pointed map (λx. y0) : X → Y which is
constant at the basepoint. We call this the zero map and sometimes write it as 0 : X → Y.

Recall that every pointed type (X, x0) has a loop space Ω(X, x0). We now note that this
operation is functorial on pointed maps.

Definition 8.4.2. Given a pointed map between pointed types f : X → Y, we define a pointed
map Ω f : ΩX → ΩY by

(Ω f)(p) :≡ f0
−1 � f (p) � f0.

The path (Ω f)0 : (Ω f)(reflx0) = refly0 , which exhibits Ω f as a pointed map, is the obvious path
of type

f0
−1 � f (reflx0) � f0 = refly0 .

There is another functor on pointed maps, which takes f : X → Y to pr1 : fib f (y0) → X.
When f is pointed, we always consider fib f (y0) to be pointed with basepoint (x0, f0), in which
case pr1 is also a pointed map, with witness (pr1)0 :≡ reflx0 . Thus, this operation can be iterated.

Definition 8.4.3. The fiber sequence of a pointed map f : X → Y is the infinite sequence of
pointed types and pointed maps

. . .
f (n+1)
// X(n+1) f (n)

// X(n) f (n−1)
// . . . // X(2) f (1)

// X(1) f (0)
// X(0)

defined recursively by
X(0) :≡ Y X(1) :≡ X f (0) :≡ f

and

X(n+1) :≡ fib f (n−1)(x(n−1)
0)

f (n) :≡ pr1 : X(n+1) → X(n).

where x(n)0 denotes the basepoint of X(n), chosen recursively as above.

8.4 FIBER SEQUENCES AND THE LONG EXACT SEQUENCE 255

Thus, any adjacent pair of maps in this fiber sequence is of the form

X(n+1) ≡ fib f (n−1)(x(n−1)
0)

f (n)≡pr1 // X(n) f (n−1)
// X(n−1).

In particular, we have f (n−1) ◦ f (n) = 0. We now observe that the types occurring in this sequence
are the iterated loop spaces of the base space Y, the total space X, and the fiber F :≡ fib f (y0), and
similarly for the maps.

Lemma 8.4.4. Let f : X → Y be a pointed map of pointed spaces. Then:

(i) The fiber of f (1) :≡ pr1 : fib f (y0)→ X is equivalent to ΩY.

(ii) Similarly, the fiber of f (2) : ΩY → fib f (y0) is equivalent to ΩX.

(iii) Under these equivalences, the pointed map f (3) : ΩX → ΩY is identified with the pointed map
Ω f ◦ (–)−1.

Proof. For (i), we have

fib f (1)(x0) :≡ ∑
z:fib f (y0)

(pr1(z) = x0)

≃ ∑
(x:X)

∑
(p: f (x)=y0)

(x = x0) (by Exercise 2.10)

≃ (f (x0) = y0) (as ∑(x:X)(x = x0) is contractible)

≃ (y0 = y0) (by (f0 � –))

≡ ΩY.

Tracing through, we see that this equivalence sends ((x, p), q) to f0
−1 � f

(
q−1) � p, while its inverse

sends r : y0 = y0 to ((x0, f0 � r), reflx0). In particular, the basepoint ((x0, f0), reflx0) of fib f (1)(x0) is

sent to f0
−1 � f

(
reflx0

−1
)
� f0, which equals refly0 . Hence this equivalence is a pointed map (see

Exercise 8.7). Moreover, under this equivalence, f (2) is identified with λr. (x0, f0 � r) : ΩY →
fib f (y0).

Item (ii) follows immediately by applying (i) to f (1) in place of f . Since (f (1))0 :≡ reflx0 , under
this equivalence f (3) is identified with the map ΩX → fib f (1)(x0) defined by s 7→ ((x0, f0), s).
Thus, when we compose with the previous equivalence fib f (1)(x0) ≃ ΩY, we see that s maps to

f0
−1 � f

(
s−1) � f0, which is by definition (Ω f)(s−1). We omit the proof that this is an equality of

pointed maps rather than just of functions.

Thus, the fiber sequence of f : X → Y can be pictured as:

. . . // Ω2X
Ω2 f
// Ω2Y −Ω∂

// ΩF −Ωi
// ΩX

−Ω f
// ΩY ∂ // F i // X

f
// Y.

where the minus signs denote composition with path inversion (–)−1. Note that by Exercise 8.6,
we have

Ω
(

Ω f ◦ (–)−1
)
◦ (–)−1 = Ω2 f ◦ (–)−1 ◦ (–)−1 = Ω2 f .

Thus, there are minus signs on the k-fold loop maps whenever k is odd.

256 CHAPTER 8. HOMOTOPY THEORY

From this fiber sequence we will deduce an exact sequence of pointed sets. Let A and B be sets
and f : A→ B a function, and recall from Definition 7.6.3 the definition of the image im(f), which
can be regarded as a subset of B:

im(f) :≡ { b : B | ∃(a : A). f (a) = b } .

If A and B are moreover pointed with basepoints a0 and b0, and f is a pointed map, we define
the kernel of f to be the following subset of A:

ker(f) :≡ { x : A | f (x) = b0 } .

Of course, this is just the fiber of f over the basepoint b0; it is a subset of A because B is a set.
Note that any group is a pointed set, with its unit element as basepoint, and any group

homomorphism is a pointed map. In this case, the kernel and image agree with the usual notions
from group theory.

Definition 8.4.5. An exact sequence of pointed sets is a (possibly bounded) sequence of pointed
sets and pointed maps:

. . . // A(n+1) f (n)
// A(n) f (n−1)

// A(n−1) // . . .

such that for every n, the image of f (n) is equal, as a subset of A(n), to the kernel of f (n−1). In
other words, for all a : A(n) we have

(f (n−1)(a) = a(n−1)
0) ⇐⇒ ∃(b : A(n+1)). (f (n)(b) = a).

where a(n)0 denotes the basepoint of A(n).

Usually, most or all of the pointed sets in an exact sequence are groups, and often abelian
groups. When we speak of an exact sequence of groups, it is assumed moreover that the maps
are group homomorphisms and not just pointed maps.

Theorem 8.4.6. Let f : X → Y be a pointed map between pointed spaces with fiber F :≡ fib f (y0). Then
we have the following long exact sequence, which consists of groups except for the last three terms, and
abelian groups except for the last six.

...
...

...

ss
πk(F) // πk(X) // πk(Y)

ss
...

...
...

ss
π2(F) // π2(X) // π2(Y)

ss
π1(F) // π1(X) // π1(Y)

ss
π0(F) // π0(X) // π0(Y)

8.4 FIBER SEQUENCES AND THE LONG EXACT SEQUENCE 257

Proof. We begin by showing that the 0-truncation of a fiber sequence is an exact sequence of
pointed sets. Thus, we need to show that for any adjacent pair of maps in a fiber sequence:

fib f (z0)
g
//W

f
// Z

with g :≡ pr1, the sequence

∥∥fib f (z0)
∥∥

0

∥g∥0 // ∥W∥0
∥ f ∥0 // ∥Z∥0

is exact, i.e. that im(∥g∥0) ⊆ ker(∥ f ∥0) and ker(∥ f ∥0) ⊆ im(∥g∥0).
The first inclusion is equivalent to ∥g∥0 ◦ ∥ f ∥0 = 0, which holds by functoriality of ∥–∥0 and

the fact that g ◦ f = 0. For the second, we assume w′ : ∥W∥0 and p′ : ∥ f ∥0(w
′) = |z0|0 and show

there merely exists t : fib f (z0) such that g(t) = w′. Since our goal is a mere proposition, we can
assume that w′ is of the form |w|0 for some w : W. Now by Theorem 7.3.12, p′ : | f (w)|0 = |z0|0
yields p′′ : ∥ f (w) = z0∥−1, so by a further truncation induction we may assume some p : f (w) =

z0. But now we have |(w, p)|0 :
∣∣fib f (z0)

∣∣
0 whose image under ∥g∥0 is |w|0 ≡ w′, as desired.

Thus, applying ∥–∥0 to the fiber sequence of f , we obtain a long exact sequence involving the
pointed sets πk(F), πk(X), and πk(Y) in the desired order. And of course, πk is a group for k ≥ 1,
being the 0-truncation of a loop space, and an abelian group for k ≥ 2 by the Eckmann–Hilton
argument (Theorem 2.1.6). Moreover, Lemma 8.4.4 allows us to identify the maps πk(F) →
πk(X) and πk(X)→ πk(Y) in this exact sequence as (−1)kπk(i) and (−1)kπk(f) respectively.

More generally, every map in this long exact sequence except the last three is of the form
∥Ωh∥0 or ∥−Ωh∥0 for some h. In the former case it is a group homomorphism, while in the latter
case it is a homomorphism if the groups are abelian; otherwise it is an “anti-homomorphism”.
However, the kernel and image of a group homomorphism are unchanged when we replace it
by its negative, and hence so is the exactness of any sequence involving it. Thus, we can modify
our long exact sequence to obtain one involving πk(i) and πk(f) directly and in which all the
maps are group homomorphisms (except the last three).

The usual properties of exact sequences of abelian groups can be proved as usual. In partic-
ular we have:

Lemma 8.4.7. Suppose given an exact sequence of abelian groups:

K // G
f
// H // Q.

(i) If K = 0, then f is injective.
(ii) If Q = 0, then f is surjective.

(iii) If K = Q = 0, then f is an isomorphism.

Proof. Since the kernel of f is the image of K → G, if K = 0 then the kernel of f is {0}; hence f is
injective because it’s a group morphism. Similarly, since the image of f is the kernel of H → Q,
if Q = 0 then the image of f is all of H, so f is surjective. Finally, (iii) follows from (i) and (ii) by
Theorem 4.6.3.

As an immediate application, we can now quantify in what way n-connectedness of a map is
stronger than inducing an equivalence on n-truncations.

Corollary 8.4.8. Let f : A→ B be n-connected and a : A, and define b :≡ f (a). Then:

258 CHAPTER 8. HOMOTOPY THEORY

(i) If k ≤ n, then πk(f) : πk(A, a)→ πk(B, b) is an isomorphism.
(ii) If k = n + 1, then πk(f) : πk(A, a)→ πk(B, b) is surjective.

Proof. For k = 0, part (i) follows from Lemma 7.5.14, noticing that π0(f) ≡ ∥ f ∥0. For k = 0
part (ii) follows from Exercise 7.18, noticing that a function is surjective iff it’s (−1)-connected,
by Lemma 7.5.2. For k > 0 we have as part of the long exact sequence an exact sequence

πk(fib f (b)) // πk(A, a)
f
// πk(B, b) // πk−1(fib f (b)).

Now since f is n-connected,
∥∥fib f (b)

∥∥
n is contractible. Therefore, if k ≤ n, then πk(fib f (b)) =∥∥Ωk(fib f (b))

∥∥
0 = Ωk(

∥∥fib f (b)
∥∥

k) is also contractible. Thus, πk(f) is an isomorphism for k ≤ n
by Lemma 8.4.7(iii), while for k = n + 1 it is surjective by Lemma 8.4.7(ii).

In §8.8 we will see that the converse of Corollary 8.4.8 also holds.

8.5 The Hopf fibration

In this section we will define the Hopf fibration.

Theorem 8.5.1 (Hopf Fibration). There is a fibration H over S2 whose fiber over the basepoint is S1 and
whose total space is S3.

The Hopf fibration will allow us to compute several homotopy groups of spheres. Indeed, it
yields the following long exact sequence of homotopy groups (see §8.4):

πk(S
1) // πk(S

3) // πk(S
2)

ss
...

...
...

ss
π2(S1) // π2(S3) // π2(S2)

ss
π1(S

1) // π1(S
3) // π1(S

2)

We’ve already computed all πn(S1), and πk(S
n) for k < n, so this becomes the following:

0 // πk(S
3) // πk(S

2)

tt
...

...
...

tt0 // π3(S3) // π3(S2)

tt0 // 0 // π2(S2)

ssZ // 0 // 0

In particular we get the following result:

8.5 THE HOPF FIBRATION 259

Corollary 8.5.2. We have π2(S2) ≃ Z and πk(S
3) ≃ πk(S

2) for every k ≥ 3 (where the map is induced
by the Hopf fibration, seen as a map from the total space S3 to the base space S2).

In fact, we can say more: the fiber sequence of the Hopf fibration will show that Ω3(S3) is the
fiber of a map from Ω3(S2) to Ω2(S1). Since Ω2(S1) is contractible, we have Ω3(S3) ≃ Ω3(S2). In
classical homotopy theory, this fact would be a consequence of Corollary 8.5.2 and Whitehead’s
theorem, but Whitehead’s theorem is not necessarily valid in homotopy type theory (see §8.8).
We will not use the more precise version here though.

8.5.1 Fibrations over pushouts

We first start with a lemma explaining how to construct fibrations over pushouts.

Lemma 8.5.3. Let D = (Y
j←− X k−→ Z) be a span and assume that we have

• Two fibrations EY : Y → U and EZ : Z → U .
• An equivalence eX between EY ◦ j : X → U and EZ ◦ k : X → U , i.e.

eX : ∏
x:X

EY(j(x)) ≃ EZ(k(x)).

Then we can construct a fibration E : Y ⊔X Z → U such that

• For all y : Y, E(inl(y)) ≡ EY(y).
• For all z : Z, E(inr(z)) ≡ EZ(z).
• For all x : X, E(glue(x)) = ua(eX(x)) (note that both sides of the equation are paths in U from

EY(j(x)) to EZ(k(x))).

Moreover, the total space of this fibration fits in the following pushout square:

∑(x:X) EY(j(x)) ∼
id×eX //

j×id
��

∑(x:X) EZ(k(x))
k×id

// ∑(z:Z) EZ(z)

inr
��

∑(y:Y) EY(y) inl
// ∑(t:Y⊔X Z) E(t)

Proof. We define E by the recursion principle of the pushout Y ⊔X Z. For that, we need to specify
the value of E on elements of the form inl(y), inr(z) and the action of E on paths glue(x), so we
can just choose the following values:

E(inl(y)) :≡ EY(y),

E(inr(z)) :≡ EZ(z),

E(glue(x)) := ua(eX(x)).

To see that the total space of this fibration is a pushout, we apply the flattening lemma (Lemma 6.12.2)
with the following values:

• A :≡ Y + Z, B :≡ X and f , g : B→ A are defined by f (x) :≡ inl(j(x)), g(x) :≡ inr(k(x)),
• the type family C : A→ U is defined by

C(inl(y)) :≡ EY(y) and C(inr(z)) :≡ EZ(z),

260 CHAPTER 8. HOMOTOPY THEORY

• the family of equivalences D : ∏(b:B) C(f (b)) ≃ C(g(b)) is defined to be eX.

The base higher inductive type W in the flattening lemma is equivalent to the pushout Y ⊔X Z
and the type family P : Y ⊔X Z → U is equivalent to the E defined above.

Thus the flattening lemma tells us that ∑(t:Y⊔X Z) E(t) is equivalent to the higher inductive
type Etot′ with the following generators:

• a function z : ∑(a:Y+Z) C(a)→ Etot′,
• for each x : X and t : EY(j(x)), a path z(inl(j(x)), t) = z(inr(k(x)), eX(t)).

Using the flattening lemma again or a direct computation, it is easy to see that ∑(a:Y+Z) C(a) ≃
∑(y:Y) EY(y) + ∑(z:Z) EZ(z), hence Etot′ is equivalent to the higher inductive type Etot with the
following generators:

• a function inl : ∑(y:Y) EY(y)→ Etot,
• a function inr : ∑(z:Z) EZ(z)→ Etot,
• for each (x, t) : ∑(x:X) EY(j(x)) a path glue(x, t) : inl(j(x), t) = inr(k(x), eX(t)).

Thus the total space of E is the pushout of the total spaces of EY and EZ, as required.

8.5.2 The Hopf construction

Definition 8.5.4. An H-space consists of

• a type A,
• a base point e : A,
• a binary operation µ : A× A→ A, and
• for every a : A, equalities µ(e, a) = a and µ(a, e) = a.

Lemma 8.5.5. Let A be a connected H-space. Then for every a : A, the maps µ(a, –) : A → A and
µ(– , a) : A→ A are equivalences.

Proof. Let us prove that for every a : A the map µ(a, –) is an equivalence. The other statement is
symmetric. The statement that µ(a, –) is an equivalence corresponds to a type family P : A →
Prop and proving it corresponds to finding a section of this type family.

The type Prop is a set (Theorem 7.1.11) hence we can define a new type family P′ : ∥A∥0 →
Prop by P′(|a|0) :≡ P(a). But A is connected by assumption, hence ∥A∥0 is contractible. This
implies that in order to find a section of P′, it is enough to find a point in the fiber of P′ over |e|0.
But we have P′(|e|0) = P(e) which is inhabited because µ(e, –) is equal to the identity map by
definition of an H-space, hence is an equivalence.

We have proved that for every x : ∥A∥0 the proposition P′(x) is true, hence in particular for
every a : A the proposition P(a) is true because P(a) is P′(|a|0).

Definition 8.5.6. Let A be a connected H-space. We define a fibration over ΣA using Lemma 8.5.3.
Given that ΣA is the pushout 1 ⊔A 1, we can define a fibration over ΣA by specifying

• two fibrations over 1 (i.e. two types F1 and F2), and
• a family e : A→ (F1 ≃ F2) of equivalences between F1 and F2, one for every element of A.

We take A for F1 and F2, and for a : A we take the equivalence µ(a, –) for e(a).

8.5 THE HOPF FIBRATION 261

According to Lemma 8.5.3, we have the following diagram:

A

����

A× A
pr2oo

pr1
����

µ
// A

����

1 A //oo 1

and the fibration we just constructed is a fibration over ΣA whose total space is the pushout of
the top line.

Moreover, with f (x, y) :≡ (µ(x, y), y) we have the following diagram:

A

id
��

A× A
pr2oo

f
��

µ
// A

id
��

A A× Apr2
oo

pr1
// A

The diagram commutes and the three vertical maps are equivalences, the inverse of f being the
function g defined by

g(u, v) :≡ (µ(–, v)−1(u), v).

This shows that the two lines are equivalent (hence equal) spans, so the total space of the fibration
we constructed is equivalent to the pushout of the bottom line. And by definition, this latter
pushout is the join of A with itself (see §6.8). We have proven:

Lemma 8.5.7. Given a connected H-space A, there is a fibration, called the Hopf construction, over ΣA
with fiber A and total space A ∗ A.

8.5.3 The Hopf fibration

We will first construct a structure of H-space on the circle S1, hence by Lemma 8.5.7 we will
get a fibration over S2 with fiber S1 and total space S1 ∗ S1. We will then prove that this join is
equivalent to S3.

Lemma 8.5.8. There is an H-space structure on the circle S1.

Proof. For the base point of the H-space structure we choose base. Now we need to define the
multiplication operation µ : S1 × S1 → S1. We will define the curried form µ̃ : S1 → (S1 → S1)

of µ by recursion on S1:

µ̃(base) :≡ idS1 , and µ̃(loop) := funext(h).

where h : ∏(x:S1)(x = x) is the function defined in Lemma 6.4.2, which has the property that
h(base) :≡ loop.

Now we just have to prove that µ(x, base) = µ(base, x) = x for every x : S1. By definition, if
x : S1 we have µ(base, x) = µ̃(base)(x) = idS1(x) = x. For the equality µ(x, base) = x we do it by
induction on x : S1:

• If x is base then µ(base, base) = base by definition, so we have reflbase : µ(base, base) = base.

262 CHAPTER 8. HOMOTOPY THEORY

• When x varies along loop, we need to prove that

reflbase � apλx. x(loop) = apλx. µ(x,base)(loop) � reflbase.

The left-hand side is equal to loop, and for the right-hand side we have:

apλx. µ(x,base)(loop) � reflbase = apλx. (µ̃(x))(base)(loop)

= happly(apλx. (µ̃(x))(loop), base)

= happly(funext(h), base)

= h(base)

= loop.

Now recall from §6.8 that the join A ∗ B of types A and B is the pushout of the diagram

A
pr1←− A× B

pr2−→ B.

Lemma 8.5.9. The operation of join is associative: if A, B and C are three types then we have an equiva-
lence (A ∗ B) ∗ C ≃ A ∗ (B ∗ C).

Proof. We define a map f : (A ∗ B) ∗ C → A ∗ (B ∗ C) by induction. We first need to define
f ◦ inl : A ∗ B→ A ∗ (B ∗ C) which will be done by induction, then f ◦ inr : C → A ∗ (B ∗ C), and
then ap f ◦ glue : ∏(t:(A∗B)×C) f (inl(pr1(t))) = f (inr(pr2(t))) which will be done by induction on
the first component of t:

(f ◦ inl)(inl(a)) :≡ inl(a),

(f ◦ inl)(inr(b)) :≡ inr(inl(b)),

ap f ◦inl(glue(a, b)) := glue(a, inl(b)),

f (inr(c)) :≡ inr(inr(c)),

ap f (glue(inl(a), c)) := glue(a, inr(c)),

ap f (glue(inr(b), c)) := apinr(glue(b, c)),

apdλx. ap f (glue(x,c))(glue(a, b)) := “apdλx. glue(a,x)(glue(b, c))′′.

For the last equation, note that the right-hand side is of type

transportλx. inl(a)=inr(x)(glue(b, c), glue(a, inl(b))) = glue(a, inr(c))

whereas it is supposed to be of type

transportλx. f (inl(x))= f (inr(c))(glue(a, b), ap f (glue(inl(a), c))) = ap f (glue(inr(b), c)).

But by the previous clauses in the definition, both of these types are equivalent to the following
type:

glue(a, inr(c)) = glue(a, inl(b)) � apinr(glue(b, c)),

and so we can coerce by an equivalence to obtain the necessary element. Similarly, we can define
a map g : A ∗ (B ∗C)→ (A ∗ B) ∗C, and checking that f and g are inverse to each other is a long
and tedious but essentially straightforward computation.

A more conceptual proof sketch is as follows.

8.6 THE FREUDENTHAL SUSPENSION THEOREM 263

Proof. Let us consider the following diagram where the maps are the obvious projections:

A A× Coo // A× C

A× B

OO

��

A× B× Coo

OO

//

��

A× C

OO

��

B B× Coo // C

Taking the colimit of the columns gives the following diagram, whose colimit is (A ∗ B) ∗ C:

A ∗ B (A ∗ B)× Coo // C

On the other hand, taking the colimit of the lines gives a diagram whose colimit is A ∗ (B ∗ C).
Hence using a Fubini-like theorem for colimits (that we haven’t proved) we have an equiv-

alence (A ∗ B) ∗ C ≃ A ∗ (B ∗ C). The proof of this Fubini theorem for colimits still requires the
long and tedious computation, though.

Lemma 8.5.10. For any type A, there is an equivalence ΣA ≃ 2 ∗ A.

Proof. It is easy to define the two maps back and forth and to prove that they are inverse to each
other. The details are left as an exercise to the reader.

We can now construct the Hopf fibration:

Theorem 8.5.11. There is a fibration over S2 of fiber S1 and total space S3.

Proof. We proved that S1 has a structure of H-space (cf Lemma 8.5.8) hence by Lemma 8.5.7 there
is a fibration over S2 of fiber S1 and total space S1 ∗ S1. But by the two previous results and
Lemma 6.5.1 we have:

S1 ∗ S1 = (Σ2) ∗ S1 = (2 ∗ 2) ∗ S1 = 2 ∗ (2 ∗ S1) = Σ(ΣS1) = S3.

8.6 The Freudenthal suspension theorem

Before proving the Freudenthal suspension theorem, we need some auxiliary lemmas about con-
nectedness. In Chapter 7 we proved a number of facts about n-connected maps and n-types
for fixed n; here we are now interested in what happens when we vary n. For instance, in
Lemma 7.5.7 we showed that n-connected maps are characterized by an “induction principle”
relative to families of n-types. If we want to “induct along” an n-connected map into a family
of k-types for k > n, we don’t immediately know that there is a function by such an induction
principle, but the following lemma says that at least our ignorance can be quantified.

Lemma 8.6.1. If f : A → B is n-connected and P : B → k-Type is a family of k-types for k ≥ n, then
the induced function

(– ◦ f) :
(
∏
b:B

P(b)
)
→
(
∏
a:A

P(f (a))
)

is (k− n− 2)-truncated.

264 CHAPTER 8. HOMOTOPY THEORY

Proof. We induct on the natural number k−n. When k = n, this is Lemma 7.5.7. For the inductive
step, suppose f is n-connected and P is a family of (k + 1)-types. To show that (– ◦ f) is (k− n−
1)-truncated, let ℓ : ∏(a:A) P(f (a)); then we have

fib(–◦ f)(ℓ) ≃ ∑
(g:∏(b:B) P(b))

∏
(a:A)

g(f (a)) = ℓ(a).

Let (g, p) and (h, q) lie in this type, so p : g ◦ f ∼ ℓ and q : h ◦ f ∼ ℓ; then we also have(
(g, p) = (h, q)

)
≃
(

∑
r:g∼h

r ◦ f = p � q−1
)

.

However, here the right-hand side is a fiber of the map

(– ◦ f) :
(
∏
b:B

Q(b)
)
→
(
∏
a:A

Q(f (a))
)

where Q(b) :≡ (g(b) = h(b)). Since P is a family of (k + 1)-types, Q is a family of k-types, so
the inductive hypothesis implies that this fiber is a (k − n − 2)-type. Thus, all path spaces of
fib(–◦ f)(ℓ) are (k− n− 2)-types, so it is a (k− n− 1)-type.

Recall that if (A, a0) and (B, b0) are pointed types, then their wedge A∨ B is defined to be the

pushout of A
a0←− 1

b0−→ B. There is a canonical map i : A ∨ B → A× B defined by the two maps
λa. (a, b0) and λb. (a0, b); the following lemma essentially says that this map is highly connected
if A and B are so. It is a bit more convenient both to prove and use, however, if we use the
characterization of connectedness from Lemma 7.5.7 and substitute in the universal property of
the wedge (generalized to type families).

Lemma 8.6.2 (Wedge connectivity lemma). Suppose that (A, a0) and (B, b0) are n- and m-connected
pointed types, respectively, with n, m ≥ 0, and let P : A → B → (n + m)-Type. Then for any
f : ∏(a:A) P(a, b0) and g : ∏(b:B) P(a0, b) with p : f (a0) = g(b0), there exists h : ∏(a:A) ∏(b:B) P(a, b)
with homotopies

q : ∏
a:A

h(a, b0) = f (a) and r : ∏
b:B

h(a0, b) = g(b)

such that p = q(a0)
−1 � r(b0).

Proof. Define Q : A→ U by

Q(a) :≡ ∑
k:∏(b:B) P(a,b)

(f (a) = k(b0)).

Then we have (g, p) : Q(a0). Since a0 : 1 → A is (n− 1)-connected, if Q is a family of (n− 1)-
types then we will have ℓ : ∏(a:A) Q(a) such that ℓ(a0) = (g, p), in which case we can define
h(a, b) :≡ pr1(ℓ(a))(b). However, for fixed a, the type Q(a) is the fiber over f (a) of the map(

∏
b:B

P(a, b)
)
→ P(a, b0)

given by precomposition with b0 : 1 → B. Since b0 : 1 → B is (m− 1)-connected, for this fiber
to be (n− 1)-truncated, by Lemma 8.6.1 it suffices for each type P(a, b) to be an (n + m)-type,
which we have assumed.

8.6 THE FREUDENTHAL SUSPENSION THEOREM 265

Let (X, x0) be a pointed type, and recall the definition of the suspension ΣX from §6.5, with
constructors N, S : ΣX and merid : X → (N = S). We regard ΣX as a pointed space with
basepoint N, so that we have ΩΣX :≡ (N =ΣX N). Then there is a canonical map

σ : X → ΩΣX

σ(x) :≡ merid(x) �merid(x0)
−1.

Remark 8.6.3. In classical algebraic topology, one considers the reduced suspension, in which the
path merid(x0) is collapsed down to a point, identifying N and S. The reduced and unreduced
suspensions are homotopy equivalent, so the distinction is invisible to our purely homotopy-
theoretic eyes — and higher inductive types only allow us to “identify” points up to a higher
path anyway, there is no purpose to considering reduced suspensions in homotopy type theory.
However, the “unreducedness” of our suspension is the reason for the (possibly unexpected)
appearance of merid(x0)

−1 in the definition of σ.

Our goal is now to prove the following.

Theorem 8.6.4 (The Freudenthal suspension theorem). Suppose that X is n-connected and pointed,
with n ≥ 0. Then the map σ : X → ΩΣ(X) is 2n-connected.

We will use the encode-decode method, but applied in a slightly different way. In most cases
so far, we have used it to characterize the loop space Ω(A, a0) of some type as equivalent to
some other type B, by constructing a family code : A → U with code(a0) :≡ B and a family of
equivalences decode : ∏(x:A) code(x) ≃ (a0 = x).

In this case, however, we want to show that σ : X → ΩΣX is 2n-connected. We could use
a truncated version of the previous method, such as we will see in §8.7, to prove that ∥X∥2n →
∥ΩΣX∥2n is an equivalence—but this is a slightly weaker statement than the map being 2n-
connected (see Corollaries 8.4.8 and 8.8.5). However, note that in the general case, to prove that
decode(x) is an equivalence, we could equivalently be proving that its fibers are contractible,
and we would still be able to use induction over the base type. This we can generalize to prove
connectedness of a map into a loop space, i.e. that the truncations of its fibers are contractible.
Moreover, instead of constructing code and decode separately, we can construct directly a family
of codes for the truncations of the fibers.

Definition 8.6.5. If X is n-connected and pointed with n ≥ 0, then there is a family

code : ∏
y:ΣX

(N = y)→ U (8.6.6)

such that

code(N, p) :≡ ∥fibσ(p)∥2n ≡
∥∥∥∑(x:X)(merid(x) �merid(x0)

−1 = p)
∥∥∥

2n
(8.6.7)

code(S, q) :≡ ∥fibmerid(q)∥2n ≡
∥∥∥∑(x:X)(merid(x) = q)

∥∥∥
2n

. (8.6.8)

Our eventual goal will be to prove that code(y, p) is contractible for all y : ΣX and p : N = y.
Applying this with y :≡ N will show that all fibers of σ are 2n-connected, and thus σ is 2n-
connected.

Proof of Definition 8.6.5. We define code(y, p) by induction on y : ΣX, where the first two cases
are (8.6.7) and (8.6.8). It remains to construct, for each x1 : X, a dependent path

code(N) =
λy. (N=y)→U
merid(x1)

code(S).

266 CHAPTER 8. HOMOTOPY THEORY

By Lemma 2.9.6, this is equivalent to giving a family of paths

∏
q:N=S

code(N)(transportλy. (N=y)(merid(x1)
−1, q)) = code(S)(q).

And by univalence and transport in path types, this is equivalent to a family of equivalences

∏
q:N=S

code(N, q �merid(x1)
−1) ≃ code(S, q).

We will define a family of maps

∏
q:N=S

code(N, q �merid(x1)
−1)→ code(S, q). (8.6.9)

and then show that they are all equivalences. Thus, let q : N = S; by the universal property
of truncation and the definitions of code(N, –) and code(S, –), it will suffice to define for each
x2 : X, a map(

merid(x2) �merid(x0)
−1 = q �merid(x1)

−1)→ ∥∥∥∑(x:X)(merid(x) = q)
∥∥∥

2n
.

Now for each x1, x2 : X, this type is 2n-truncated, while X is n-connected. Thus, by Lemma 8.6.2,
it suffices to define this map when x1 is x0, when x2 is x0, and check that they agree when both
are x0.

When x1 is x0, the hypothesis is r : merid(x2) �merid(x0)
−1 = q �merid(x0)

−1. Thus, by cancel-
ing merid(x0)

−1 from r to get r′ : merid(x2) = q, so we can define the image to be |(x2, r′)|2n.
When x2 is x0, the hypothesis is r : merid(x0) �merid(x0)

−1 = q �merid(x1)
−1. Rearranging

this, we obtain r′′ : merid(x1) = q, and we can define the image to be |(x1, r′′)|2n.
Finally, when both x1 and x2 are x0, it suffices to show the resulting r′ and r′′ agree; this

is an easy lemma about path composition. This completes the definition of (8.6.9). To show
that it is a family of equivalences, since being an equivalence is a mere proposition and x0 :
1 → X is (at least) (−1)-connected, it suffices to assume x1 is x0. In this case, inspecting the
above construction we see that it is essentially the 2n-truncation of the function that cancels
merid(x0)

−1, which is an equivalence.

In addition to (8.6.7) and (8.6.8), we will need to extract from the construction of code some
information about how it acts on paths. For this we use the following lemma.

Lemma 8.6.10. Let A : U , B : A→ U , and C : ∏(a:A) B(a)→ U , and also a1, a2 : A with m : a1 = a2

and b : B(a2). Then the function

transportĈ(pair=(m, t), –) : C(a1, transportB(m−1, b))→ C(a2, b),

where t : transportB(m, transportB(m−1, b)) = b is the obvious coherence path and Ĉ : (∑(a:A) B(a))→
U is the uncurried form of C, is equal to the equivalence obtained by univalence from the composite

C(a1, transportB(m−1, b)) = transportλa. B(a)→U (m, C(a1))(b) (by (2.9.4))

= C(a2, b). (by happly(apdC(m), b))

Proof. By path induction, we may assume a2 is a1 and m is refla1 , in which case both functions are
the identity.

8.6 THE FREUDENTHAL SUSPENSION THEOREM 267

We apply this lemma with A :≡ ΣX and B :≡ λy. (N = y) and C :≡ code, while a1 :≡ N and
a2 :≡ S and m :≡ merid(x1) for some x1 : X, and finally b :≡ q is some path N = S. The com-
putation rule for induction over ΣX identifies apdC(m) with a path constructed in a certain way
out of univalence and function extensionality. The second function described in Lemma 8.6.10
essentially consists of undoing these applications of univalence and function extensionality, re-
ducing back to the particular functions (8.6.9) that we defined using Lemma 8.6.2. Therefore,
Lemma 8.6.10 says that transporting along pair=(q, t) essentially recovers these functions.

Finally, by construction, when x1 or x2 coincides with x0 and the input is in the image of |– |2n,
we know more explicitly what these functions are. Thus, for any x2 : X, we have

transport
ˆcode(pair=(merid(x0), t), |(x2, r)|2n) =

∣∣(x1, r′)
∣∣
2n (8.6.11)

where r : merid(x2) � merid(x0)
−1 = transportB(merid(x0)

−1, q) is arbitrary as before, and r′ :
merid(x2) = q is obtained from r by identifying its end point with q �merid(x0)

−1 and canceling
merid(x0)

−1. Similarly, for any x1 : X, we have

transport
ˆcode(pair=(merid(x1), t), |(x0, r)|2n) =

∣∣(x1, r′′)
∣∣
2n (8.6.12)

where r : merid(x0) �merid(x0)
−1 = transportB(merid(x1)

−1, q), and r′′ : merid(x1) = q is obtained
by identifying its end point and rearranging paths.

Proof of Theorem 8.6.4. It remains to show that code(y, p) is contractible for each y : ΣX and p :
N = y. First we must choose a center of contraction, say c(y, p) : code(y, p). This corresponds to
the definition of the function encode in our previous proofs, so we define it by transport. Note
that in the special case when y is N and p is reflN, we have

code(N, reflN) ≡
∥∥∥∑(x:X)(merid(x) �merid(x0)

−1 = reflN)
∥∥∥

2n
.

Thus, we can choose c(N, reflN) :≡
∣∣∣(x0, rinvmerid(x0))

∣∣∣
2n

, where rinvq is the obvious path q � q−1 =

refl for any q. We can now obtain c : ∏(y:ΣX) ∏(p:N=y) code(y, p) by path induction on p, but it
will be important below that we can also give a concrete definition in terms of transport:

c(y, p) :≡ transport
ˆcode(pair=(p, tidp), c(N, reflN))

where ˆcode :
(

∑(y:ΣX)(N = y)
)
→ U is the uncurried version of code, and tidp : p∗(refl) = p is a

standard lemma.
Next, we must show that every element of code(y, p) is equal to c(y, p). Again, by path

induction, it suffices to assume y is N and p is reflN. In fact, we will prove it more generally when
y is N and p is arbitrary. That is, we will show that for any p : N = N and d : code(N, p) we have
d = c(N, p). Since this equality is a (2n− 1)-type, we may assume d is of the form |(x1, r)|2n for
some x1 : X and r : merid(x1) �merid(x0)

−1 = p.
Now by a further path induction, we may assume that r is reflexivity, and p is merid(x1) �

merid(x0)
−1. (This is why we generalized to arbitrary p above.) Thus, we have to prove that∣∣∣(x1, refl

merid(x1) �merid(x0)
−1)
∣∣∣
2n

= c
(
N, refl

merid(x1) �merid(x0)
−1

)
. (8.6.13)

268 CHAPTER 8. HOMOTOPY THEORY

By definition, the right-hand side of this equality is

transport
ˆcode
(
pair=(merid(x1) �merid(x0)

−1,), |(x0,)|2n

)
= transport

ˆcode
(
pair=(merid(x0)

−1,),

transport
ˆcode
(
pair=(merid(x1),), |(x0,)|2n

))
= transport

ˆcode
(
pair=(merid(x0)

−1,), |(x1,)|2n

)
= |(x1,)|2n

where the underscore ought to be filled in with suitable coherence paths. Here the first step
is functoriality of transport, the second invokes (8.6.12), and the third invokes (8.6.11) (with
transport moved to the other side). Thus we have the same first component as the left-hand side
of (8.6.13). We leave it to the reader to verify that the coherence paths all cancel, giving reflexivity
in the second component.

Corollary 8.6.14 (Freudenthal Equivalence). Suppose that X is n-connected and pointed, with n ≥ 0.
Then ∥X∥2n ≃ ∥ΩΣ(X)∥2n.

Proof. By Theorem 8.6.4, σ is 2n-connected. By Lemma 7.5.14, it is therefore an equivalence on
2n-truncations.

One important corollary of the Freudenthal suspension theorem is that the homotopy groups
of spheres are stable in a certain range (these are the northeast-to-southwest diagonals in Ta-
ble 8.1):

Corollary 8.6.15 (Stability for Spheres). If k ≤ 2n− 2, then πk+1(Sn+1) = πk(Sn).

Proof. Assume k ≤ 2n − 2. By Corollary 8.2.2, Sn is (n − 1)-connected. Therefore, by Corol-
lary 8.6.14,

∥Ω(Σ(Sn))∥2(n−1) = ∥S
n∥2(n−1).

By Lemma 7.3.15, because k ≤ 2(n − 1), applying ∥–∥k to both sides shows that this equation
holds for k:

∥Ω(Σ(Sn))∥k = ∥S
n∥k. (8.6.16)

Then, the main idea of the proof is as follows; we omit checking that these equivalences act
appropriately on the base points of these spaces, and that for k > 0 the equivalences respect
multiplication:

πk+1(S
n+1) ≡

∥∥∥Ωk+1(Sn+1)
∥∥∥

0

≡
∥∥∥Ωk(Ω(Sn+1))

∥∥∥
0

≡
∥∥∥Ωk(Ω(Σ(Sn)))

∥∥∥
0

= Ωk(∥(Ω(Σ(Sn)))∥k) (by Theorem 7.3.12)

= Ωk(∥Sn∥k) (by (8.6.16))

=
∥∥∥Ωk(Sn)

∥∥∥
0

(by Theorem 7.3.12)

≡ πk(S
n).

8.7 THE VAN KAMPEN THEOREM 269

This means that once we have calculated one entry in one of these stable diagonals, we know
all of them. For example:

Theorem 8.6.17. πn(Sn) = Z for every n ≥ 1.

Proof. The proof is by induction on n. We already have π1(S
1) = Z (Corollary 8.1.11) and

π2(S2) = Z (Corollary 8.5.2). When n ≥ 2, n ≤ (2n − 2). Therefore, by Corollary 8.6.15,
πn+1(Sn+1) = πn(Sn), and this equivalence, combined with the inductive hypothesis, gives the
result.

Corollary 8.6.18. Sn+1 is not an n-type for any n ≥ −1.

Corollary 8.6.19. π3(S2) = Z.

Proof. By Corollary 8.5.2, π3(S2) = π3(S3). But by Theorem 8.6.17, π3(S3) = Z.

8.7 The van Kampen theorem

The van Kampen theorem calculates the fundamental group π1 of a (homotopy) pushout of
spaces. It is traditionally stated for a topological space X which is the union of two open sub-
spaces U and V, but in homotopy-theoretic terms this is just a convenient way of ensuring that
X is the pushout of U and V over their intersection. Thus, we will prove a version of the van
Kampen theorem for arbitrary pushouts.

In this section we will describe a proof of the van Kampen theorem which uses the same
encode-decode method that we used for π1(S

1) in §8.1. There is also a more homotopy-theoretic
approach; see Exercise 9.11.

We need a more refined version of the encode-decode method. In §8.1 (as well as in §§2.12
and 2.13) we used it to characterize the path space of a (higher) inductive type W — deriving
as a consequence a characterization of the loop space Ω(W), and thereby also of its 0-truncation
π1(W). In the van Kampen theorem, our goal is only to characterize the fundamental group
π1(W), and we do not have any explicit description of the loop spaces or the path spaces to use.

It turns out that we can use the same technique directly for a truncated version of the path
fibration, thereby characterizing not only the fundamental group π1(W), but also the whole fun-
damental groupoid. Specifically, for a type X, write Π1X : X → X → U for the 0-truncation of its
identity type, i.e. Π1X(x, y) :≡ ∥x = y∥0. Note that we have induced groupoid operations

(– � –) : Π1X(x, y)→ Π1X(y, z)→ Π1X(x, z)

(–)−1 : Π1X(x, y)→ Π1X(y, x)

reflx : Π1X(x, x)

ap f : Π1X(x, y)→ Π1Y(f x, f y)

for which we use the same notation as the corresponding operations on paths.

8.7.1 Naive van Kampen

We begin with a “naive” version of the van Kampen theorem, which is useful but not quite as
useful as the classical version. In §8.7.2 we will improve it to a more useful version.

Given types A, B, C and functions f : A → B and g : A → C, let P be their pushout B ⊔A C.
As we saw in §6.8, P is the higher inductive type generated by

270 CHAPTER 8. HOMOTOPY THEORY

• i : B→ P,
• j : C → P, and
• for all x : A, a path kx : i f x = jgx.

Define code : P→ P→ U by double induction on P as follows.

• code(ib, ib′) is a set-quotient (see §6.10) of the type of sequences

(b, p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yn, pn, b′)

where

– n : N

– xk : A and yk : A for 0 < k ≤ n
– p0 : Π1B(b, f x1) and pn : Π1B(f yn, b′) for n > 0, and p0 : Π1B(b, b′) for n = 0

– pk : Π1B(f yk, f xk+1) for 1 ≤ k < n
– qk : Π1C(gxk, gyk) for 1 ≤ k ≤ n

The quotient is generated by the following equalities:

(. . . , qk, yk, refl f yk , yk, qk+1, . . .) = (. . . , qk � qk+1, . . .)

(. . . , pk, xk, reflgxk , xk, pk+1, . . .) = (. . . , pk � pk+1, . . .)

(see Remark 8.7.3 below). We leave it to the reader to define this type of sequences precisely
as an inductive type.

• code(jc, jc′) is identical, with the roles of B and C reversed. We likewise notationally reverse
the roles of x and y, and of p and q.

• code(ib, jc) and code(jc, ib) are similar, with the parity changed so that they start in one
type and end in the other.

• For a : A and b : B, we require an equivalence

code(ib, i f a) ≃ code(ib, jga). (8.7.1)

We define this to consist of the two functions defined on sequences by

(. . . , yn, pn, f a) 7→ (. . . , yn, pn, a, reflga, ga),

(. . . , xn, pn, a, refl f a, f a)← [(. . . , xn, pn, ga).

Both of these functions are easily seen to respect the equivalence relations, and hence to
define functions on the types of codes. The left-to-right-to-left composite is

(. . . , yn, pn, f a) 7→ (. . . , yn, pn, a, reflga, a, refl f a, f a)

which is equal to the identity by a generating equality of the quotient. The other composite
is analogous. Thus we have defined an equivalence (8.7.1).

• Similarly, we require equivalences

code(jc, i f a) ≃ code(jc, jga)

code(i f a, ib) ≃ (jga, ib)

code(i f a, jc) ≃ (jga, jc)

all of which are defined in exactly the same way (the second two by adding reflexivity
terms on the beginning rather than the end).

8.7 THE VAN KAMPEN THEOREM 271

• Finally, we need to know that for a, a′ : A, the following diagram commutes:

code(i f a, i f a′) //

��

code(i f a, jga′)

��

code(jga, i f a′) // code(jga, jga′)

(8.7.2)

This amounts to saying that if we add something to the beginning and then something to
the end of a sequence, we might as well have done it in the other order.

Remark 8.7.3. One might expect to see in the definition of code some additional generating equa-
tions for the set-quotient, such as

(. . . , pk−1 � f w, x′k, qk, . . .) = (. . . , pk−1, xk, gw � qk, . . .) (for w : Π1A(xk, x′k))

(. . . , qk � gw, y′k, pk, . . .) = (. . . , qk, yk, f w � pk, . . .). (for w : Π1A(yk, y′k))

However, these are not necessary! In fact, they follow automatically by path induction on w.
This is the main difference between the “naive” van Kampen theorem and the more refined one
we will consider in the next subsection.

Continuing on, we can characterize transporting in the fibration code:

• For p : b =B b′ and u : P, we have

transportb 7→code(u,ib)(p, (. . . , yn, pn, b)) = (. . . , yn, pn � p, b′).

• For q : c =C c′ and u : P, we have

transportc 7→code(u,jc)(q, (. . . , xn, qn, c)) = (. . . , xn, qn � q, c′).

Here we are abusing notation by using the same name for a path in X and its image in Π1X.
Note that transport in Π1X is also given by concatenation with (the image of) a path. From this
we can prove the above statements by induction on u. We also have:

• For a : A and u : P,

transportv 7→code(u,v)(ha, (. . . , yn, pn, f a)) = (. . . , yn, pn, a, reflga, ga).

This follows essentially from the definition of code.
We also construct a function

r : ∏
u:P

code(u, u)

by induction on u as follows:

rib :≡ (b, reflb, b)

rjc :≡ (c, reflc, c)

and for rka we take the composite equality

(ka, ka)∗(f a, refl f a, f a) = (ga, reflga, a, refl f a, a, reflga, ga)

= (ga, reflga, ga)

where the first equality is by the observation above about transporting in code, and the second
is an instance of the set quotient relation used to define code.

We will now prove:

272 CHAPTER 8. HOMOTOPY THEORY

Theorem 8.7.4 (Naive van Kampen theorem). For all u, v : P there is an equivalence

Π1P(u, v) ≃ code(u, v).

Proof. To define a function
encode : Π1P(u, v)→ code(u, v)

it suffices to define a function (u =P v) → code(u, v), since code(u, v) is a set. We do this by
transport:

encode(p) :≡ transportv 7→code(u,v)(p, r(u)).

Now to define
decode : code(u, v)→ Π1P(u, v)

we proceed as usual by induction on u, v : P. In each case for u and v, we apply i or j to all
the equalities pk and qk as appropriate and concatenate the results in P, using h to identify the
endpoints. For instance, when u ≡ ib and v ≡ ib′, we define

decode(b, p0, x1, q1, y1, p1, . . . , yn, pn, b′) :≡ (p0) � h(x1) � j(q1) � h(y1)
−1 � i(p1) � · · · � h(yn)

−1 � i(pn).
(8.7.5)

This respects the set-quotient equivalence relation and the equivalences such as (8.7.1), since
h : f i ∼ gj is natural and f and g are functorial.

As usual, to show that the composite

Π1P(u, v) encode−−−→ code(u, v) decode−−−→ Π1P(u, v)

is the identity, we first peel off the 0-truncation (since the codomain is a set) and then apply path
induction. The input reflu goes to ru, which then goes back to reflu (applying a further induction
on u to decompose decode(ru)).

Finally, consider the composite

code(u, v) decode−−−→ Π1P(u, v) encode−−−→ code(u, v).

We proceed by induction on u, v : P. When u ≡ ib and v ≡ ib′, this composite is

(b, p0, x1, q1, y1, p1, . . . , yn, pn, b′) 7→
(

ip0 � hx1 � jq1 � hy1
−1 � ip1 � · · · � hyn

−1 � ipn

)
∗
(rib)

= (ipn)∗ · · · (jq1)∗(hx1)∗(ip0)∗(b, reflb, b)

= (ipn)∗ · · · (jq1)∗(hx1)∗(b, p0, i f x1)

= (ipn)∗ · · · (jq1)∗(b, p0, x1, reflgx1 , jgx1)

= (ipn)∗ · · · (b, p0, x1, q1, jgy1)

=
...

= (b, p0, x1, q1, y1, p1, . . . , yn, pn, b′).

i.e., the identity function. (To be precise, there is an implicit inductive argument needed here.)
The other three point cases are analogous, and the path cases are trivial since all the types are
sets.

Theorem 8.7.4 allows us to calculate the fundamental groups of many types, provided A is a
set, for in that case, each code(u, v) is, by definition, a set-quotient of a set by a relation.

8.7 THE VAN KAMPEN THEOREM 273

Example 8.7.6. Let A :≡ 2, B :≡ 1, and C :≡ 1. Then P ≃ S1. Inspecting the definition of,
say, code(i(⋆), i(⋆)), we see that the paths all may as well be trivial, so the only information is
in the sequence of elements x1, y1, . . . , xn, yn : 2. Moreover, if we have xk = yk or yk = xk+1
for any k, then the set-quotient relations allow us to excise both of those elements. Thus, every
such sequence is equal to a canonical reduced one in which no two adjacent elements are equal.
Clearly such a reduced sequence is uniquely determined by its length (a natural number n)
together with, if n > 1, the information of whether x1 is 02 or 12, since that determines the rest
of the sequence uniquely. And these data can, of course, be identified with an integer, where n is
the absolute value and x1 encodes the sign. Thus we recover π1(S1) ∼= Z.

Since Theorem 8.7.4 asserts only a bijection of families of sets, this isomorphism π1(S1) ∼= Z

is likewise only a bijection of sets. We could, however, define a concatenation operation on code

(by concatenating sequences) and show that encode and decode form an isomorphism respecting
this structure. (In the language of Chapter 9, these would be “pregroupoids”.) We leave the
details to the reader.

Example 8.7.7. More generally, let B :≡ 1 and C :≡ 1 but A be arbitrary, so that P is the suspension
of A. Then once again the paths pk and qk are trivial, so that the only information in a path code is
a sequence of elements x1, y1, . . . , xn, yn : A. The first two generating equalities say that adjacent
equal elements can be canceled, so it makes sense to think of this sequence as a word of the form

x1y−1
1 x2y−1

2 · · · xny−1
n

in a group. Indeed, it looks similar to the free group on A (or equivalently on ∥A∥0; see Re-
mark 6.11.8), but we are considering only words that start with a non-inverted element, alternate
between inverted and non-inverted elements, and end with an inverted one. This effectively re-
duces the size of the generating set by one. For instance, if A has a point a : A, then we can
identify π1(ΣA) with the group presented by ∥A∥0 as generators with the relation |a|0 = e; see
Exercises 8.10 and 8.11 for details.

Example 8.7.8. Let A :≡ 1 and B and C be arbitrary, so that f and g simply equip B and C with
basepoints b and c, say. Then P is the wedge B ∨ C of B and C (the coproduct in the category
of based spaces). In this case, it is the elements xk and yk which are trivial, so that the only
information is a sequence of loops (p0, q1, p1, . . . , pn) with pk : π1(B, b) and qk : π1(C, c). Such
sequences, modulo the equivalence relation we have imposed, are easily identified with the
explicit description of the free product of the groups π1(B, b) and π1(C, c), as constructed in §6.11.
Thus, we have π1(B ∨ C) ∼= π1(B) ∗ π1(C).

However, Theorem 8.7.4 stops just short of being the full classical van Kampen theorem,
which handles the case where A is not necessarily a set, and states that π1(B⊔A C) ∼= π1(B) ∗π1(A)

π1(C) (with base point coming from A). Indeed, the conclusion of Theorem 8.7.4 says nothing
at all about π1(A); the paths in A are “built into the quotienting” in a type-theoretic way that
makes it hard to extract explicit information, in that code(u, v) is a set-quotient of a non-set by a
relation. For this reason, in the next subsection we consider a better version of the van Kampen
theorem.

8.7.2 The van Kampen theorem with a set of basepoints

The improvement of van Kampen we present now is closely analogous to a similar improvement
in classical algebraic topology, where A is equipped with a set S of base points. In fact, it turns out
to be unnecessary for our proof to assume that the “set of basepoints” is a set — it might just as

274 CHAPTER 8. HOMOTOPY THEORY

well be an arbitrary type; the utility of assuming S is a set arises later, when applying the theorem
to obtain computations. What is important is that S contains at least one point in each connected
component of A. We state this in type theory by saying that we have a type S and a function
k : S → A which is surjective, i.e. (−1)-connected. If S ≡ A and k is the identity function, then
we will recover the naive van Kampen theorem. Another example to keep in mind is when A
is pointed and (0-)connected, with k : 1 → A the point: by Lemmas 7.5.2 and 7.5.11 this map is
surjective just when A is 0-connected.

Let A, B, C, f , g, P, i, j, h be as in the previous section. We now define, given our surjective
map k : S → A, an auxiliary type which improves the connectedness of k. Let T be the higher
inductive type generated by

• A function ℓ : S→ T, and

• For each s, s′ : S, a function m : (ks =A ks′)→ (ℓs =T ℓs′).

There is an obvious induced function k : T → A such that kℓ = k, and any p : ks = ks′ is equal to

the composite ks = kℓs
kmp
= kℓs′ = ks′.

Lemma 8.7.9. k is 0-connected.

Proof. We must show that for all a : A, the 0-truncation of the type ∑(t:T)(kt = a) is contractible.
Since contractibility is a mere proposition and k is (−1)-connected, we may assume that a = ks
for some s : S. Now we can take the center of contraction to be |(ℓs, q)|0 where q is the equality
kℓs = ks.

It remains to show that for any ϕ :
∥∥∥∑(t:T)(kt = ks)

∥∥∥
0

we have ϕ = |(ℓs, q)|0. Since the latter

is a mere proposition, and in particular a set, we may assume that ϕ = |(t, p)|0 for t : T and
p : kt = ks.

Now we can do induction on t : T. If t ≡ ℓs′, then ks′ = kℓs′
p
= ks yields via m an equality

ℓs = ℓs′. Hence by definition of k and of equality in homotopy fibers, we obtain an equality
(ks′, p) = (ks, q), and thus |(ks′, p)|0 = |(ks, q)|0. Next we must show that as t varies along m

these equalities agree. But they are equalities in a set (namely
∥∥∥∑(t:T)(kt = ks)

∥∥∥
0
), and hence this

is automatic.

Remark 8.7.10. T can be regarded as the (homotopy) coequalizer of the “kernel pair” of k. If S
and A were sets, then the (−1)-connectivity of k would imply that A is the 0-truncation of this
coequalizer (see Chapter 10). For general types, higher topos theory suggests that (−1)-connec-
tivity of k will imply instead that A is the colimit (a.k.a. “geometric realization”) of the “simplicial
kernel” of k. The type T is the colimit of the “1-skeleton” of this simplicial kernel, so it makes
sense that it improves the connectivity of k by 1. More generally, we might expect the colimit of
the n-skeleton to improve connectivity by n.

Now we define code : P→ P→ U by double induction as follows

• code(ib, ib′) is now a set-quotient of the type of sequences

(b, p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yn, pn, b′)

where

– n : N,

8.7 THE VAN KAMPEN THEOREM 275

– xk : S and yk : S for 0 < k ≤ n,

– p0 : Π1B(b, f kx1) and pn : Π1B(f kyn, b′) for n > 0, and p0 : Π1B(b, b′) for n = 0,

– pk : Π1B(f kyk, f kxk+1) for 1 ≤ k < n,

– qk : Π1C(gkxk, gkyk) for 1 ≤ k ≤ n.

The quotient is generated by the following equalities (see Remark 8.7.3):

(. . . , qk, yk, refl f yk , yk, qk+1, . . .) = (. . . , qk � qk+1, . . .)

(. . . , pk, xk, reflgxk , xk, pk+1, . . .) = (. . . , pk � pk+1, . . .)

(. . . , pk−1 � f w, x′k, qk, . . .) = (. . . , pk−1, xk, gw � qk, . . .) (for w : Π1A(kxk, kx′k))

(. . . , qk � gw, y′k, pk, . . .) = (. . . , qk, yk, f w � pk, . . .). (for w : Π1A(kyk, ky′k))

We will need below the definition of the case of decode on such a sequence, which as before
concatenates all the paths pk and qk together with instances of h to give an element of
Π1P(i f b, i f b′), cf. (8.7.5). As before, the other three point cases are nearly identical.

• For a : A and b : B, we require an equivalence

code(ib, i f a) ≃ code(ib, jga). (8.7.11)

Since code is set-valued, by Lemma 8.7.9 we may assume that a = kt for some t : T. Next,
we can do induction on t. If t ≡ ℓs for s : S, then we define (8.7.11) as in §8.7.1:

(. . . , yn, pn, f ks) 7→ (. . . , yn, pn, s, reflgks, gks),

(. . . , xn, pn, s, refl f ks, f ks)← [(. . . , xn, pn, gks).

These respect the equivalence relations, and define quasi-inverses just as before. Now
suppose t varies along ms,s′(w) for some w : ks = ks′; we must show that (8.7.11) respects
transporting along kmw. By definition of k, this essentially boils down to transporting
along w itself. By the characterization of transport in path types, what we need to show is
that

w∗(. . . , yn, pn, f ks) = (. . . , yn, pn � f w, f ks′)

is mapped by (8.7.11) to

w∗(. . . , yn, pn, s, reflgks, gks) = (. . . , yn, pn, s, reflgks � gw, gks′)

But this follows directly from the new generators we have imposed on the set-quotient
relation defining code.

• The other three requisite equivalences are defined similarly.

• Finally, since the commutativity (8.7.2) is a mere proposition, by (−1)-connectedness of k
we may assume that a = ks and a′ = ks′, in which case it follows exactly as before.

Theorem 8.7.12 (van Kampen with a set of basepoints). For all u, v : P there is an equivalence

Π1P(u, v) ≃ code(u, v).

with code defined as in this section.

276 CHAPTER 8. HOMOTOPY THEORY

Proof. Basically just like before. To show that decode respects the new generators of the quotient
relation, we use the naturality of h. And to show that decode respects the equivalences such
as (8.7.11), we need to induct on k and on T in order to decompose those equivalences into
their definitions, but then it becomes again simply functoriality of f and g. The rest is easy. In
particular, no additional argument is required for encode ◦ decode, since the goal is to prove an
equality in a set, and so the case of h is trivial.

Theorem 8.7.12 allows us to calculate the fundamental group of a space A, even when A is
not a set, provided S is a set, for in that case, each code(u, v) is, by definition, a set-quotient of a
set by a relation. In that respect, it is an improvement over Theorem 8.7.4.

Example 8.7.13. Suppose S :≡ 1, so that A has a basepoint a :≡ k(⋆) and is connected. Then code
for loops in the pushout can be identified with alternating sequences of loops in π1(B, f (a))
and π1(C, g(a)), modulo an equivalence relation which allows us to slide elements of π1(A, a)
between them (after applying f and g respectively). Thus, π1(P) can be identified with the amal-
gamated free product π1(B) ∗π1(A) π1(C) (the pushout in the category of groups), as constructed
in §6.11. This (in the case when B and C are open subspaces of P and A their intersection) is
probably the most classical version of the van Kampen theorem.

Example 8.7.14. As a special case of Example 8.7.13, suppose additionally that C :≡ 1, so that P is
the cofiber B/A. Then every loop in C is equal to reflexivity, so the relations on path codes allow
us to collapse all sequences to a single loop in B. The additional relations require that multiplying
on the left, right, or in the middle by an element in the image of π1(A) is the identity. We can
thus identify π1(B/A) with the quotient of the group π1(B) by the normal subgroup generated
by the image of π1(A).

Example 8.7.15. As a further special case of Example 8.7.14, let B :≡ S1 ∨ S1, let A :≡ S1, and let
f : A → B pick out the composite loop p � q � p−1 � q−1, where p and q are the generating loops
in the two copies of S1 comprising B. Then P is a presentation of the torus T2. Indeed, it is not
hard to identify P with the presentation of T2 as described in §6.7, using the cone on a particular
loop. Thus, π1(T2) is the quotient of the free group on two generators (i.e., π1(B)) by the relation
p � q � p−1 � q−1 = 1. This clearly yields the free abelian group on two generators, which is Z×Z.

Example 8.7.16. More generally, any CW complex can be obtained by repeatedly “coning off”
spheres, as described in §6.7. That is, we start with a set X0 of points (“0-cells”), which is the
“0-skeleton” of the CW complex. We take the pushout

S1 × S0 f1
//

��

X0

��

1 // X1

for some set S1 of 1-cells and some family f1 of “attaching maps”, obtaining the “1-skeleton” X1.
Then we take the pushout

S2 × S1 f2
//

��

X1

��

1 // X2

for some set S2 of 2-cells and some family f2 of attaching maps, obtaining the 2-skeleton X2, and
so on. The fundamental group of each pushout can be calculated from the van Kampen theorem:

8.8 WHITEHEAD’S THEOREM AND WHITEHEAD’S PRINCIPLE 277

we obtain the group presented by generators derived from the 1-skeleton, and relations derived
from S2 and f2. The pushouts after this stage do not alter the fundamental group, since π1(S

n) is
trivial for n > 1 (see §8.3).

Example 8.7.17. In particular, suppose given any presentation of a (set-)group G = ⟨X | R⟩, with
X a set of generators and R a set of words in these generators. Let B :≡ ∨

X S1 and A :≡ ∨
R S1,

with f : A → B sending each copy of S1 to the corresponding word in the generating loops of
B. It follows that π1(P) ∼= G; thus we have constructed a connected type whose fundamental
group is G. Since any group has a presentation, any group is the fundamental group of some
type. If we 1-truncate such a type, we obtain a type whose only nontrivial homotopy group is G;
this is called an Eilenberg–Mac Lane space K(G, 1).

8.8 Whitehead’s theorem and Whitehead’s principle

In classical homotopy theory, a map f : A → B which induces an isomorphism πn(A, a) ∼=
πn(B, f (a)) for all points a in A (and also an isomorphism π0(A) ∼= π0(B)) is necessarily a ho-
motopy equivalence, as long as the spaces A and B are well-behaved (e.g. have the homotopy
types of CW-complexes). This is known as Whitehead’s theorem. In fact, the “ill-behaved” spaces
for which Whitehead’s theorem fails are invisible to type theory. Roughly, the well-behaved
topological spaces suffice to present ∞-groupoids, and homotopy type theory deals with ∞-
groupoids directly rather than actual topological spaces. Thus, one might expect that White-
head’s theorem would be true in univalent foundations.

However, this is not the case: Whitehead’s theorem is not provable. In fact, there are known
models of type theory in which it fails to be true, although for entirely different reasons than
its failure for ill-behaved topological spaces. These models are “non-hypercomplete ∞-toposes”
(see [Lur09]); roughly speaking, they consist of sheaves of ∞-groupoids over ∞-dimensional
base spaces.

From a foundational point of view, therefore, we may speak of Whitehead’s principle as a “clas-
sicality axiom”, akin to LEM and AC. It may consistently be assumed, but it is not part of the
computationally motivated type theory, nor does it hold in all natural models. But when work-
ing from set-theoretic foundations, this principle is invisible: it cannot fail to be true in a world
where ∞-groupoids are built up out of sets (using topological spaces, simplicial sets, or any other
such model).

This may seem odd, but actually it should not be surprising. Homotopy type theory is the
abstract theory of homotopy types, whereas the homotopy theory of topological spaces or sim-
plicial sets in set theory is a concrete model of this theory, in the same way that the integers are a
concrete model of the abstract theory of rings. It is to be expected that any concrete model will
have special properties which are not intrinsic to the corresponding abstract theory, but which
we might sometimes want to assume as additional axioms (e.g. the integers are a Principal Ideal
Domain, but not all rings are).

It is beyond the scope of this book to describe any models of type theory, so we will not
explain how Whitehead’s principle might fail in some of them. However, we can prove that it
holds whenever the types involved are n-truncated for some finite n, by “downward” induc-
tion on n. In addition to being of interest in its own right (for instance, it implies the essential
uniqueness of Eilenberg–Mac Lane spaces), the proof of this result will hopefully provide some
intuitive explanation for why we cannot hope to prove an analogous theorem without truncation
hypotheses.

278 CHAPTER 8. HOMOTOPY THEORY

We begin with the following modification of Theorem 4.6.3, which will eventually supply the
induction step in the proof of the truncated Whitehead’s principle. It may be regarded as a type-
theoretic, ∞-groupoidal version of the classical statement that a fully faithful and essentially
surjective functor is an equivalence of categories.

Theorem 8.8.1. Suppose f : A→ B is a function such that

(i) ∥ f ∥0 : ∥A∥0 → ∥B∥0 is surjective, and
(ii) for any x, y : A, the function ap f : (x =A y)→ (f (x) =B f (y)) is an equivalence.

Then f is an equivalence.

Proof. Note that (ii) is precisely the statement that f is an embedding, c.f. §4.6. Thus, by Theo-
rem 4.6.3, it suffices to show that f is surjective, i.e. that for any b : B we have

∥∥fib f (b)
∥∥
−1. Sup-

pose given b; then since ∥ f ∥0 is surjective, there merely exists an a : A such that ∥ f ∥0(|a|0) = |b|0.
And since our goal is a mere proposition, we may assume given such an a. Then we have
| f (a)|0 = ∥ f ∥0(|a|0) = |b|0, hence ∥ f (a) = b∥−1. Again, since our goal is still a mere proposition,
we may assume f (a) = b. Hence fib f (b) is inhabited, and thus merely inhabited.

Since homotopy groups are truncations of loop spaces, rather than path spaces, we need to
modify this theorem to speak about these instead. Recall the map Ω f from Definition 8.4.2.

Corollary 8.8.2. Suppose f : A→ B is a function such that

(i) ∥ f ∥0 : ∥A∥0 → ∥B∥0 is a bijection, and
(ii) for any x : A, the function Ω f : Ω(A, x)→ Ω(B, f (x)) is an equivalence.

Then f is an equivalence.

Proof. By Theorem 8.8.1, it suffices to show that ap f : (x =A y) → (f (x) =B f (y)) is an equiv-
alence for any x, y : A. And by Corollary 4.4.6, we may assume f (x) =B f (y). In particular,
| f (x)|0 = | f (y)|0, so since ∥ f ∥0 is an equivalence, we have |x|0 = |y|0, hence |x = y|−1. Since
we are trying to prove a mere proposition (ap f being an equivalence), we may assume given
p : x = y. But now the following square commutes up to homotopy:

Ω(A, x)
– � p

//

Ω f
��

(x =A y)

ap f

��

Ω(B, f (x))
– � f (p)

// (f (x) =B f (y)).

The top and bottom maps are equivalences, and the left-hand map is so by assumption. Hence,
by the 2-out-of-3 property, so is the right-hand map.

Now we can prove the truncated Whitehead’s principle.

Theorem 8.8.3. Suppose A and B are n-types and f : A→ B is such that

(i) ∥ f ∥0 : ∥A∥0 → ∥B∥0 is a bijection, and
(ii) πk(f) : πk(A, x)→ πk(B, f (x)) is a bijection for all k ≥ 1 and all x : A.

Then f is an equivalence.

8.8 WHITEHEAD’S THEOREM AND WHITEHEAD’S PRINCIPLE 279

Condition (i) is almost the case of (ii) when k = 0, except that it makes no reference to any
basepoint x : A.

Proof. We proceed by induction on n. When n = −2, the statement is trivial. Thus, suppose it
to be true for all functions between n-types, and let A and B be (n + 1)-types and f : A → B as
above. The first condition in Corollary 8.8.2 holds by assumption, so it will suffice to show that
for any x : A, the function Ω f : Ω(A, x)→ Ω(B, f (x)) is an equivalence.

Since Ω(A, x) and Ω(B, f (x)) are n-types we can apply the induction hypothesis. We need
to check that ∥Ω f ∥0 is a bijection, and that for all k ≥ 1 and p : x = x the map πk(Ω f) : πk(x =

x, p) → πk(f (x) = f (x), Ω f (p)) is a bijection. The first statement holds by assumption, since
∥Ω f ∥0 ≡ π1(f). To prove the second statement, we generalize it first: we show that for all y : A
and q : x = y we have πk(ap f) : πk(x = y, q) → πk(f (x) = f (y), ap f (q)). This implies the
desired statement, since when y :≡ x, we have πk(Ω f) = πk(ap f) modulo identifying their base
points Ω f (p) = ap f (p). To prove the generalization, it suffices by path induction to prove it
when q is refla. In this case, we have πk(ap f) = πk(Ω f) = πk+1(f), and πk+1(f) is an bijection
by the original assumptions.

Note that if A and B are not n-types for any finite n, then there is no way for the induction to
get started.

Corollary 8.8.4. If A is a 0-connected n-type and πk(A, a) = 0 for all k and a : A, then A is contractible.

Proof. Apply Theorem 8.8.3 to the map A→ 1.

As an application, we can deduce the converse of Corollary 8.4.8.

Corollary 8.8.5. For n ≥ 0, a map f : A→ B is n-connected if and only if the following all hold:

(i) ∥ f ∥0 : ∥A∥0 → ∥B∥0 is an isomorphism.
(ii) For any a : A and k ≤ n, the map πk(f) : πk(A, a)→ πk(B, f (a)) is an isomorphism.

(iii) For any a : A, the map πn+1(f) : πn+1(A, a)→ πn+1(B, f (a)) is surjective.

Proof. The “only if” direction is Corollary 8.4.8. Conversely, by the long exact sequence of a
fibration (Theorem 8.4.6), the hypotheses imply that πk(fib f (f (a))) = 0 for all k ≤ n and a : A,
and that

∥∥fib f (f (a))
∥∥

0 is contractible. Since πk(fib f (f (a))) = πk(
∥∥fib f (f (a))

∥∥
n) for k ≤ n, and∥∥fib f (f (a))

∥∥
n is n-connected, by Corollary 8.8.4 it is contractible for any a.

It remains to show that
∥∥fib f (b)

∥∥
n is contractible for b : B not necessarily of the form f (a).

However, by assumption, there is x : ∥A∥0 with |b|0 = ∥ f ∥0(x). Since contractibility is a mere
proposition, we may assume x is of the form |a|0 for a : A, in which case |b|0 = ∥ f ∥0(|a|0) =

| f (a)|0, and therefore ∥b = f (a)∥−1. Again since contractibility is a mere proposition, we may
assume b = f (a), and the result follows.

A map f such that ∥ f ∥0 is a bijection and πk(f) is a bijection for all k is called ∞-connected
or a weak equivalence. This is equivalent to asking that f be n-connected for all n. A type Z is
called ∞-truncated or hypercomplete if the induced map

(– ◦ f) : (B→ Z)→ (A→ Z)

is an equivalence whenever f is ∞-connected — that is, if Z thinks every ∞-connected map is an
equivalence. Then if we want to assume Whitehead’s principle as an axiom, we may use either
of the following equivalent forms.

280 CHAPTER 8. HOMOTOPY THEORY

• Every ∞-connected function is an equivalence.
• Every type is ∞-truncated.

In higher topos models, the ∞-truncated types form a reflective subuniverse in the sense of §7.7
(the “hypercompletion” of an (∞, 1)-topos), but we do not know whether this is true in general.

It may not be obvious that there are any types which are not n-types for any n, but in fact
there are. Indeed, in classical homotopy theory, Sn has this property for any n ≥ 2. We have not
proven this fact in homotopy type theory yet, but there are other types which we can prove to
have “infinite truncation level”.

Example 8.8.6. Suppose we have B : N → U such that for each n, the type B(n) contains an n-
loop which is not equal to n-fold reflexivity, say pn : Ωn(B(n), bn) with pn ̸= refln

bn
. (For instance,

we could define B(n) :≡ Sn, with pn the image of 1 : Z under the isomorphism πn(Sn) ∼= Z.)
Consider C :≡ ∏(n:N) B(n), with the point c : C defined by c(n) :≡ bn. Since loop spaces
commute with products, for any m we have

Ωm(C, c) ≃ ∏
n:N

Ωm(B(n), bn).

Under this equivalence, reflm
c corresponds to the function (n 7→ reflm

bn
). Now define qm in the

right-hand type by

qm(n) :≡
{

pn m = n

reflm
bn

m ̸= n.

If we had qm = (n 7→ reflm
bn
), then we would have pn = refln

bn
, which is not the case. Thus,

qm ̸= (n 7→ reflm
bn
), and so there is a point of Ωm(C, c) which is unequal to reflm

c . Hence C is not
an m-type, for any m : N.

We expect it should also be possible to show that a universe U itself is not an n-type for any
n, using the fact that it contains higher inductive types such as Sn for all n. However, this has not
yet been done.

8.9 A general statement of the encode-decode method

We have used the encode-decode method to characterize the path spaces of various types, includ-
ing coproducts (Theorem 2.12.5), natural numbers (Theorem 2.13.1), truncations (Theorem 7.3.12),
the circle (Corollary 8.1.10), suspensions (Theorem 8.6.4), and pushouts (Theorem 8.7.12). Vari-
ants of this technique are used in the proofs of many of the other theorems mentioned in the
introduction to this chapter, such as a direct proof of πn(Sn), the Blakers–Massey theorem, and
the construction of Eilenberg–Mac Lane spaces. While it is tempting to try to abstract the method
into a lemma, this is difficult because slightly different variants are needed for different prob-
lems. For example, different variations on the same method can be used to characterize a loop
space (as in Theorem 2.12.5 and Corollary 8.1.10) or a whole path space (as in Theorem 2.13.1),
to give a complete characterization of a loop space (e.g. Ω1(S1)) or only to characterize some
truncation of it (e.g. van Kampen), and to calculate homotopy groups or to prove that a map is
n-connected (e.g. Freudenthal and Blakers–Massey).

However, we can state lemmas for specific variants of the method. The proofs of these lem-
mas are almost trivial; the main point is to clarify the method by stating them in generality. The
simplest case is using an encode-decode method to characterize the loop space of a type, as in
Theorem 2.12.5 and Corollary 8.1.10.

8.9 A GENERAL STATEMENT OF THE ENCODE-DECODE METHOD 281

Lemma 8.9.1 (Encode-decode for Loop Spaces). Given a pointed type (A, a0) and a fibration code :
A→ U , if

(i) c0 : code(a0),
(ii) decode : ∏(x:A) code(x)→ (a0 = x),

(iii) for all c : code(a0), transportcode(decode(c), c0) = c, and
(iv) decode(c0) = refl,

then (a0 = a0) is equivalent to code(a0).

Proof. Define encode : ∏(x:A)(a0 = x)→ code(x) by

encodex(α) = transportcode(α, c0).

We show that encodea0 and decodea0 are quasi-inverses. The composition encodea0 ◦ decodea0 is
immediate by assumption (iii). For the other composition, we show

∏
(x:A)

∏
(p:a0=x)

decodex(encodex p) = p.

By path induction, it suffices to show decodea0(encodeao refl) = refl. After reducing the transport,
it suffices to show decodea0(c0) = refl, which is assumption (iv).

If a fiberwise equivalence between (a0 = –) and code is desired, it suffices to strengthen
condition (iii) to

∏
(x:A)

∏
(c:code(x))

encodex(decodex(c)) = c.

However, to calculate a loop space (e.g. Ω(S1)), this stronger assumption is not necessary.
Another variation, which comes up often when calculating homotopy groups, characterizes

the truncation of a loop space:

Lemma 8.9.2 (Encode-decode for Truncations of Loop Spaces). Assume a pointed type (A, a0) and
a fibration code : A→ U , where for every x, code(x) is a k-type. Define

encode : ∏
x:A
∥a0 = x∥k → code(x)

by truncation recursion (using the fact that code(x) is a k-type), mapping α : a0 = x to transportcode(α, c0).
Suppose:

(i) c0 : code(a0),
(ii) decode : ∏(x:A) code(x)→ ∥a0 = x∥k,

(iii) encodea0(decodea0(c)) = c for all c : code(a0), and
(iv) decode(c0) = |refl|.

Then ∥a0 = a0∥k is equivalent to code(a0).

Proof. That decode ◦ encode is identity is immediate by (iii). To prove encode ◦ decode, we first do
a truncation induction, by which it suffices to show

∏
(x:A)

∏
(p:a0=x)

decodex(encodex(|p|k)) = |p|k.

The truncation induction is allowed because paths in a k-type are a k-type. To show this type, we
do a path induction, and after reducing the encode, use assumption (iv).

282 CHAPTER 8. HOMOTOPY THEORY

8.10 Additional Results

Though we do not present the proofs in this chapter, following results have also been established
in homotopy type theory.

Theorem 8.10.1. There exists a k such that for all n ≥ 3, πn+1(S
n) = Zk.

Notes on the proof. The proof consists of a calculation of π4(S
3), together with an appeal to sta-

bility (Corollary 8.6.15). In the classical statement of this result, k is 2. While we have not yet
checked that k is in fact 2, our calculation of π4(S

3) is constructive, like all the rest of the proofs
in this chapter. (More precisely, it doesn’t use any additional axioms such as LEM or AC, making
it as constructive as univalence and higher inductive types are.) Thus, given a computational
interpretation of homotopy type theory, we could run the proof on a computer to verify that k
is 2. This example is quite intriguing, because it is the first calculation of a homotopy group for
which we have not needed to know the answer in advance.

Theorem 8.10.2 (Blakers–Massey theorem). Suppose we are given maps f : C → X, and g : C → Y.
Taking first the pushout X ⊔C Y of f and g and then the pullback of its inclusions inl : X → X ⊔C Y ←
Y : inr, we have an induced map C → X×(X⊔CY) Y.

If f is i-connected and g is j-connected, then this induced map is (i + j)-connected. In other words,
for any points x : X, y : Y, the corresponding fiber Cx,y of (f , g) : C → X×Y gives an approximation to
the path space inl(x) =X⊔CY inr(y) in the pushout.

It should be noted that in classical algebraic topology, the Blakers–Massey theorem is often
stated in a somewhat different form, where the maps f and g are replaced by inclusions of sub-
complexes of CW complexes, and the homotopy pushout and homotopy pullback by a union
and intersection, respectively. In order to express the theorem in homotopy type theory, we have
to replace notions of this sort with ones that are homotopy-invariant. We have seen another ex-
ample of this in the van Kampen theorem (§8.7), where we had to replace a union of open subsets
by a homotopy pushout.

Theorem 8.10.3 (Eilenberg–Mac Lane Spaces). For any abelian group G and positive integer n, there
is an n-type K(G, n) such that πn(K(G, n)) = G, and πk(K(G, n)) = 0 for k ̸= n.

Theorem 8.10.4 (Covering spaces). For a connected space A, there is an equivalence between covering
spaces over A and sets with an action of π1(A).

Notes

The theorems described in this chapter are standard results in classical homotopy theory; many
are described by [Hat02]. In these notes, we review the development of the new synthetic proofs
of them in homotopy type theory. Table 8.2 lists the homotopy-theoretic theorems that have
been proven in homotopy type theory, and whether they have been computer-checked. Almost
all of these results were developed during the spring term at IAS in 2013, as part of a significant
collaborative effort. Many people contributed to these results, for example by being the principal
author of a proof, by suggesting problems to work on, by participating in many discussions and
seminars about these problems, or by giving feedback on results. The following people were
the principal authors of the first homotopy type theory proofs of the above theorems. Unless
indicated otherwise, for the theorems that have been computer-checked, the principal authors
were also the first ones to formalize the proof using a computer proof assistant.

CHAPTER 8 NOTES 283

Theorem Status

π1(S
1) ✔✔

πk<n(S
n) ✔✔

long-exact-sequence of homotopy groups ✔✔

total space of Hopf fibration is S3 ✔

π2(S2) ✔✔

π3(S2) ✔

πn(Sn) ✔✔

π4(S
3) ✔

Freudenthal suspension theorem ✔✔

Blakers–Massey theorem ✔✔

Eilenberg–Mac Lane spaces K(G, n) ✔✔

van Kampen theorem ✔✔

covering spaces ✔✔

Whitehead’s principle for n-types ✔✔

Table 8.2: Theorems from homotopy theory proved by hand (✔) and by computer (✔✔).

• Shulman gave the homotopy-theoretic calculation of π1(S
1). Licata later discovered the

encode-decode proof and the encode-decode method.

• Brunerie calculated πk<n(S
n). Licata later gave an encode-decode version.

• Voevodsky constructed the long exact sequence of homotopy groups.

• Lumsdaine constructed the Hopf fibration. Brunerie proved that its total space is S3,
thereby calculating π2(S2) and π3(S3).

• Licata and Brunerie gave a direct calculation of πn(Sn).

• Lumsdaine proved the Freudenthal suspension theorem; Licata and Lumsdaine formalized
this proof.

• Lumsdaine, Finster, and Licata proved the Blakers–Massey theorem; Lumsdaine, Brunerie,
Licata, and Hou formalized it.

• Licata gave an encode-decode calculation of π2(S2), and a calculation of πn(Sn) using the
Freudenthal suspension theorem; using similar techniques, he constructed K(G, n).

• Shulman proved the van Kampen theorem; Hou formalized this proof.

• Licata proved Whitehead’s theorem for n-types.

• Brunerie calculated π4(S
3).

• Hou established the theory of covering spaces and formalized it.

The interplay between homotopy theory and type theory was crucial to the development of
these results. For example, the first proof that π1(S

1) = Z was the one given in §8.1.5, which
follows a classical homotopy theoretic one. A type-theoretic analysis of this proof resulted in the
development of the encode-decode method. The first calculation of π2(S2) also followed clas-
sical methods, but this led quickly to an encode-decode proof of the result. The encode-decode
calculation generalized to πn(Sn), which in turn led to the proof of the Freudenthal suspension
theorem, by combining an encode-decode argument with classical homotopy-theoretic reason-
ing about connectedness, which in turn led to the Blakers–Massey theorem and Eilenberg–Mac

284 CHAPTER 8. HOMOTOPY THEORY

Lane spaces. The rapid development of this series of results illustrates the promise of our new
understanding of the connections between these two subjects.

Exercises

Exercise 8.1. Prove that homotopy groups respect products: πn(A× B) ≃ πn(A)× πn(B).

Exercise 8.2. Prove that if A is a set with decidable equality (see Definition 3.4.3), then its suspen-
sion ΣA is a 1-type. (It is an open question whether this is provable without the assumption of
decidable equality.)

Exercise 8.3. Define S∞ to be the colimit of the sequence S0 → S1 → S2 → · · · . Prove that S∞ is
contractible.

Exercise 8.4. Define S∞ to be the higher inductive type generated by

• Two points N : S∞ and S : S∞, and
• For each x : S∞, a path merid(x) : N = S.

In other words, S∞ is its own suspension. Prove that S∞ is contractible.

Exercise 8.5. Suppose f : X → Y is a function and Y is connected. Show that for any y1, y2 : Y we
have

∥∥fib f (y1) ≃ fib f (y2)
∥∥.

Exercise 8.6. For any pointed type A, let iA : ΩA→ ΩA denote inversion of loops, iA :≡ λp. p−1.
Show that iΩA : Ω2A→ Ω2A is equal to Ω(iA).

Exercise 8.7. Define a pointed equivalence to be a pointed map whose underlying function is an
equivalence.

(i) Show that the type of pointed equivalences between pointed types (X, x0) and (Y, y0) is
equivalent to (X, x0) =U• (Y, y0).

(ii) Reformulate the notion of pointed equivalence in terms of a pointed quasi-inverse and
pointed homotopies, in one of the coherent styles from Chapter 4.

Exercise 8.8. Following the example of the Hopf fibration in §8.5, define the junior Hopf fibration
as a fibration (that is, a type family) over S1 whose fiber over the basepoint is S0 and whose total
space is S1. This is also called the “twisted double cover” of the circle S1.

Exercise 8.9. Again following the example of the Hopf fibration in §8.5, define an analogous
fibration over S4 whose fiber over the basepoint is S3 and whose total space is S7. This is an
open problem in homotopy type theory (such a fibration is known to exist in classical homotopy
theory).

Exercise 8.10. Continuing from Example 8.7.7, prove that if A has a point a : A, then we can
identify π1(ΣA) with the group presented by ∥A∥0 as generators with the relation |a|0 = e. Then
show that if we assume excluded middle, this is also the free group on ∥A∥0 \ {|a|0}.
Exercise 8.11. Again continuing from Example 8.7.7, but this time without assuming A to be
pointed, show that we can identify π1(ΣA) with the group presented by generators ∥A∥0×∥A∥0
and relations

(a, b) = (b, a)−1, (a, c) = (a, b) · (b, c), and (a, a) = e.

Chapter 9

Category theory

Of the branches of mathematics, category theory is one which perhaps fits the least comfortably
in set theoretic foundations. One problem is that most of category theory is invariant under
weaker notions of “sameness” than equality, such as isomorphism in a category or equivalence
of categories, in a way which set theory fails to capture. But this is the same sort of problem
that the univalence axiom solves for types, by identifying equality with equivalence. Thus, in
univalent foundations it makes sense to consider a notion of “category” in which equality of
objects is identified with isomorphism in a similar way.

Ignoring size issues, in set-based mathematics a category consists of a set A0 of objects and,
for each x, y ∈ A0, a set homA(x, y) of morphisms. Under univalent foundations, a “naive”
definition of category would simply mimic this with a type of objects and types of morphisms. If
we allowed these types to contain arbitrary higher homotopy, then we ought to impose higher
coherence conditions, leading to some notion of (∞, 1)-category, but at present our goal is more
modest. We consider only 1-categories, and therefore we restrict the types homA(x, y) to be sets,
i.e. 0-types. If we impose no further conditions, we will call this notion a precategory.

If we add the requirement that the type A0 of objects is a set, then we end up with a definition
that behaves much like the traditional set-theoretic one. Following Toby Bartels, we call this
notion a strict category. Alternatively, we can require a generalized version of the univalence
axiom, identifying (x =A0 y) with the type iso(x, y) of isomorphisms from x to y. Since we
regard the latter choice as usually the “correct” definition, we will call it simply a category.

A good example of the difference between the three notions of category is provided by the
statement “every fully faithful and essentially surjective functor is an equivalence of categories”,
which in classical set-based category theory is equivalent to the axiom of choice.

(i) For strict categories, this is still equivalent to the axiom of choice.

(ii) For precategories, there is no consistent axiom of choice which can make it true.

(iii) For categories, it is provable without any axiom of choice.

We will prove the latter statement in this chapter, as well as other pleasant properties of cate-
gories, e.g. that equivalent categories are equal (as elements of the type of categories). We will
also describe a universal way of “saturating” a precategory A into a category Â, which we call its
Rezk completion, although it could also reasonably be called the stack completion (see the Notes).

The Rezk completion also sheds further light on the notion of equivalence of categories. For
instance, the functor A → Â is always fully faithful and essentially surjective, hence a “weak

286 CHAPTER 9. CATEGORY THEORY

equivalence”. It follows that a precategory is a category exactly when it “sees” all fully faith-
ful and essentially surjective functors as equivalences; thus our notion of “category” is already
inherent in the notion of “fully faithful and essentially surjective functor”.

We assume the reader has some basic familiarity with classical category theory. Recall that
whenever we write U it denotes some universe of types, but perhaps a different one at different
times; everything we say remains true for any consistent choice of universe levels. We will
use the basic notions of homotopy type theory from Chapters 1 and 2 and the propositional
truncation from Chapter 3, but not much else from Part I, except that our second construction of
the Rezk completion will use a higher inductive type.

9.1 Categories and precategories

In classical mathematics, there are many equivalent definitions of a category. In our case, since
we have dependent types, it is natural to choose the arrows to be a type family indexed by the
objects. This matches the way hom-types are always used in category theory: we never even
consider comparing two arrows unless we know their domains and codomains agree. Further-
more, it seems clear that for a theory of 1-categories, the hom-types should all be sets. This leads
us to the following definition.

Definition 9.1.1. A precategory A consists of the following.

(i) A type A0, whose elements are called objects. We write a : A for a : A0.
(ii) For each a, b : A, a set homA(a, b), whose elements are called arrows or morphisms.

(iii) For each a : A, a morphism 1a : homA(a, a), called the identity morphism.
(iv) For each a, b, c : A, a function

homA(b, c)→ homA(a, b)→ homA(a, c)

called composition, and denoted infix by g 7→ f 7→ g ◦ f , or sometimes simply by g f .
(v) For each a, b : A and f : homA(a, b), we have f = 1b ◦ f and f = f ◦ 1a.

(vi) For each a, b, c, d : A and

f : homA(a, b), g : homA(b, c), h : homA(c, d),

we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

The problem with the notion of precategory is that for objects a, b : A, we have two possibly-
different notions of “sameness”. On the one hand, we have the type (a =A0 b). But on the other
hand, there is the standard categorical notion of isomorphism.

Definition 9.1.2. A morphism f : homA(a, b) is an isomorphism if there is a morphism g :
homA(b, a) such that g ◦ f = 1a and f ◦ g = 1b. We write a ∼= b for the type of such isomorphisms.

Lemma 9.1.3. For any f : homA(a, b), the type “ f is an isomorphism” is a mere proposition. Therefore,
for any a, b : A the type a ∼= b is a set.

Proof. Suppose given g : homA(b, a) and η : (1a = g ◦ f) and ϵ : (f ◦ g = 1b), and similarly g′, η′,
and ϵ′. We must show (g, η, ϵ) = (g′, η′, ϵ′). But since all hom-sets are sets, their identity types
are mere propositions, so it suffices to show g = g′. For this we have

g′ = 1a ◦ g′ = (g ◦ f) ◦ g′ = g ◦ (f ◦ g′) = g ◦ 1b = g

using η and ϵ′.

9.1 CATEGORIES AND PRECATEGORIES 287

If f : a ∼= b, then we write f−1 for its inverse, which by Lemma 9.1.3 is uniquely determined.
The only relationship between these two notions of sameness that we have in a precategory

is the following.

Lemma 9.1.4 (idtoiso). If A is a precategory and a, b : A, then

(a = b)→ (a ∼= b).

Proof. By induction on identity, we may assume a and b are the same. But then we have 1a :
homA(a, a), which is clearly an isomorphism.

Evidently, this situation is analogous to the issue that motivated us to introduce the univa-
lence axiom. In fact, we have the following:

Example 9.1.5. There is a precategory Set, whose type of objects is Set, and with homSet(A, B) :≡
(A → B). The identity morphisms are identity functions and the composition is function com-
position. For this precategory, Lemma 9.1.4 is equal to (the restriction to sets of) the map idtoeqv

from §2.10.
Of course, to be more precise we should call this category SetU , since its objects are only the

small sets relative to a universe U .

Thus, it is natural to make the following definition.

Definition 9.1.6. A category is a precategory such that for all a, b : A, the function idtoisoa,b from
Lemma 9.1.4 is an equivalence.

In particular, in a category, if a ∼= b, then a = b.

Example 9.1.7. The univalence axiom implies immediately that Set is a category. One can also
show, using univalence, that any precategory of set-level structures such as groups, rings, topo-
logical spaces, etc. is a category; see §9.8.

We also note the following.

Lemma 9.1.8. In a category, the type of objects is a 1-type.

Proof. It suffices to show that for any a, b : A, the type a = b is a set. But a = b is equivalent to
a ∼= b, which is a set.

We write isotoid for the inverse (a ∼= b) → (a = b) of the map idtoiso from Lemma 9.1.4. The
following relationship between the two is important.

Lemma 9.1.9. For p : a = a′ and q : b = b′ and f : homA(a, b), we have

(p, q)∗(f) = idtoiso(q) ◦ f ◦ idtoiso(p)−1. (9.1.10)

Proof. By induction, we may assume p and q are refla and reflb respectively. Then the left-hand
side of (9.1.10) is simply f . But by definition, idtoiso(refla) is 1a, and idtoiso(reflb) is 1b, so the
right-hand side of (9.1.10) is 1b ◦ f ◦ 1a, which is equal to f .

Similarly, we can show

idtoiso(p−1) = (idtoiso(p))−1 (9.1.11)

idtoiso(p � q) = idtoiso(q) ◦ idtoiso(p) (9.1.12)

isotoid(f ◦ e) = isotoid(e) � isotoid(f) (9.1.13)

and so on.

288 CHAPTER 9. CATEGORY THEORY

Example 9.1.14. A precategory in which each set homA(a, b) is a mere proposition is equivalently
a type A0 equipped with a mere relation “≤” that is reflexive (a ≤ a) and transitive (if a ≤ b and
b ≤ c, then a ≤ c). We call this a preorder.

In a preorder, a witness f : a ≤ b is an isomorphism just when there exists some witness
g : b ≤ a. Thus, a ∼= b is the mere proposition that a ≤ b and b ≤ a. Therefore, a preorder A is a
category just when (1) each type a = b is a mere proposition, and (2) for any a, b : A0 there exists
a function (a ∼= b)→ (a = b). In other words, A0 must be a set, and ≤must be antisymmetric (if
a ≤ b and b ≤ a, then a = b). We call this a (partial) order or a poset.

Example 9.1.15. If A is a category, then A0 is a set if and only if for any a, b : A0, the type a ∼= b is
a mere proposition. Given that A is a category, this is equivalent to saying that every automor-
phism in A is an identity arrow. On the other hand, if A is a precategory such that A0 is a set, then
A is a category precisely if it is skeletal (any two isomorphic objects are equal) and every auto-
morphism is an identity arrow. Categories of this sort are sometimes called gaunt [BSP11]. There
is not really any notion of “skeletality” for our categories, unless one considers Definition 9.1.6
itself to be such.

Example 9.1.16. For any 1-type X, there is a category with X as its type of objects and with
hom(x, y) :≡ (x = y). If X is a set, we call this the discrete category on X. In general, we
call it a groupoid (see Exercise 9.6).

Example 9.1.17. For any type X, there is a precategory with X as its type of objects and with
hom(x, y) :≡ ∥x = y∥0. The composition operation

∥y = z∥0 → ∥x = y∥0 → ∥x = z∥0

is defined by induction on truncation from concatenation (y = z) → (x = y) → (x = z). We
call this the fundamental pregroupoid of X. (In fact, we have met it already in §8.7; see also
Exercise 9.11.)

Example 9.1.18. There is a precategory whose type of objects is U and with hom(X, Y) :≡ ∥X → Y∥0,
and composition defined by induction on truncation from ordinary composition (Y → Z) →
(X → Y)→ (X → Z). We call this the homotopy precategory of types.

Example 9.1.19. LetRel be the following precategory:

• Its objects are sets.

• homRel(X, Y) = X → Y → Prop.

• For a set X, we have 1X(x, x′) :≡ (x = x′).

• For R : homRel(X, Y) and S : homRel(Y, Z), their composite is defined by

(S ◦ R)(x, z) :≡
∥∥∥∑

y:Y
R(x, y)× S(y, z)

∥∥∥.

Suppose R : homRel(X, Y) is an isomorphism, with inverse S. We observe the following.

(i) If R(x, y) and S(y′, x), then (R ◦ S)(y′, y), and hence y′ = y. Similarly, if R(x, y) and S(y, x′),
then x = x′.

(ii) For any x, we have x = x, hence (S ◦ R)(x, x). Thus, there merely exists a y : Y such that
R(x, y) and S(y, x).

9.2 FUNCTORS AND TRANSFORMATIONS 289

(iii) Suppose R(x, y). By (ii), there merely exists a y′ with R(x, y′) and S(y′, x). But then
by (i), merely y′ = y, and hence y′ = y since Y is a set. Therefore, by transporting
S(y′, x) along this equality, we have S(y, x). In conclusion, R(x, y) → S(y, x). Similarly,
S(y, x)→ R(x, y).

(iv) If R(x, y) and R(x, y′), then by (iii), S(y′, x), so that by (i), y = y′. Thus, for any x there is
at most one y such that R(x, y). And by (ii), there merely exists such a y, hence there exists
such a y.

In conclusion, if R : homRel(X, Y) is an isomorphism, then for each x : X there is exactly one
y : Y such that R(x, y), and dually. Thus, there is a function f : X → Y sending each x to this
y, which is an equivalence; hence X = Y. With a little more work, we conclude that Rel is a
category.

We might now restrict ourselves to considering categories rather than precategories. Instead,
we will develop many concepts for precategories as well as categories, in order to emphasize
how much better-behaved categories are, as compared both to precategories and to ordinary
categories in classical mathematics.

We will also see in §§9.6–9.7 that in slightly more exotic contexts, there are uses for certain
kinds of precategories other than categories, each of which “fixes” the equality of objects in
different ways. This emphasizes the “pre”-ness of precategories: they are the raw material out
of which multiple important categorical structures can be defined.

9.2 Functors and transformations

The following definitions are fairly obvious, and need no modification.

Definition 9.2.1. Let A and B be precategories. A functor F : A→ B consists of

(i) A function F0 : A0 → B0, generally also denoted F.
(ii) For each a, b : A, a function Fa,b : homA(a, b)→ homB(Fa, Fb), generally also denoted F.

(iii) For each a : A, we have F(1a) = 1Fa.
(iv) For each a, b, c : A and f : homA(a, b) and g : homA(b, c), we have

F(g ◦ f) = Fg ◦ F f .

Note that by induction on identity, a functor also preserves idtoiso.

Definition 9.2.2. For functors F, G : A→ B, a natural transformation γ : F → G consists of

(i) For each a : A, a morphism γa : homB(Fa, Ga) (the “components”).
(ii) For each a, b : A and f : homA(a, b), we have G f ◦ γa = γb ◦ F f (the “naturality axiom”).

Since each type homB(Fa, Gb) is a set, its identity type is a mere proposition. Thus, the
naturality axiom is a mere proposition, so identity of natural transformations is determined by
identity of their components. In particular, for any F and G, the type of natural transformations
from F to G is again a set.

Similarly, identity of functors is determined by identity of the functions A0 → B0 and (trans-
ported along this) of the corresponding functions on hom-sets.

290 CHAPTER 9. CATEGORY THEORY

Definition 9.2.3. For precategories A, B, there is a precategory BA, called the functor precate-
gory, defined by

• (BA)0 is the type of functors from A to B.
• homBA(F, G) is the type of natural transformations from F to G.

Proof. We define (1F)a :≡ 1Fa. Naturality follows by the unit axioms of a precategory. For
γ : F → G and δ : G → H, we define (δ ◦ γ)a :≡ δa ◦ γa. Naturality follows by associativity.
Similarly, the unit and associativity laws for BA follow from those for B.

Lemma 9.2.4. A natural transformation γ : F → G is an isomorphism in BA if and only if each γa is an
isomorphism in B.

Proof. If γ is an isomorphism, then we have δ : G → F that is its inverse. By definition of
composition in BA, (δγ)a ≡ δaγa and similarly (γδ)a ≡ γaδa. Thus, δγ = 1F and γδ = 1G imply
δaγa = 1Fa and γaδa = 1Ga, so γa is an isomorphism.

Conversely, suppose each γa is an isomorphism, with inverse called δa, say. We define a
natural transformation δ : G → F with components δa; for the naturality axiom we have

F f ◦ δa = δb ◦ γb ◦ F f ◦ δa = δb ◦ G f ◦ γa ◦ δa = δb ◦ G f .

Now since composition and identity of natural transformations is determined on their compo-
nents, we have γδ = 1G and δγ = 1F.

The following result is fundamental.

Theorem 9.2.5. If A is a precategory and B is a category, then BA is a category.

Proof. Let F, G : A→ B; we must show that idtoiso : (F = G)→ (F ∼= G) is an equivalence.
To give an inverse to it, suppose γ : F ∼= G is a natural isomorphism. Then for any a : A,

we have an isomorphism γa : Fa ∼= Ga, hence an identity isotoid(γa) : Fa = Ga. By function
extensionality, we have an identity γ̄ : F0 =(A0→B0) G0.

Now since the last two axioms of a functor are mere propositions, to show that F = G it will
suffice to show that for any a, b : A, the functions

Fa,b : homA(a, b)→ homB(Fa, Fb) and

Ga,b : homA(a, b)→ homB(Ga, Gb)

become equal when transported along γ̄. By computation for function extensionality, when
applied to a, γ̄ becomes equal to isotoid(γa). But by Lemma 9.1.9, transporting F f : homB(Fa, Fb)
along isotoid(γa) and isotoid(γb) is equal to the composite γb ◦ F f ◦ (γa)

−1, which by naturality
of γ is equal to G f .

This completes the definition of a function (F ∼= G)→ (F = G). Now consider the composite

(F = G)→ (F ∼= G)→ (F = G).

Since hom-sets are sets, their identity types are mere propositions, so to show that two identities
p, q : F = G are equal, it suffices to show that p =F0=G0 q. But in the definition of γ̄, if γ were of
the form idtoiso(p), then γa would be equal to idtoiso(pa) (this can easily be proved by induction
on p). Thus, isotoid(γa) would be equal to pa, and so by function extensionality we would have
γ̄ = p, which is what we need.

9.2 FUNCTORS AND TRANSFORMATIONS 291

Finally, consider the composite

(F ∼= G)→ (F = G)→ (F ∼= G).

Since identity of natural transformations can be tested componentwise, it suffices to show that
for each a we have idtoiso(γ̄)a = γa. But as observed above, we have idtoiso(γ̄)a = idtoiso((γ̄)a),
while (γ̄)a = isotoid(γa) by computation for function extensionality. Since isotoid and idtoiso are
inverses, we have idtoiso(γ̄)a = γa as desired.

In particular, naturally isomorphic functors between categories (as opposed to precategories)
are equal.

We now define all the usual ways to compose functors and natural transformations.

Definition 9.2.6. For functors F : A→ B and G : B→ C, their composite G ◦ F : A→ C is given
by

• The composite (G0 ◦ F0) : A0 → C0

• For each a, b : A, the composite

(GFa,Fb ◦ Fa,b) : homA(a, b)→ homC(GFa, GFb).

It is easy to check the axioms.

Definition 9.2.7. For functors F : A → B and G, H : B → C and a natural transformation
γ : G → H, the composite (γF) : GF → HF is given by

• For each a : A, the component γFa.

Naturality is easy to check. Similarly, for γ as above and K : C → D, the composite (Kγ) : KG →
KH is given by

• For each b : B, the component K(γb).

Lemma 9.2.8. For functors F, G : A → B and H, K : B → C and natural transformations γ : F → G
and δ : H → K, we have

(δG)(Hγ) = (Kγ)(δF).

Proof. It suffices to check componentwise: at a : A we have

((δG)(Hγ))a ≡ (δG)a(Hγ)a

≡ δGa ◦ H(γa)

= K(γa) ◦ δFa (by naturality of δ)

≡ (Kγ)a ◦ (δF)a

≡ ((Kγ)(δF))a.

Classically, one defines the “horizontal composite” of γ : F → G and δ : H → K to be the
common value of (δG)(Hγ) and (Kγ)(δF). We will refrain from doing this, because while equal,
these two transformations are not definitionally equal. This also has the consequence that we can
use the symbol ◦ (or juxtaposition) for all kinds of composition unambiguously: there is only one
way to compose two natural transformations (as opposed to composing a natural transformation
with a functor on either side).

292 CHAPTER 9. CATEGORY THEORY

Lemma 9.2.9. Composition of functors is associative: H(GF) = (HG)F.

Proof. Since composition of functions is associative, this follows immediately for the actions on
objects and on homs. And since hom-sets are sets, the rest of the data is automatic.

The equality in Lemma 9.2.9 is likewise not definitional. (Composition of functions is defini-
tionally associative, but the axioms that go into a functor must also be composed, and this breaks
definitional associativity.) For this reason, we need also to know about coherence for associativity.

Lemma 9.2.10. Lemma 9.2.9 is coherent, i.e. the following pentagon of equalities commutes:

K(H(GF))

(KH)(GF) K((HG)F)

((KH)G)F (K(HG))F

Proof. As in Lemma 9.2.9, this is evident for the actions on objects, and the rest is automatic.

We will henceforth abuse notation by writing H ◦ G ◦ F or HGF for either H(GF) or (HG)F,
transporting along Lemma 9.2.9 whenever necessary. We have a similar coherence result for
units.

Lemma 9.2.11. For a functor F : A→ B, we have equalities (1B ◦ F) = F and (F ◦ 1A) = F, such that
given also G : B→ C, the following triangle of equalities commutes:

G ◦ (1B ◦ F) (G ◦ 1B) ◦ F

G ◦ F.

See Exercises 9.4 and 9.5 for further development of these ideas.

9.3 Adjunctions

The definition of adjoint functors is straightforward; the main interesting aspect arises from
proof-relevance.

Definition 9.3.1. A functor F : A→ B is a left adjoint if there exists

• A functor G : B→ A.
• A natural transformation η : 1A → GF (the unit).
• A natural transformation ϵ : FG → 1B (the counit).
• (ϵF)(Fη) = 1F.
• (Gϵ)(ηG) = 1G.

The last two equations are called the triangle identities or zigzag identities. We leave it to
the reader to define right adjoints analogously.

9.4 EQUIVALENCES 293

Lemma 9.3.2. If A is a category (but B may be only a precategory), then the type “F is a left adjoint” is
a mere proposition.

Proof. Suppose we are given (G, η, ϵ) with the triangle identities and also (G′, η′, ϵ′). Define
γ : G → G′ to be (G′ϵ)(η′G), and δ : G′ → G to be (Gϵ′)(ηG′). Then

δγ = (Gϵ′)(ηG′)(G′ϵ)(η′G)

= (Gϵ′)(GFG′ϵ)(ηG′FG)(η′G)

= (Gϵ)(Gϵ′FG)(GFη′G)(ηG)

= (Gϵ)(ηG)

= 1G

using Lemma 9.2.8 and the triangle identities. Similarly, we show γδ = 1G′ , so γ is a natural
isomorphism G ∼= G′. By Theorem 9.2.5, we have an identity G = G′.

Now we need to know that when η and ϵ are transported along this identity, they become
equal to η′ and ϵ′. By Lemma 9.1.9, this transport is given by composing with γ or δ as appro-
priate. For η, this yields

(G′ϵF)(η′GF)η = (G′ϵF)(G′Fη)η′ = η′

using Lemma 9.2.8 and the triangle identity. The case of ϵ is similar. Finally, the triangle identities
transport correctly automatically, since hom-sets are sets.

In §9.5 we will give another proof of Lemma 9.3.2.

9.4 Equivalences

It is usual in category theory to define an equivalence of categories to be a functor F : A → B such
that there exists a functor G : B → A and natural isomorphisms FG ∼= 1B and GF ∼= 1A. Unlike
the property of being an adjunction, however, this would not be a mere proposition without
truncating it, for the same reasons that the type of quasi-inverses is ill-behaved (see §4.1). And
as in §4.2, we can avoid this by using the usual notion of adjoint equivalence.

Definition 9.4.1. A functor F : A→ B is an equivalence of (pre)categories if it is a left adjoint for
which η and ϵ are isomorphisms. We write A ≃ B for the type of equivalences of (pre)categories
from A to B.

By Lemmas 9.1.3 and 9.3.2, if A is a category, then the type “F is an equivalence of precate-
gories” is a mere proposition.

Lemma 9.4.2. If for F : A → B there exists G : B → A and isomorphisms GF ∼= 1A and FG ∼= 1B,
then F is an equivalence of precategories.

Proof. Just like the proof of Theorem 4.2.3 for equivalences of types.

Definition 9.4.3. We say a functor F : A→ B is faithful if for all a, b : A, the function

Fa,b : homA(a, b)→ homB(Fa, Fb)

is injective, and full if for all a, b : A this function is surjective. If it is both (hence each Fa,b is an
equivalence) we say F is fully faithful.

294 CHAPTER 9. CATEGORY THEORY

Definition 9.4.4. We say a functor F : A → B is split essentially surjective if for all b : B there
exists an a : A such that Fa ∼= b.

Lemma 9.4.5. For any precategories A and B and functor F : A→ B, the following types are equivalent.

(i) F is an equivalence of precategories.

(ii) F is fully faithful and split essentially surjective.

Proof. Suppose F is an equivalence of precategories, with G, η, ϵ specified. Then we have the
function

homB(Fa, Fb)→ homA(a, b),

g 7→ ηb
−1 ◦ G(g) ◦ ηa.

For f : homA(a, b), we have

ηb
−1 ◦ G(F(f)) ◦ ηa = ηb

−1 ◦ ηb ◦ f = f

while for g : homB(Fa, Fb) we have

F(ηb
−1 ◦ G(g) ◦ ηa) = F(ηb

−1) ◦ F(G(g)) ◦ F(ηa)

= ϵFb ◦ F(G(g)) ◦ F(ηa)

= g ◦ ϵFa ◦ F(ηa)

= g

using naturality of ϵ, and the triangle identities twice. Thus, Fa,b is an equivalence, so F is fully
faithful. Finally, for any b : B, we have Gb : A and ϵb : FGb ∼= b.

On the other hand, suppose F is fully faithful and split essentially surjective. Define G0 :
B0 → A0 by sending b : B to the a : A given by the specified essential splitting, and write ϵb for
the likewise specified isomorphism FGb ∼= b.

Now for any g : homB(b, b′), define G(g) : homA(Gb, Gb′) to be the unique morphism such
that F(G(g)) = (ϵb′)

−1 ◦ g ◦ ϵb (which exists since F is fully faithful). Finally, for a : A define
ηa : homA(a, GFa) to be the unique morphism such that Fηa = ϵFa

−1. It is easy to verify that G
is a functor and that (G, η, ϵ) exhibit F as an equivalence of precategories.

Now consider the composite (i)→(ii)→(i). We clearly recover the same function G0 : B0 →
A0. For the action of G on hom-sets, we must show that for g : homB(b, b′), G(g) is the (nec-
essarily unique) morphism such that F(G(g)) = (ϵb′)

−1 ◦ g ◦ ϵb. But this equation holds by
the assumed naturality of ϵ. We also clearly recover ϵ, while η is uniquely characterized by
Fηa = ϵFa

−1 (which is one of the triangle identities assumed to hold in the structure of an equiv-
alence of precategories). Thus, this composite is equal to the identity.

Finally, consider the other composite (ii)→(i)→(ii). Since being fully faithful is a mere propo-
sition, it suffices to observe that we recover, for each b : B, the same a : A and isomorphism
Fa ∼= b. But this is clear, since we used this function and isomorphism to define G0 and ϵ in (i),
which in turn are precisely what we used to recover (ii) again. Thus, the composites in both
directions are equal to identities, hence we have an equivalence (i) ≃ (ii).

However, if A is not a category, then neither type in Lemma 9.4.5 may necessarily be a mere
proposition. This suggests considering as well the following notions.

9.4 EQUIVALENCES 295

Definition 9.4.6. A functor F : A → B is essentially surjective if for all b : B, there merely exists
an a : A such that Fa ∼= b. We say F is a weak equivalence if it is fully faithful and essentially
surjective.

Being a weak equivalence is always a mere proposition. For categories, however, there is no
difference between equivalences and weak ones.

Lemma 9.4.7. If F : A→ B is fully faithful and A is a category, then for any b : B the type ∑(a:A)(Fa ∼=
b) is a mere proposition. Hence a functor between categories is an equivalence if and only if it is a weak
equivalence.

Proof. Suppose given (a, f) and (a′, f ′) in ∑(a:A)(Fa ∼= b). Then f ′−1 ◦ f is an isomorphism
Fa ∼= Fa′. Since F is fully faithful, we have g : a ∼= a′ with Fg = f ′−1 ◦ f . And since A is a
category, we have p : a = a′ with idtoiso(p) = g. Now Fg = f ′−1 ◦ f implies ((F0)(p))∗(f) = f ′,
hence (by the characterization of equalities in dependent pair types) (a, f) = (a′, f ′).

Thus, for fully faithful functors whose domain is a category, essential surjectivity is equiv-
alent to split essential surjectivity, and so being a weak equivalence is equivalent to being an
equivalence.

This is an important advantage of our category theory over set-based approaches. With a
purely set-based definition of category, the statement “every fully faithful and essentially surjec-
tive functor is an equivalence of categories” is equivalent to the axiom of choice AC. Here we
have it for free, as a category-theoretic version of the principle of unique choice (§3.9). (In fact,
this property characterizes categories among precategories; see §9.9.)

On the other hand, the following characterization of equivalences of categories is perhaps
even more useful.

Definition 9.4.8. A functor F : A → B is an isomorphism of (pre)categories if F is fully faithful
and F0 : A0 → B0 is an equivalence of types.

This definition is an exception to our general rule (see §2.4) of only using the word “isomor-
phism” for sets and set-like objects. However, it does carry an appropriate connotation here,
because for general precategories, isomorphism is stronger than equivalence.

Note that being an isomorphism of precategories is always a mere property. Let A ∼= B
denote the type of isomorphisms of (pre)categories from A to B.

Lemma 9.4.9. For precategories A and B and F : A→ B, the following are equivalent.

(i) F is an isomorphism of precategories.
(ii) There exist G : B→ A and η : 1A = GF and ϵ : FG = 1B such that

ap(λH. FH)(η) = ap(λK. KF)(ϵ
−1). (9.4.10)

(iii) There merely exist G : B→ A and η : 1A = GF and ϵ : FG = 1B.

Note that if B0 is not a 1-type, then (9.4.10) may not be a mere proposition.

Proof. First note that since hom-sets are sets, equalities between equalities of functors are uniquely
determined by their object-parts. Thus, by function extensionality, (9.4.10) is equivalent to

(F0)(η0)a = (ϵ0)
−1

F0a. (9.4.11)

296 CHAPTER 9. CATEGORY THEORY

for all a : A0. Note that this is precisely the triangle identity for G0, η0, and ϵ0 to be a proof that
F0 is a half adjoint equivalence of types.

Now suppose (i). Let G0 : B0 → A0 be the inverse of F0, with η0 : idA0 = G0F0 and ϵ0 : F0G0 =

idB0 satisfying the triangle identity, which is precisely (9.4.11). Now define Gb,b′ : homB(b, b′) →
homA(G0b, G0b′) by

Gb,b′(g) :≡ (FG0b,G0b′)
−1
(
idtoiso((ϵ0)

−1
b′) ◦ g ◦ idtoiso((ϵ0)b)

)
(using the assumption that F is fully faithful). Since idtoiso takes inverses to inverses and con-
catenation to composition, and F is a functor, it follows that G is a functor.

By definition, we have (GF)0 ≡ G0F0, which is equal to idA0 by η0. To obtain 1A = GF, we
need to show that when transported along η0, the identity function of homA(a, a′) becomes equal
to the composite GFa,Fa′ ◦ Fa,a′ . In other words, for any f : homA(a, a′) we must have

idtoiso((η0)a′) ◦ f ◦ idtoiso((η0)
−1

a)

= (FGFa,GFa′)
−1
(
idtoiso((ϵ0)

−1
Fa′) ◦ Fa,a′(f) ◦ idtoiso((ϵ0)Fa)

)
.

But this is equivalent to

(FGFa,GFa′)
(
idtoiso((η0)a′) ◦ f ◦ idtoiso((η0)

−1
a)
)
= idtoiso((ϵ0)

−1
Fa′) ◦ Fa,a′(f) ◦ idtoiso((ϵ0)Fa).

which follows from functoriality of F, the fact that F preserves idtoiso, and (9.4.11). Thus we have
η : 1A = GF.

On the other side, we have (FG)0 ≡ F0G0, which is equal to idB0 by ϵ0. To obtain FG = 1B,
we need to show that when transported along ϵ0, the identity function of homB(b, b′) becomes
equal to the composite FGb,Gb′ ◦ Gb,b′ . That is, for any g : homB(b, b′) we must have

FGb,Gb′
(
(FGb,Gb′)

−1
(
idtoiso((ϵ0)

−1
b′) ◦ g ◦ idtoiso((ϵ0)b)

))
= idtoiso((ϵ0

−1)b′) ◦ g ◦ idtoiso((ϵ0)b).

But this is just the fact that (FGb,Gb′)
−1 is the inverse of FGb,Gb′ . And we have remarked that (9.4.10)

is equivalent to (9.4.11), so (ii) holds.
Conversely, suppose given (ii); then the object-parts of G, η, and ϵ together with (9.4.11)

show that F0 is an equivalence of types. And for a, a′ : A0, we define Ga,a′ : homB(Fa, Fa′) →
homA(a, a′) by

Ga,a′(g) :≡ idtoiso(η−1)a′ ◦ G(g) ◦ idtoiso(η)a. (9.4.12)

By naturality of idtoiso(η), for any f : homA(a, a′) we have

Ga,a′(Fa,a′(f)) = idtoiso(η−1)a′ ◦ G(F(f)) ◦ idtoiso(η)a

= idtoiso(η−1)a′ ◦ idtoiso(η)a′ ◦ f

= f .

9.4 EQUIVALENCES 297

On the other hand, for g : homB(Fa, Fa′) we have

Fa,a′(Ga,a′(g)) = F(idtoiso(η−1)a′) ◦ F(G(g)) ◦ F(idtoiso(η)a)

= idtoiso(ϵ)Fa′ ◦ F(G(g)) ◦ idtoiso(ϵ−1)Fa

= idtoiso(ϵ)Fa′ ◦ idtoiso(ϵ−1)Fa′ ◦ g

= g.

(There are lemmas needed here regarding the compatibility of idtoiso and whiskering, which we
leave it to the reader to state and prove.) Thus, Fa,a′ is an equivalence, so F is fully faithful; i.e. (i)
holds.

Now the composite (i)→(ii)→(i) is equal to the identity since (i) is a mere proposition. On
the other side, tracing through the above constructions we see that the composite (ii)→(i)→(ii)
essentially preserves the object-parts G0, η0, ϵ0, and the object-part of (9.4.10). And in the latter
three cases, the object-part is all there is, since hom-sets are sets.

Thus, it suffices to show that we recover the action of G on hom-sets. In other words, we
must show that if g : homB(b, b′), then

Gb,b′(g) = GG0b,G0b′
(
idtoiso((ϵ0)

−1
b′) ◦ g ◦ idtoiso((ϵ0)b)

)
where G is defined by (9.4.12). However, this follows from functoriality of G and the other trian-
gle identity, which we have seen in Chapter 4 is equivalent to (9.4.11).

Now since (i) is a mere proposition, so is (ii), so it suffices to show they are logically equiv-
alent to (iii). Of course, (ii)→(iii), so let us assume (iii). Since (i) is a mere proposition, we may
assume given G, η, and ϵ. Then G0 along with η and ϵ imply that F0 is an equivalence. More-
over, we also have natural isomorphisms idtoiso(η) : 1A

∼= GF and idtoiso(ϵ) : FG ∼= 1B, so by
Lemma 9.4.2, F is an equivalence of precategories, and in particular fully faithful.

From Lemma 9.4.9(ii) and idtoiso in functor categories, we conclude immediately that any
isomorphism of precategories is an equivalence. For precategories, the converse can fail.

Example 9.4.13. Let X be a type and x0 : X an element, and let Xch denote the chaotic or indiscrete
precategory on X. By definition, we have (Xch)0 :≡ X, and homXch(x, x′) :≡ 1 for all x, x′. Then
the unique functor Xch → 1 is an equivalence of precategories, but not an isomorphism unless X
is contractible.

This example also shows that a precategory can be equivalent to a category without itself
being a category. Of course, if a precategory is isomorphic to a category, then it must itself be a
category.

However, for categories, the two notions coincide.

Lemma 9.4.14. For categories A and B, a functor F : A → B is an equivalence of categories if and only
if it is an isomorphism of categories.

Proof. Since both are mere properties, it suffices to show they are logically equivalent. So first
suppose F is an equivalence of categories, with (G, η, ϵ) given. We have already seen that F is
fully faithful. By Theorem 9.2.5, the natural isomorphisms η and ϵ yield identities 1A = GF
and FG = 1B, hence in particular identities idA = G0 ◦ F0 and F0 ◦ G0 = idB. Thus, F0 is an
equivalence of types.

Conversely, suppose F is fully faithful and F0 is an equivalence of types, with inverse G0, say.
Then for each b : B we have G0b : A and an identity FGb = b, hence an isomorphism FGb ∼= b.
Thus, by Lemma 9.4.5, F is an equivalence of categories.

298 CHAPTER 9. CATEGORY THEORY

Of course, there is yet a third notion of sameness for (pre)categories: equality. However, the
univalence axiom implies that it coincides with isomorphism.

Lemma 9.4.15. If A and B are precategories, then the function

(A = B)→ (A ∼= B)

(defined by induction from the identity functor) is an equivalence of types.

Proof. As usual for dependent sum types, to give an element of A = B is equivalent to giving

• an identity P0 : A0 = B0,

• for each a, b : A0, an identity

Pa,b : homA(a, b) = homB(P0∗(a), P0∗(b)),

• identities (Pa,a)∗(1a) = 1P0∗(a) and (Pa,c)∗(g f) = (Pb,c)∗(g) ◦ (Pa,b)∗(f).

(Again, we use the fact that the identity types of hom-sets are mere propositions.) However, by
univalence, this is equivalent to giving

• an equivalence of types F0 : A0 ≃ B0,

• for each a, b : A0, an equivalence of types

Fa,b : homA(a, b) ≃ homB(F0(a), F0(b)),

• and identities Fa,a(1a) = 1F0(a) and Fa,c(g f) = Fb,c(g) ◦ Fa,b(f).

But this consists exactly of a functor F : A → B that is an isomorphism of categories. And by
induction on identity, this equivalence (A = B) ≃ (A ∼= B) is equal to the one obtained by
induction.

Thus, for categories, equality also coincides with equivalence. We can interpret this as saying
that categories, functors, and natural transformations form, not just a pre-2-category, but a 2-
category (see Exercise 9.4).

Theorem 9.4.16. If A and B are categories, then the function

(A = B)→ (A ≃ B)

(defined by induction from the identity functor) is an equivalence of types.

Proof. By Lemmas 9.4.14 and 9.4.15.

As a consequence, the type of categories is a 2-type. For since A ≃ B is a subtype of the type
of functors from A to B, which are the objects of a category, it is a 1-type; hence the identity types
A = B are also 1-types.

9.5 THE YONEDA LEMMA 299

9.5 The Yoneda lemma

Recall that we have a category Set whose objects are sets and whose morphisms are functions.
We now show that every precategory has a Set-valued hom-functor. First we need to define
opposites and products of (pre)categories.

Definition 9.5.1. For a precategory A, its opposite Aop is a precategory with the same type of
objects, with homAop(a, b) :≡ homA(b, a), and with identities and composition inherited from A.

Definition 9.5.2. For precategories A and B, their product A × B is a precategory with (A ×
B)0 :≡ A0 × B0 and

homA×B((a, b), (a′, b′)) :≡ homA(a, a′)× homB(b, b′).

Identities are defined by 1(a,b) :≡ (1a, 1b) and composition by (g, g′)(f , f ′) :≡ ((g f), (g′ f ′)).

Lemma 9.5.3. For precategories A, B, C, the following types are equivalent.

(i) Functors A× B→ C.
(ii) Functors A→ CB.

Proof. Given F : A× B → C, for any a : A we obviously have a functor Fa : B → C. This gives
a function A0 → (CB)0. Next, for any f : homA(a, a′), we have for any b : B the morphism
F(a,b),(a′,b)(f , 1b) : Fa(b)→ Fa′(b). These are the components of a natural transformation Fa → Fa′ .
Functoriality in a is easy to check, so we have a functor F̂ : A→ CB.

Conversely, suppose given G : A → CB. Then for any a : A and b : B we have the object
G(a)(b) : C, giving a function A0 × B0 → C0. And for f : homA(a, a′) and g : homB(b, b′), we
have the morphism

G(a′)b,b′(g) ◦ Ga,a′(f)b = Ga,a′(f)b′ ◦ G(a)b,b′(g)

in homC(G(a)(b), G(a′)(b′)). Functoriality is again easy to check, so we have a functor Ǧ : A×
B→ C.

Finally, it is also clear that these operations are inverses.

Now for any precategory A, we have a hom-functor

homA : Aop × A→ Set.

It takes a pair (a, b) : (Aop)0 × A0 ≡ A0 × A0 to the set homA(a, b). For a morphism (f , f ′) :
homAop×A((a, b), (a′, b′)), by definition we have f : homA(a′, a) and f ′ : homA(b, b′), so we can
define

(homA)(a,b),(a′,b′)(f , f ′) :≡ (g 7→ (f ′g f))

: homA(a, b)→ homA(a′, b′).

Functoriality is easy to check.
By Lemma 9.5.3, therefore, we have an induced functor y : A → SetAop

, which we call the
Yoneda embedding.

Theorem 9.5.4 (The Yoneda lemma). For any precategory A, any a : A, and any functor F : SetAop
,

we have an isomorphism
homSetAop (ya, F) ∼= Fa. (9.5.5)

Moreover, this is natural in both a and F.

300 CHAPTER 9. CATEGORY THEORY

Proof. Given a natural transformation α : ya → F, we can consider the component αa : ya(a) →
Fa. Since ya(a) ≡ homA(a, a), we have 1a : ya(a), so that αa(1a) : Fa. This gives a function
(α 7→ αa(1a)) from left to right in (9.5.5).

In the other direction, given x : Fa, we define α : ya→ F by

αa′(f) :≡ Fa,a′(f)(x).

Naturality is easy to check, so this gives a function from right to left in (9.5.5).
To show that these are inverses, first suppose given x : Fa. Then with α defined as above, we

have αa(1a) = Fa,a(1a)(x) = 1Fa(x) = x. On the other hand, if we suppose given α : ya → F and
define x as above, then for any f : homA(a′, a) we have

αa′(f) = αa′(yaa,a′(f)(1a))

= (αa′ ◦ yaa,a′(f))(1a)

= (Fa,a′(f) ◦ αa)(1a)

= Fa,a′(f)(αa(1a))

= Fa,a′(f)(x).

Thus, both composites are equal to identities. We leave the proof of naturality to the reader.

Corollary 9.5.6. The Yoneda embedding y : A→ SetAop
is fully faithful.

Proof. By Theorem 9.5.4, we have

homSetAop (ya, yb) ∼= yb(a) ≡ homA(a, b).

It is easy to check that this isomorphism is in fact the action of y on hom-sets.

Corollary 9.5.7. If A is a category, then y0 : A0 → (SetAop
)0 is an embedding. In particular, if ya = yb,

then a = b.

Proof. By Corollary 9.5.6, y induces an isomorphism on sets of isomorphisms. But as A and
SetAop

are categories and y is a functor, this is equivalently an isomorphism on identity types,
which is the definition of being an embedding.

Definition 9.5.8. A functor F : SetAop
is said to be representable if there exists a : A and an

isomorphism ya ∼= F.

Theorem 9.5.9. If A is a category, then the type “F is representable” is a mere proposition.

Proof. By definition “F is representable” is just the fiber of y0 over F. Since y0 is an embedding
by Corollary 9.5.7, this fiber is a mere proposition.

In particular, in a category, any two representations of the same functor are equal. We can
use this to give a different proof of Lemma 9.3.2. First we give a characterization of adjunctions
in terms of representability.

Lemma 9.5.10. For any precategories A and B and a functor F : A → B, the following types are
equivalent.

(i) F is a left adjoint.

9.5 THE YONEDA LEMMA 301

(ii) For each b : B, the functor (a 7→ homB(Fa, b)) from Aop to Set is representable.

Proof. An element of the type (ii) consists of a function G0 : B0 → A0 together with, for every
a : A and b : B an isomorphism

γa,b : homB(Fa, b) ∼= homA(a, G0b)

such that γa,b(g ◦ F f) = γa′,b(g) ◦ f for f : homA(a, a′).
Given this, for a : A we define ηa :≡ γa,Fa(1Fa), and for b : B we define ϵb :≡ (γGb,b)

−1(1Gb).
Now for g : homB(b, b′) we define

Gb,b′(g) :≡ γGb,b′(g ◦ ϵb)

The verifications that G is a functor and η and ϵ are natural transformations satisfying the trian-
gle identities are exactly as in the classical case, and as they are all mere propositions we will not
care about their values. Thus, we have a function (ii)→(i).

In the other direction, if F is a left adjoint, we of course have G0 specified, and we can take
γa,b to be the composite

homB(Fa, b)
GFa,b−−→ homA(GFa, Gb)

(–◦ηa)−−−→ homA(a, Gb).

This is clearly natural since η is, and it has an inverse given by

homA(a, Gb)
Fa,Gb−−→ homB(Fa, FGb)

(ϵb◦–)−−−→ homA(Fa, b)

(by the triangle identities). Thus we also have (i)→ (ii).
For the composite (ii)→(i)→ (ii), clearly the function G0 is preserved, so it suffices to check

that we get back γ. But the new γ is defined to take f : homB(Fa, b) to

G(f) ◦ ηa ≡ γGFa,b(f ◦ ϵFa) ◦ ηa

= γGFa,b(f ◦ ϵFa ◦ Fηa)

= γGFa,b(f)

so it agrees with the old one.
Finally, for (i)→(ii)→ (i), we certainly get back the functor G on objects. The new Gb,b′ :

homB(b, b′)→ homA(Gb, Gb′) is defined to take g to

γGb,b′(g ◦ ϵb) ≡ G(g ◦ ϵb) ◦ ηGb

= G(g) ◦ Gϵb ◦ ηGb

= G(g)

so it agrees with the old one. The new ηa is defined to be γa,Fa(1Fa) ≡ G(1Fa) ◦ ηa, so it equals the
old ηa. And finally, the new ϵb is defined to be (γGb,b)

−1(1Gb) ≡ ϵb ◦ F(1Gb), which also equals
the old ϵb.

Corollary 9.5.11. [Lemma 9.3.2] If A is a category and F : A → B, then the type “F is a left adjoint” is
a mere proposition.

Proof. By Theorem 9.5.9, if A is a category then the type in Lemma 9.5.10(ii) is a mere proposition.

302 CHAPTER 9. CATEGORY THEORY

9.6 Strict categories

Definition 9.6.1. A strict category is a precategory whose type of objects is a set.

In accordance with the mathematical red herring principle, a strict category is not necessarily
a category. In fact, a category is a strict category precisely when it is gaunt (Example 9.1.15).
Most of the time, category theory is about categories, not strict ones, but sometimes one wants
to consider strict categories. The main advantage of this is that strict categories have a stricter
notion of “sameness” than equivalence, namely isomorphism (or equivalently, by Lemma 9.4.15,
equality).

Here is one origin of strict categories.

Example 9.6.2. Let A be a precategory and x : A an object. Then there is a precategory mono(A, x)
as follows:

• Its objects consist of an object y : A and a monomorphism m : homA(y, x). (As usual,
m : homA(y, x) is a monomorphism (or is monic) if (m ◦ f = m ◦ g)⇒ (f = g).)

• Its morphisms from (y, m) to (z, n) are arbitrary morphisms from y to z in A (not necessarily
respecting m and n).

An equality (y, m) = (z, n) of objects in mono(A, x) consists of an equality p : y = z and an
equality p∗(m) = n, which by Lemma 9.1.9 is equivalently an equality m = n ◦ idtoiso(p).
Since hom-sets are sets, the type of such equalities is a mere proposition. But since m and n
are monomorphisms, the type of morphisms f such that m = n ◦ f is also a mere proposition.
Thus, if A is a category, then (y, m) = (z, n) is a mere proposition, and hence mono(A, x) is a
strict category.

This example can be dualized, and generalized in various ways. Here is an interesting appli-
cation of strict categories.

Example 9.6.3. Let E/F be a finite Galois extension of fields, and G its Galois group. Then there
is a strict category whose objects are intermediate fields F ⊆ K ⊆ E, and whose morphisms are
field homomorphisms which fix F pointwise (but need not commute with the inclusions into E).
There is another strict category whose objects are subgroups H ⊆ G, and whose morphisms are
morphisms of G-sets G/H → G/K. The fundamental theorem of Galois theory says that these
two precategories are isomorphic (not merely equivalent).

9.7 †-categories

It is also worth mentioning a useful kind of precategory whose type of objects is not a set, but
which is not a category either.

Definition 9.7.1. A †-precategory is a precategory A together with the following.

(i) For each x, y : A, a function (−)† : homA(x, y)→ homA(y, x).
(ii) For all x : A, we have (1x)

† = 1x.
(iii) For all f , g we have (g ◦ f)† = f † ◦ g†.

(iv) For all f we have (f †)
†
= f .

Definition 9.7.2. A morphism f : homA(x, y) in a †-precategory is unitary if f † ◦ f = 1x and
f ◦ f † = 1y.

9.8 THE STRUCTURE IDENTITY PRINCIPLE 303

Of course, every unitary morphism is an isomorphism, and being unitary is a mere proposi-
tion. Thus for each x, y : A we have a set of unitary isomorphisms from x to y, which we denote
(x ∼=† y).

Lemma 9.7.3. If p : (x = y), then idtoiso(p) is unitary.

Proof. By induction, we may assume p is reflx. But then (1x)
† ◦ 1x = 1x ◦ 1x = 1x and similarly.

Definition 9.7.4. A †-category is a †-precategory such that for all x, y : A, the function

(x = y)→ (x ∼=† y)

from Lemma 9.7.3 is an equivalence.

Example 9.7.5. The category Rel from Example 9.1.19 becomes a †-precategory if we define
(R†)(y, x) :≡ R(x, y). The proof thatRel is a category actually shows that every isomorphism is
unitary; henceRel is also a †-category.

Example 9.7.6. Any groupoid becomes a †-category if we define f † :≡ f−1.

Example 9.7.7. LetHilb be the following precategory.

• Its objects are finite-dimensional vector spaces equipped with an inner product ⟨–, –⟩.
• Its morphisms are arbitrary linear maps.

By standard linear algebra, any linear map f : V →W between finite dimensional inner product
spaces has a uniquely defined adjoint f † : W → V, characterized by ⟨ f v, w⟩ = ⟨v, f †w⟩. In this
way,Hilb becomes a †-precategory. Moreover, a linear isomorphism is unitary precisely when it
is an isometry, i.e. ⟨ f v, f w⟩ = ⟨v, w⟩. It follows from this that Hilb is a †-category, though it is
not a category (not every linear isomorphism is unitary).

There has been a good deal of general theory developed for †-categories under classical foun-
dations. It was observed early on that the unitary isomorphisms, not arbitrary isomorphisms,
are the correct notion of “sameness” for objects of a †-category, which has caused some con-
sternation among category theorists. Homotopy type theory resolves this issue by identifying
†-categories, like strict categories, as simply a different kind of precategory.

9.8 The structure identity principle

The structure identity principle is an informal principle that expresses that isomorphic structures
are identical. We aim to prove a general abstract result which can be applied to a wide fam-
ily of notions of structure, where structures may be many-sorted or even dependently-sorted,
infinitary, or even higher order.

The simplest kind of single-sorted structure consists of a type with no additional structure.
The univalence axiom expresses the structure identity principle for that notion of structure in a
strong form: for types A, B, the canonical function (A = B)→ (A ≃ B) is an equivalence.

We start with a precategory X. In our application to single-sorted first order structures, X
will be the category of U -small sets, where U is a univalent type universe.

Definition 9.8.1. A notion of structure (P, H) over X consists of the following.

304 CHAPTER 9. CATEGORY THEORY

(i) A type family P : X0 → U . For each x : X0 the elements of Px are called (P, H)-structures
on x.

(ii) For x, y : X0, f : homX(x, y) and α : Px, β : Py, a mere proposition

Hαβ(f).

If Hαβ(f) is true, we say that f is a (P, H)-homomorphism from α to β.
(iii) For x : X0 and α : Px, we have Hαα(1x).
(iv) For x, y, z : X0 and α : Px, β : Py, γ : Pz, if f : homX(x, y) and g : homX(y, z), we have

Hαβ(f)→ Hβγ(g)→ Hαγ(g ◦ f).

When (P, H) is a notion of structure, for α, β : Px we define

(α ≤x β) :≡ Hαβ(1x).

By (iii) and (iv), this is a preorder (Example 9.1.14) with Px its type of objects. We say that (P, H)

is a standard notion of structure if this preorder is in fact a partial order, for all x : X.

Note that for a standard notion of structure, each type Px must actually be a set. We now
define, for any notion of structure (P, H), a precategory of (P, H)-structures, A = Str(P,H)(X).

• The type of objects of A is the type A0 :≡ ∑(x:X0) Px. If a ≡ (x, α) : A0, we may write
|a| :≡ x.

• For (x, α) : A0 and (y, β) : A0, we define

homA((x, α), (y, β)) :≡
{

f : x → y
∣∣ Hαβ(f)

}
.

The composition and identities are inherited from X; conditions (iii) and (iv) ensure that these
lift to A.

Theorem 9.8.2 (Structure identity principle). If X is a category and (P, H) is a standard notion of
structure over X, then the precategory Str(P,H)(X) is a category.

Proof. By the definition of equality in dependent pair types, to give an equality (x, α) = (y, β)

consists of

• An equality p : x = y, and
• An equality p∗(α) = β.

Since P is set-valued, the latter is a mere proposition. On the other hand, it is easy to see that an
isomorphism (x, α) ∼= (y, β) in Str(P,H)(X) consists of

• An isomorphism f : x ∼= y in X, such that
• Hαβ(f) and Hβα(f−1).

Of course, the second of these is also a mere proposition. And since X is a category, the function
(x = y) → (x ∼= y) is an equivalence. Thus, it will suffice to show that for any p : x = y
and for any (α : Px), (β : Py), we have p∗(α) = β if and only if both Hαβ(idtoiso(p)) and
Hβα(idtoiso(p)−1).

The “only if” direction is just the existence of the function idtoiso for the category Str(P,H)(X).
For the “if” direction, by induction on p we may assume that y ≡ x and p ≡ reflx. However,
in this case idtoiso(p) ≡ 1x and therefore idtoiso(p)−1 = 1x. Thus, α ≤x β and β ≤x α, which
implies α = β since (P, H) is a standard notion of structure.

9.8 THE STRUCTURE IDENTITY PRINCIPLE 305

As an example, this methodology gives an alternative way to express the proof of Theo-
rem 9.2.5.

Example 9.8.3. Let A be a precategory and B a category. There is a precategory BA0 whose objects
are functions A0 → B0, and whose set of morphisms from F0 : A0 → B0 to G0 : A0 → B0

is ∏(a:A0) homB(F0a, G0a). Composition and identities are inherited directly from those in B. It
is easy to show that γ : homBA0 (F0, G0) is an isomorphism exactly when each component γa

is an isomorphism, so that we have (F0 ∼= G0) ≃ ∏(a:A0)(F0a ∼= G0a). Moreover, the map
idtoiso : (F0 = G0)→ (F0 ∼= G0) of BA0 is equal to the composite

(F0 = G0) −→ ∏
a:A0

(F0a = G0a) −→ ∏
a:A0

(F0a ∼= G0a) −→ (F0 ∼= G0)

in which the first map is an equivalence by function extensionality, the second because it is a
dependent product of equivalences (since B is a category), and the third as remarked above.
Thus, BA0 is a category.

Now we define a notion of structure on BA0 for which P(F0) is the type of operations F :
∏(a,a′ :A0) homA(a, a′) → homB(F0a, F0a′) which extend F0 to a functor (i.e. preserve composition
and identities). This is a set since each homB(–, –) is so. Given such F and G, we define γ :
homBA0 (F0, G0) to be a homomorphism if it forms a natural transformation. In Definition 9.2.3
we essentially verified that this is a notion of structure. Moreover, if F and F′ are both structures
on F0 and the identity is a natural transformation from F to F′, then for any f : homA(a, a′) we
have F′ f = F′ f ◦ 1F0a = 1F0a ◦ F f = F f . Applying function extensionality, we conclude F = F′.
Thus, we have a standard notion of structure, and so by Theorem 9.8.2, the precategory BA is a
category.

As another example, we consider categories of structures for a first-order signature. We de-
fine a first-order signature, Ω, to consist of sets Ω0 and Ω1 of function symbols, ω : Ω0, and
relation symbols, ω : Ω1, each having an arity |ω| that is a set. An Ω-structure a consists of a set
|a| together with an assignment of an |ω|-ary function ωa : |a||ω| → |a| on |a| to each function
symbol, ω, and an assignment of an |ω|-ary relation ωa on |a|, assigning a mere proposition ωax
to each x : |a||ω|, to each relation symbol. And given Ω-structures a, b, a function f : |a| → |b|
is a homomorphism a → b if it preserves the structure; i.e. if for each symbol ω of the signature
and each x : |a||ω|,

(i) f (ωax) = ωb(f ◦ x) if ω : Ω0, and

(ii) ωax → ωb(f ◦ x) if ω : Ω1.

Note that each x : |a||ω| is a function x : |ω| → |a| so that f ◦ x : bω.
Now we assume given a (univalent) universe U and a U -small signature Ω; i.e. |Ω| is a U -

small set and, for each ω : |Ω|, the set |ω| is U -small. Then we have the category SetU of U -small
sets. We want to define the precategory of U -small Ω-structures over SetU and use Theorem 9.8.2
to show that it is a category.

We use the first order signature Ω to give us a standard notion of structure (P, H) over SetU .

Definition 9.8.4.

(i) For each U -small set x define
Px :≡ P0x× P1x.

306 CHAPTER 9. CATEGORY THEORY

Here

P0x :≡ ∏
ω:Ω0

x|ω| → x, and

P1x :≡ ∏
ω:Ω1

x|ω| → PropU ,

(ii) For U -small sets x, y and α : Pωx, β : Pωy, f : x → y, define

Hαβ(f) :≡ H0,αβ(f) ∧ H1,αβ(f).

Here

H0,αβ(f) :≡ ∀(ω : Ω0). ∀(u : x|ω|). f (αu) = β(f ◦ u), and

H1,αβ(f) :≡ ∀(ω : Ω1). ∀(u : x|ω|). αu→ β(f ◦ u).

It is now routine to check that (P, H) is a standard notion of structure over SetU and hence we
may use Theorem 9.8.2 to get that the precategory Str(P,H)(SetU) is a category. It only remains to
observe that this is essentially the same as the precategory of U -small Ω-structures over SetU .

9.9 The Rezk completion

In this section we will give a universal way to replace a precategory by a category. In fact, we
will give two. Both rely on the fact that “categories see weak equivalences as equivalences”.

To prove this, we begin with a couple of lemmas which are completely standard category
theory, phrased carefully so as to make sure we are using the eliminator for ∥–∥−1 correctly. One
would have to be similarly careful in classical category theory if one wanted to avoid the axiom
of choice: any time we want to define a function, we need to characterize its values uniquely
somehow.

Lemma 9.9.1. If A, B, C are precategories and H : A → B is an essentially surjective functor, then
(– ◦ H) : CB → CA is faithful.

Proof. Let F, G : B → C, and γ, δ : F → G be such that γH = δH; we must show γ = δ. Thus let
b : B; we want to show γb = δb. This is a mere proposition, so since H is essentially surjective,
we may assume given an a : A and an isomorphism f : Ha ∼= b. But now we have

γb = G(f) ◦ γHa ◦ F(f−1) = G(f) ◦ δHa ◦ F(f−1) = δb.

Lemma 9.9.2. If A, B, C are precategories and H : A → B is essentially surjective and full, then (– ◦
H) : CB → CA is fully faithful.

Proof. It remains to show fullness. Thus, let F, G : B → C and γ : FH → GH. We claim that for
any b : B, the type

∑
(g:homC(Fb,Gb))

∏
(a:A)

∏
(f :Ha∼=b)

(γa = G f−1 ◦ g ◦ F f) (9.9.3)

is contractible. Since contractibility is a mere property, and H is essentially surjective, we may
assume given a0 : A and h : Ha0 ∼= b.

Now take g :≡ Gh ◦ γa0 ◦ Fh−1. Then given any other a : A and f : Ha ∼= b, we must show
γa = G f−1 ◦ g ◦ F f . Since H is full, there merely exists a morphism k : homA(a, a0) such that

9.9 THE REZK COMPLETION 307

Hk = h−1 ◦ f . And since our goal is a mere proposition, we may assume given some such k.
Then we have

γa = GHk−1 ◦ γa0 ◦ FHk

= G f−1 ◦ Gh ◦ γa0 ◦ Fh−1 ◦ F f

= G f−1 ◦ g ◦ F f .

Thus, (9.9.3) is inhabited. It remains to show it is a mere proposition. Let g, g′ : homC(Fb, Gb)
be such that for all a : A and f : Ha ∼= b, we have both (γa = G f−1 ◦ g ◦ F f) and (γa =

G f−1 ◦ g′ ◦ F f). The dependent product types are mere propositions, so all we have to prove is
g = g′. But this is a mere proposition, so we may assume a0 : A and h : Ha0 ∼= b, in which case
we have

g = Gh ◦ γa0 ◦ Fh−1 = g′.

This proves that (9.9.3) is contractible for all b : B. Now we define δ : F → G by taking δb to be
the unique g in (9.9.3) for that b. To see that this is natural, suppose given f : homB(b, b′); we
must show G f ◦ δb = δb′ ◦ F f . As before, we may assume a : A and h : Ha ∼= b, and likewise
a′ : A and h′ : Ha′ ∼= b′. Since H is full as well as essentially surjective, we may also assume
k : homA(a, a′) with Hk = h′−1 ◦ f ◦ h.

Since γ is natural, GHk ◦ γa = γa′ ◦ FHk. Using the definition of δ, we have

G f ◦ δb = G f ◦ Gh ◦ γa ◦ Fh−1

= Gh′ ◦ GHk ◦ γa ◦ Fh−1

= Gh′ ◦ γa′ ◦ FHk ◦ Fh−1

= Gh′ ◦ γa′ ◦ Fh′−1 ◦ F f

= δb′ ◦ F f .

Thus, δ is natural. Finally, for any a : A, applying the definition of δHa to a and 1a, we obtain
γa = δHa. Hence, δ ◦ H = γ.

The rest of the theorem follows almost exactly the same lines, with the category-ness of C
inserted in one crucial step, which we have italicized below for emphasis. This is the point at
which we are trying to define a function into objects without using choice, and so we must be
careful about what it means for an object to be “uniquely specified”. In classical category theory,
all one can say is that this object is specified up to unique isomorphism, but in set-theoretic
foundations this is not a sufficient amount of uniqueness to give us a function without invoking
AC. In univalent foundations, however, if C is a category, then isomorphism is equality, and we
have the appropriate sort of uniqueness (namely, living in a contractible space).

Theorem 9.9.4. If A, B are precategories, C is a category, and H : A → B is a weak equivalence, then
(– ◦ H) : CB → CA is an isomorphism.

Proof. By Theorem 9.2.5, CB and CA are categories. Thus, by Lemma 9.4.14 it will suffice to show
that (– ◦ H) is an equivalence. But since we know from the preceding two lemmas that it is fully
faithful, by Lemma 9.4.7 it will suffice to show that it is essentially surjective. Thus, suppose
F : A→ C; we want there to merely exist a G : B→ C such that GH ∼= F.

For each b : B, let Xb be the type whose elements consist of:

(i) An element c : C; and

308 CHAPTER 9. CATEGORY THEORY

(ii) For each a : A and h : Ha ∼= b, an isomorphism ka,h : Fa ∼= c; such that
(iii) For each (a, h) and (a′, h′) as in (ii) and each f : homA(a, a′) such that h′ ◦ H f = h, we have

ka′,h′ ◦ F f = ka,h.

We claim that for any b : B, the type Xb is contractible. As this is a mere proposition, we may
assume given a0 : A and h0 : Ha0 ∼= b. Let c0 :≡ Fa0. Next, given a : A and h : Ha ∼= b, since
H is fully faithful there is a unique isomorphism ga,h : a → a0 with Hga,h = h0

−1 ◦ h; define
k0

a,h :≡ Fga,h. Finally, if h′ ◦ H f = h, then h0
−1 ◦ h′ ◦ H f = h0

−1 ◦ h, hence ga′,h′ ◦ f = ga,h and thus
k0

a′,h′ ◦ F f = k0
a,h. Therefore, Xb is inhabited.

Now suppose given another (c1, k1) : Xb. Then k1
a0,h0

: c0 ≡ Fa0 ∼= c1. Since C is a category, we
have p : c0 = c1 with idtoiso(p) = k1

a0,h0
. And for any a : A and h : Ha ∼= b, by (iii) for (c1, k1) with

f :≡ ga,h, we have
k1

a,h = k1
a0,h0
◦ k0

a,h = p∗
(
k0

a,h
)

This gives the requisite data for an equality (c0, k0) = (c1, k1), completing the proof that Xb is
contractible.

Now since Xb is contractible for each b, the type ∏(b:B) Xb is also contractible. In particular, it
is inhabited, so we have a function assigning to each b : B a c and a k. Define G0(b) to be this c;
this gives a function G0 : B0 → C0.

Next we need to define the action of G on morphisms. For each b, b′ : B and f : homB(b, b′),
let Yf be the type whose elements consist of:

(iv) A morphism g : homC(Gb, Gb′), such that
(v) For each a : A and h : Ha ∼= b, and each a′ : A and h′ : Ha′ ∼= b′, and any ℓ : homA(a, a′),

we have
(h′ ◦ Hℓ = f ◦ h)→ (ka′,h′ ◦ Fℓ = g ◦ ka,h).

We claim that for any b, b′ and f , the type Yf is contractible. As this is a mere proposition,
we may assume given a0 : A and h0 : Ha0 ∼= b, and each a′0 : A and h′0 : Ha′0 ∼= b′. Then
since H is fully faithful, there is a unique ℓ0 : homA(a0, a′0) such that h′0 ◦ Hℓ0 = f ◦ h0. Define
g0 :≡ ka′0,h′0

◦ Fℓ0 ◦ (ka0,h0)
−1.

Now for any a, h, a′, h′, and ℓ such that (h′ ◦ Hℓ = f ◦ h), we have h−1 ◦ h0 : Ha0 ∼= Ha,
hence there is a unique m : a0 ∼= a with Hm = h−1 ◦ h0 and hence h ◦ Hm = h0. Similarly, we
have a unique m′ : a′0 ∼= a′ with h′ ◦ Hm′ = h′0. Now by (iii), we have ka,h ◦ Fm = ka0,h0 and
ka′,h′ ◦ Fm′ = ka′0,h′0

. We also have

Hm′ ◦ Hℓ0 = (h′)−1 ◦ h′0 ◦ Hℓ0

= (h′)−1 ◦ f ◦ h0

= (h′)−1 ◦ f ◦ h ◦ h−1 ◦ h0

= Hℓ ◦ Hm

and hence m′ ◦ ℓ0 = ℓ ◦m since H is fully faithful. Finally, we can compute

g0 ◦ ka,h = ka′0,h′0
◦ Fℓ0 ◦ (ka0,h0)

−1 ◦ ka,h

= ka′0,h′0
◦ Fℓ0 ◦ Fm−1

= ka′0,h′0
◦ (Fm′)−1 ◦ Fℓ

= ka′,h′ ◦ Fℓ.

9.9 THE REZK COMPLETION 309

This completes the proof that Yf is inhabited. To show it is contractible, since hom-sets are sets,
it suffices to take another g1 : homC(Gb, Gb′) satisfying (v) and show g0 = g1. However, we
still have our specified a0, h0, a′0, h′0, ℓ0 around, and (v) implies both g0 and g1 must be equal to
ka′0,h′0

◦ Fℓ0 ◦ (ka0,h0)
−1.

This completes the proof that Yf is contractible for each b, b′ : B and f : homB(b, b′). There-
fore, there is a function assigning to each such f its unique inhabitant; denote this function
Gb,b′ : homB(b, b′) → homC(Gb, Gb′). The proof that G is a functor is straightforward; in each
case we can choose a, h and apply (v).

Finally, for any a0 : A, defining c :≡ Fa0 and ka,h :≡ Fg, where g : homA(a, a0) is the unique
isomorphism with Hg = h, gives an element of XHa0 . Thus, it is equal to the specified one; hence
GHa = Fa. Similarly, for f : homA(a0, a′0) we can define an element of YH f by transporting along
these equalities, which must therefore be equal to the specified one. Hence, we have GH = F,
and thus GH ∼= F as desired.

Therefore, if a precategory A admits a weak equivalence functor A→ Â into a category, then
that is its “reflection” into categories: any functor from A into a category will factor essentially
uniquely through Â. We now give two constructions of such a weak equivalence.

Theorem 9.9.5. For any precategory A, there is a category Â and a weak equivalence A→ Â.

First proof. Let Â0 :≡
{

F : SetAop ∣∣ ∃(a : A). (ya ∼= F)
}

, with hom-sets inherited from SetAop
.

Then the inclusion Â → SetAop
is fully faithful and an embedding on objects. Since SetAop

is a
category (by Theorem 9.2.5, since Set is so by univalence), Â is also a category.

Let A→ Â be the Yoneda embedding. This is fully faithful by Corollary 9.5.6, and essentially
surjective by definition of Â0. Thus it is a weak equivalence.

This proof is very slick, but it has the drawback that it increases universe level. If A is a
category in a universe U , then in this proof Set must be at least as large as SetU . Then SetU and
(SetU)Aop

are not themselves categories in U , but only in a higher universe, and a priori the same
is true of Â. One could imagine a resizing axiom that could deal with this, but it is also possible
to give a direct construction using higher inductive types.

Second proof. We define a higher inductive type Â0 with the following constructors:

• A function i : A0 → Â0.

• For each a, b : A and e : a ∼= b, an equality je : ia = ib.

• For each a : A, an equality j(1a) = reflia.

• For each (a, b, c : A), (f : a ∼= b), and (g : b ∼= c), an equality j(g ◦ f) = j(f) � j(g).
• 1-truncation: for all x, y : Â0 and p, q : x = y and r, s : p = q, an equality r = s.

Note that for any a, b : A and p : a = b, we have j(idtoiso(p)) = i(p). This follows by path
induction on p and the third constructor.

The type Â0 will be the type of objects of Â; we now build all the rest of the structure. (The
following proof is of the sort that can benefit a lot from the help of a computer proof assistant: it
is wide and shallow with many short cases to consider, and a large part of the work consists of
writing down what needs to be checked.)

Step 1: We define a family homÂ : Â0 → Â0 → Set by double induction on Â0. Since Set

is a 1-type, we can ignore the 1-truncation constructor. When x and y are of the form ia and

310 CHAPTER 9. CATEGORY THEORY

ib, we take homÂ(ia, ib) :≡ homA(a, b). It remains to consider all the other possible pairs of
constructors.

Let us keep x = ia fixed at first. If y varies along the identity je : ib = ib′, for some e :
b ∼= b′, we require an identity homA(a, b) = homA(a, b′). By univalence, it suffices to give an
equivalence homA(a, b) ≃ homA(a, b′). We take this to be the function (e ◦ –) : homA(a, b) →
homA(a, b′). To see that this is an equivalence, we give its inverse as (e−1 ◦ –), with witnesses to
inversion coming from the fact that e−1 is the inverse of e in A.

As y varies along the identity j(1b) = reflib, we require an identity (1b ◦ –) = reflhomA(a,b);
this follows from the identity axiom 1b ◦ g = g of a precategory. Similarly, as y varies along the
identity j(g ◦ f) = j(f) � j(g), we require an identity ((g ◦ f) ◦ –) = (g ◦ (f ◦ –)), which follows
from associativity.

Now we consider the other constructors for x. Say that x varies along the identity j(e) :
ia = ia′, for some e : a ∼= a′; we again must deal with all the constructors for y. If y is ib,
then we require an identity homA(a, b) = homA(a′, b). By univalence, this may come from an
equivalence, and for this we can use (– ◦ e−1), with inverse (– ◦ e).

Still with x varying along j(e), suppose now that y also varies along j(f) for some f : b ∼= b′.
Then we need to know that the two concatenated identities

homA(a, b) = homA(a′, b) = homA(a′, b′) and

homA(a, b) = homA(a, b′) = homA(a′, b′)

are identical. This follows from associativity: (f ◦ –) ◦ e−1 = f ◦ (– ◦ e−1). The other two con-
structors for y are trivial, since they are 2-fold equalities in sets.

For the next two constructors of x, all but the first constructor for y is likewise trivial. When
x varies along j(1a) = reflia and y is ib, we use the identity axiom again. Similarly, when x
varies along j(g ◦ f) = j(f) � j(g), we use associativity again. This completes the construction of
homÂ : Â0 → Â0 → Set.

Step 2: We give the precategory structure on Â, always by induction on Â0. We are now
eliminating into sets (the hom-sets of Â), so all but the first two constructors are trivial to deal
with.

For identities, if x is ia then we have homÂ(x, x) ≡ homA(a, a) and we define 1x :≡ 1ia. If
x varies along je for e : a ∼= a′, we must show that transportx 7→homÂ(x,x)(je, 1ia) = 1ia′ . But by
definition of homÂ, transporting along je is given by composing with e and e−1, and we have
e ◦ 1ia ◦ e−1 = 1ia′ .

For composition, if x, y, z are ia, ib, ic respectively, then homÂ reduces to homA and we can
define composition in Â to be composition in A. And when x, y, or z varies along je, then we
verify the following equalities:

e ◦ (g ◦ f) = (e ◦ g) ◦ f ,

g ◦ f = (g ◦ e−1) ◦ (e ◦ f),

(g ◦ f) ◦ e−1 = g ◦ (f ◦ e−1).

Finally, the associativity and unitality axioms are mere propositions, so all constructors except
the first are trivial. But in that case, we have the corresponding axioms in A.

Step 3: We show that Â is a category. That is, we must show that for all x, y : Â, the function
idtoiso : (x = y) → (x ∼= y) is an equivalence. First we define, for all x, y : Â, a function

9.9 THE REZK COMPLETION 311

kx,y : (x ∼= y) → (x = y) by induction. As before, since our goal is a set, it suffices to deal with
the first two constructors.

When x and y are ia and ib respectively, we have homÂ(ia, ib) ≡ homA(a, b), with composi-
tion and identities inherited as well, so that (ia ∼= ib) is equivalent to (a ∼= b). But now we have
the constructor j : (a ∼= b)→ (ia = ib).

Next, if y varies along j(e) for some e : b ∼= b′, we must show that for f : a ∼= b we have
j(j(e)∗(f)) = j(f) � j(e). But by definition of homÂ on equalities, transporting along j(e) is
equivalent to post-composing with e, so this equality follows from the last constructor of Â0. The
remaining case when x varies along j(e) for e : a ∼= a′ is similar. This completes the definition of
k : ∏(x,y:Â0)

(x ∼= y)→ (x = y).
Now one thing we must show is that if p : x = y, then k(idtoiso(p)) = p. By induction on

p, we may assume it is reflx, and hence idtoiso(p) ≡ 1x. Now we argue by induction on x : Â0,
and since our goal is a mere proposition (since Â0 is a 1-type), all constructors except the first are
trivial. But if x is ia, then k(1ia) ≡ j(1a), which is equal to reflia by the third constructor of Â0.

To complete the proof that Â is a category, we must show that if f : x ∼= y, then idtoiso(k(f)) =
f . By induction we may assume that x and y are ia and ib respectively, in which case f must
arise from an isomorphism g : a ∼= b and we have k(f) ≡ j(g). However, for any p we have
idtoiso(p) = p∗(1), so in particular idtoiso(j(g)) = j(g)∗(1ia). And by definition of homÂ on
equalities, this is given by composing 1ia with the equivalence g, hence is equal to g.

Note the similarity of this step to the encode-decode method used in §§2.12 and 2.13 and Chap-
ter 8. Once again we are characterizing the identity types of a higher inductive type (here, Â0)
by defining recursively a family of codes (here, (x, y) 7→ (x ∼= y)) and encoding and decoding
functions by induction on Â0 and on paths.

Step 4: We define a weak equivalence I : A → Â. We take I0 :≡ i : A0 → Â0, and by
construction of homÂ we have functions Ia,b : homA(a, b) → homÂ(Ia, Ib) forming a functor
I : A → Â. This functor is fully faithful by construction, so it remains to show it is essentially
surjective. That is, for all x : Â we want there to merely exist an a : A such that Ia ∼= x. As always,
we argue by induction on x, and since the goal is a mere proposition, all but the first constructor
are trivial. But if x is ia, then of course we have a : A and Ia ≡ ia, hence Ia ∼= ia. (Note that if
we were trying to prove I to be split essentially surjective, we would be stuck, because we know
nothing about equalities in A0 and thus have no way to deal with any further constructors.)

We call the construction A 7→ Â the Rezk completion, although there is also an argument
(coming from higher topos semantics) for calling it the stack completion.

We have seen that most precategories arising in practice are categories, since they are con-
structed from Set, which is a category by the univalence axiom. However, there are a few cases
in which the Rezk completion is necessary to obtain a category.

Example 9.9.6. Recall from Example 9.1.17 that for any type X there is a pregroupoid with X as
its type of objects and hom(x, y) :≡ ∥x = y∥0. Its Rezk completion is the fundamental groupoid
of X. Recalling that groupoids are equivalent to 1-types, it is not hard to identify this groupoid
with ∥X∥1.

Example 9.9.7. Recall from Example 9.1.18 that there is a precategory whose type of objects is U
and with hom(X, Y) :≡ ∥X → Y∥0. Its Rezk completion may be called the homotopy category
of types. Its type of objects can be identified with ∥U∥1 (see Exercise 9.9).

The Rezk completion also allows us to show that the notion of “category” is determined by
the notion of “weak equivalence of precategories”. Thus, insofar as the latter is inevitable, so is

312 CHAPTER 9. CATEGORY THEORY

the former.

Theorem 9.9.8. A precategory C is a category if and only if for every weak equivalence of precategories
H : A→ B, the induced functor (– ◦ H) : CB → CA is an isomorphism of precategories.

Proof. “Only if” is Theorem 9.9.4. In the other direction, let H be I : A → Â. Then since (– ◦ I)0

is an equivalence, there exists R : Â → A such that RI = 1A. Hence IRI = I, but again since
(– ◦ I)0 is an equivalence, this implies IR = 1Â. By Lemma 9.4.9(iii), I is an isomorphism of
precategories. But then since Â is a category, so is A.

CHAPTER 9 NOTES 313

Notes

The original definition of categories, of course, was in set-theoretic foundations, so that the col-
lection of objects of a category formed a set (or, for large categories, a class). Over time, it be-
came clear that all “category-theoretic” properties of objects were invariant under isomorphism,
and that equality of objects in a category was not usually a very useful notion. Numerous au-
thors [Bla79, Fre76, Mak95, Mak01] discovered that a dependently typed logic enabled formu-
lating the definition of category without invoking any notion of equality for objects, and that the
statements provable in this logic are precisely the “category-theoretic” ones that are invariant
under isomorphism.

Although most of category theory appears to be invariant under isomorphism of objects and
under equivalence of categories, there are some interesting exceptions, which have led to philo-
sophical discussions about what it means to be “category-theoretic”. For instance, Example 9.6.3
was brought up by Peter May on the categories mailing list in May 2010, as a case where it
matters that two categories (defined as usual in set theory) are isomorphic rather than only
equivalent. The case of †-categories was also somewhat confounding to those advocating an
isomorphism-invariant version of category theory, since the “correct” notion of sameness be-
tween objects of a †-category is not ordinary isomorphism but unitary isomorphism.

Categories satisfying the “saturation” or “univalence” principle as in Definition 9.1.6 were
first considered by Hofmann and Streicher [HS98]. The condition then occurred independently
to Voevodsky, Shulman, and perhaps others around the same time several years later, and was
formalized by Ahrens and Kapulkin [AKS13]. This framework puts all the above examples in
a unified context: some precategories are categories, others are strict categories, and so on. A
general theorem that “isomorphism implies equality” for a large class of algebraic structures
(assuming the univalence axiom) was proven by Coquand and Danielsson; the formulation of
the structure identity principle in §9.8 is due to Aczel.

Independently of philosophical considerations about category theory, Rezk [Rez01] discov-
ered that when defining a notion of (∞, 1)-category, it was very convenient to use not merely
a set of objects with spaces of morphisms between them, but a space of objects incorporating all
the equivalences and homotopies between them. This yields a very well-behaved sort of model
for (∞, 1)-categories as particular simplicial spaces, which Rezk called complete Segal spaces. One
especially good aspect of this model is the analogue of Lemma 9.4.14: a map of complete Segal
spaces is an equivalence just when it is a levelwise equivalence of simplicial spaces.

When interpreted in Voevodsky’s simplicial set model of univalent foundations, our precat-
egories are similar to a truncated analogue of Rezk’s “Segal spaces”, while our categories corre-
spond to his “complete Segal spaces”. Strict categories correspond instead to (a weakened and
truncated version of) what are called “Segal categories”. It is known that Segal categories and
complete Segal spaces are equivalent models for (∞, 1)-categories (see e.g. [Ber09]), so that in
the simplicial set model, categories and strict categories yield “equivalent” category theories—
although as we have seen, the former still have many advantages. However, in the more general
categorical semantics of a higher topos, a strict category corresponds to an internal category (in
the traditional sense) in the corresponding 1-topos of sheaves, while a category corresponds to a
stack. The latter are generally a more appropriate sort of “category” relative to a topos.

In Rezk’s context, what we have called the “Rezk completion” corresponds to fibrant re-
placement in the model category for complete Segal spaces. Since this is built using a transfinite
induction argument, it most closely matches our second construction as a higher inductive type.
However, in higher topos models of homotopy type theory, the Rezk completion corresponds

314 CHAPTER 9. CATEGORY THEORY

to stack completion, which can be constructed either with a transfinite induction [JT91] or using a
Yoneda embedding [Bun79].

Exercises

Exercise 9.1. For a precategory A and a : A, define the slice precategory A/a. Show that if A is a
category, so is A/a.

Exercise 9.2. For any set X, prove that the slice category Set/X is equivalent to the functor cate-
gory SetX, where in the latter case we regard X as a discrete category.

Exercise 9.3. Prove that a functor is an equivalence of categories if and only if it is a right adjoint
whose unit and counit are isomorphisms.

Exercise 9.4. Define the notion of pre-2-category. Show that precategories, functors, and natu-
ral transformations as defined in §9.2 form a pre-2-category. Similarly, define a pre-bicategory
by replacing the equalities (such as those in Lemmas 9.2.9 and 9.2.11) with natural isomor-
phisms satisfying analogous coherence conditions. Define a function from pre-2-categories to
pre-bicategories, and show that it becomes an equivalence when restricted and corestricted to
those whose hom-precategories are categories.

Exercise 9.5. Define a 2-category to be a pre-2-category satisfying a condition analogous to that
of Definition 9.1.6. Verify that the pre-2-category of categories Cat is a 2-category. How much of
this chapter can be done internally to an arbitrary 2-category?

Exercise 9.6. Define a 2-category whose objects are 1-types, whose morphisms are functions, and
whose 2-morphisms are homotopies. Prove that it is equivalent, in an appropriate sense, to
the full sub-2-category of Cat spanned by the groupoids (categories in which every arrow is an
isomorphism).

Exercise 9.7. Recall that a strict category is a precategory whose type of objects is a set. Prove that
the pre-2-category of strict categories is equivalent to the following pre-2-category.

• Its objects are categories A equipped with a surjection pA : A′0 → A0, where A′0 is a set.
• Its morphisms are functors F : A → B equipped with a function F′0 : A′0 → B′0 such that

pB ◦ F′0 = F0 ◦ pA.
• Its 2-morphisms are simply natural transformations.

Exercise 9.8. Define the pre-2-category of †-categories, which has †-structures on its hom-precat-
egories. Show that two †-categories are equal precisely when they are “unitarily equivalent” in
a suitable sense.

Exercise 9.9. Prove that a function X → Y is an equivalence if and only if its image in the homo-
topy category of Example 9.9.7 is an isomorphism. Show that the type of objects of this category
is ∥U∥1.

Exercise 9.10. Construct the †-Rezk completion of a †-precategory into a †-category, and give it
an appropriate universal property.

Exercise 9.11. Using fundamental (pre)groupoids from Examples 9.1.17 and 9.9.6 and the Rezk
completion from §9.9, give a different proof of van Kampen’s theorem (§8.7).

Exercise 9.12. Let X and Y be sets and p : Y → X a surjection.

(i) Define, for any precategory A, the category Desc(A, p) of descent data in A relative to p.

CHAPTER 9 EXERCISES 315

(ii) Show that any precategory A is a prestack for p, i.e. the canonical functor AX → Desc(A, p)
is fully faithful.

(iii) Show that if A is a category, then it is a stack for p, i.e. AX → Desc(A, p) is an equivalence.
(iv) Show that the statement “every strict category is a stack for every surjection of sets” is

equivalent to the axiom of choice.

316 CHAPTER 9. CATEGORY THEORY

Chapter 10

Set theory

Our conception of sets as types with particularly simple homotopical character, cf. §3.1, is quite
different from the sets of Zermelo–Fraenkel set theory, which form a cumulative hierarchy with
an intricate nested membership structure. For many mathematical purposes, the homotopy-the-
oretic sets are just as good as the Zermelo–Fraenkel ones, but there are important differences.

We begin this chapter in §10.1 by showing that the category Set has (most of) the usual
properties of the category of sets. In constructive, predicative, univalent foundations, it is a
“ΠW-pretopos”; whereas if we assume propositional resizing (§3.5) it is an elementary topos,
and if we assume LEM and AC then it is a model of Lawvere’s Elementary Theory of the Category
of Sets. This is sufficient to ensure that the sets in homotopy type theory behave like sets as used
by most mathematicians outside of set theory.

In the rest of the chapter, we investigate some subjects that traditionally belong to “set the-
ory”. In §§10.2–10.4 we study cardinal and ordinal numbers. These are traditionally defined
in set theory using the global membership relation, but we will see that the univalence axiom
enables an equally convenient, more “structural” approach.

Finally, in §10.5 we consider the possibility of constructing inside of homotopy type theory
a cumulative hierarchy of sets, equipped with a binary membership relation akin to that of
Zermelo–Fraenkel set theory. This combines higher inductive types with ideas from the field
of algebraic set theory.

In this chapter we will often use the traditional logical notation described in §3.7. In addition
to the basic theory of Chapters 2 and 3, we use higher inductive types for colimits and quotients
as in §§6.8 and 6.10, as well as some of the theory of truncation from Chapter 7, particularly
the factorization system of §7.6 in the case n = −1. In §10.3 we use an inductive family (§5.7)
to describe well-foundedness, and in §10.5 we use a more complicated higher inductive type to
present the cumulative hierarchy.

10.1 The category of sets

Recall that in Chapter 9 we defined the category Set to consist of all 0-types (in some universe U)
and maps between them, and observed that it is a category (not just a precategory). We consider
successively the levels of structure which Set possesses.

318 CHAPTER 10. SET THEORY

10.1.1 Limits and colimits

Since sets are closed under products, the universal property of products in Theorem 2.15.2 shows
immediately that Set has finite products. In fact, infinite products follow just as easily from the
equivalence (

X →∏
a:A

B(a)
)
≃
(
∏
a:A

(X → B(a))
)

.

And we saw in Exercise 2.11 that the pullback of f : A → C and g : B → C can be defined as
∑(a:A) ∑(b:B) f (a) = g(b); this is a set if A, B, C are and inherits the correct universal property.
Thus, Set is a complete category in the obvious sense.

Since sets are closed under + and contain 0, Set has finite coproducts. Similarly, since
∑(a:A) B(a) is a set whenever A and each B(a) are, it yields a coproduct of the family B in Set.
Finally, we showed in §7.4 that pushouts exist in n-types, which includes Set in particular. Thus,
Set is also cocomplete.

10.1.2 Images

Next, we show that Set is a regular category, i.e.:

(i) Set is finitely complete.
(ii) The kernel pair pr1, pr2 : (∑(x,y:A) f (x) = f (y)) → A of any function f : A → B has a

coequalizer.
(iii) Pullbacks of regular epimorphisms are again regular epimorphisms.

Recall that a regular epimorphism is a morphism that is the coequalizer of some pair of maps.
Thus in (iii) the pullback of a coequalizer is required to again be a coequalizer, but not necessarily
of the pulled-back pair.

The obvious candidate for the coequalizer of the kernel pair of f : A→ B is the image of f , as
defined in §7.6. Recall that we defined im(f) :≡ ∑(b:B)

∥∥fib f (b)
∥∥, with functions f̃ : A → im(f)

and i f : im(f)→ B defined by

f̃ :≡ λa.
(

f (a),
∣∣∣(a, refl f (a))

∣∣∣)
i f :≡ pr1

fitting into a diagram:

∑(x,y:A) f (x) = f (y)
pr1 //

pr2
// A

f̃
//

f
!!

im(f)

i f

��

B

Recall that a function f : A → B is called surjective if ∀(b : B).
∥∥fib f (b)

∥∥, or equivalently
∀(b : B). ∃(a : A). f (a) = b. We have also said that a function f : A → B between sets is
called injective if ∀(a, a′ : A). (f (a) = f (a′)) ⇒ (a = a′), or equivalently if each of its fibers is a
mere proposition. Since these are the (−1)-connected and (−1)-truncated maps in the sense of
Chapter 7, the general theory there implies that f̃ above is surjective and i f is injective, and that
this factorization is stable under pullback.

We now identify surjectivity and injectivity with the appropriate category-theoretic notions.
First we observe that categorical monomorphisms and epimorphisms have a slightly stronger
equivalent formulation.

10.1 THE CATEGORY OF SETS 319

Lemma 10.1.1. For a morphism f : homA(a, b) in a category A, the following are equivalent.

(i) f is a monomorphism: for all x : A and g, h : homA(x, a), if f ◦ g = f ◦ h then g = h.
(ii) (If A has pullbacks) the diagonal map a→ a×b a is an isomorphism.

(iii) For all x : A and k : homA(x, b), the type ∑(h:homA(x,a))(k = f ◦ h) is a mere proposition.
(iv) For all x : A and g : homA(x, a), the type ∑(h:homA(x,a))(f ◦ g = f ◦ h) is contractible.

Proof. The equivalence of conditions (i) and (ii) is standard category theory. Now consider the
function (f ◦ –) : homA(x, a) → homA(x, b) between sets. Condition (i) says that it is injec-
tive, while (iii) says that its fibers are mere propositions; hence they are equivalent. And (iii)
implies (iv) by taking k :≡ f ◦ g and recalling that an inhabited mere proposition is contractible.
Finally, (iv) implies (i) since if p : f ◦ g = f ◦ h, then (g, refl) and (h, p) both inhabit the type
in (iv), hence are equal and so g = h.

Lemma 10.1.2. A function f : A → B between sets is injective if and only if it is a monomorphism in
Set.

Proof. Left to the reader.

Of course, an epimorphism is a monomorphism in the opposite category. We now show
that in Set, the epimorphisms are precisely the surjections, and also precisely the coequalizers
(regular epimorphisms).

The coequalizer of a pair of maps f , g : A → B in Set is defined as the 0-truncation of a
general (homotopy) coequalizer. For clarity, we may call this the set-coequalizer. It is convenient
to express its universal property as follows.

Lemma 10.1.3. Let f , g : A → B be functions between sets A and B. The set-coequalizer c f ,g : B → Q
has the property that, for any set C and any h : B→ C with h ◦ f = h ◦ g, the type

∑
k:Q→C

(k ◦ c f ,g = h)

is contractible.

Lemma 10.1.4. For any function f : A→ B between sets, the following are equivalent:

(i) f is an epimorphism.
(ii) Consider the pushout diagram

A
f
//

��

B

ι
��

1
t
// C f

in Set defining the mapping cone. Then the type C f is contractible.
(iii) f is surjective.

Proof. Let f : A→ B be a function between sets, and suppose it to be an epimorphism; we show
C f is contractible. The constructor 1→ C f of C f gives us an element t : C f . We have to show that

∏
x:C f

x = t.

320 CHAPTER 10. SET THEORY

Note that x = t is a mere proposition, hence we can use induction on C f . Of course when x is t
we have reflt : t = t, so it suffices to find

I0 : ∏
b:B

ι(b) = t

I1 : ∏
a:A

α1(a)−1 � I0(f (a)) = reflt

where ι : B → C f and α1 : ∏(a:A) ι(f (a)) = t are the other constructors of C f . Note that α1 is a
homotopy from ι ◦ f to constt ◦ f , so we find the elements

(ι, reflι◦ f), (constt, α1) : ∑
h:B→C f

ι ◦ f ∼ h ◦ f .

By the dual of Lemma 10.1.1(iv) (and function extensionality), there is a path

γ : (ι, reflι◦ f) = (constt, α1).

Hence, we may define I0(b) :≡ happly(appr1
(γ), b) : ι(b) = t. We also have

appr2
(γ) : appr1

(γ)∗
(
reflι◦ f

)
= α1.

This transport involves precomposition with f , which commutes with happly. Thus, from trans-
port in path types we obtain I0(f (a)) = α1(a) for any a : A, which gives us I1.

Now suppose C f is contractible; we show f is surjective. We first construct a type family
P : C f → Prop by recursion on C f , which is valid since Prop is a set. On the point constructors,
we define

P(t) :≡ 1

P(ι(b)) :≡
∥∥fib f (b)

∥∥.

To complete the construction of P, it remains to give a path
∥∥fib f (f (a))

∥∥ =Prop 1 for all a : A.
However,

∥∥fib f (f (a))
∥∥ is inhabited by (f (a), refl f (a)). Since it is a mere proposition, this means it

is contractible — and thus equivalent, hence equal, to 1. This completes the definition of P. Now,
since C f is assumed to be contractible, it follows that P(x) is equivalent to P(t) for any x : C f . In
particular, P(ι(b)) ≡

∥∥fib f (b)
∥∥ is equivalent to P(t) ≡ 1 for each b : B, and hence contractible.

Thus, f is surjective.
Finally, suppose f : A→ B to be surjective, and consider a set C and two functions g, h : B→

C with the property that g ◦ f = h ◦ f . Since f is assumed to be surjective, for all b : B the type∥∥fib f (b)
∥∥ is contractible. Thus we have the following equivalences:

∏
b:B

(g(b) = h(b)) ≃∏
b:B

(∥∥fib f (b)
∥∥ → (g(b) = h(b))

)
≃∏

b:B

(
fib f (b)→ (g(b) = h(b))

)
≃ ∏

(b:B)
∏
(a:A)

∏
(p: f (a)=b)

g(b) = h(b)

≃∏
a:A

g(f (a)) = h(f (a))

using on the second line the fact that g(b) = h(b) is a mere proposition, since C is a set. But by
assumption, there is an element of the latter type.

10.1 THE CATEGORY OF SETS 321

Theorem 10.1.5. The category Set is regular. Moreover, surjective functions between sets are regular
epimorphisms.

Proof. It is a standard lemma in category theory that a category is regular as soon as it admits fi-
nite limits and a pullback-stable orthogonal factorization system (E ,M) withM the monomor-
phisms, in which case E consists automatically of the regular epimorphisms. (See e.g. [Joh02,
A1.3.4].) The existence of the factorization system was proved in Theorem 7.6.6.

Lemma 10.1.6. Pullbacks of regular epis in Set are regular epis.

Proof. We showed in Theorem 7.6.9 that pullbacks of n-connected functions are n-connected. By
Theorem 10.1.5, it suffices to apply this when n = −1.

One of the consequences of Set being a regular category is that we have an “image” operation
on subsets. That is, given f : A → B, any subset P : P(A) (i.e. a predicate P : A → Prop) has an
image which is a subset of B. This can be defined directly as { y : B | ∃(x : A). f (x) = y ∧ P(x) },
or indirectly as the image (in the previous sense) of the composite function

{ x : A | P(x) } → A
f−→ B.

We will also sometimes use the common notation { f (x) | P(x) } for the image of P.

10.1.3 Quotients

Now that we know that Set is regular, to show that Set is exact, we need to show that every
equivalence relation is effective. In other words, given an equivalence relation R : A → A →
Prop, there is a coequalizer cR of the pair pr1, pr2 : ∑(x,y:A) R(x, y) → A and, moreover, the pr1
and pr2 form the kernel pair of cR.

We have already seen, in §6.10, two general ways to construct the quotient of a set by an
equivalence relation R : A → A → Prop. The first can be described as the set-coequalizer of the
two projections

pr1, pr2 :
(

∑
x,y:A

R(x, y)
)
→ A.

The important property of such a quotient is the following.

Definition 10.1.7. A relation R : A→ A→ Prop is said to be effective if the square

∑(x,y:A) R(x, y)
pr1 //

pr2

��

A

cR

��

A cR
// A/R

is a pullback.

Since the standard pullback of cR and itself is ∑(x,y:A)(cR(x) = cR(y)), by Theorem 4.7.7 this
is equivalent to asking that the canonical transformation ∏(x,y:A) R(x, y)→ (cR(x) = cR(y)) be a
fiberwise equivalence.

Lemma 10.1.8. Suppose (A, R) is an equivalence relation. Then there is an equivalence

(cR(x) = cR(y)) ≃ R(x, y)

for any x, y : A. In other words, equivalence relations are effective.

322 CHAPTER 10. SET THEORY

Proof. We begin by extending R to a relation R̃ : A/R→ A/R→ Prop, which we will then show
is equivalent to the identity type on A/R. We define R̃ by double induction on A/R (note that
Prop is a set by univalence for mere propositions). We define R̃(cR(x), cR(y)) :≡ R(x, y). For
r : R(x, x′) and s : R(y, y′), the transitivity and symmetry of R gives an equivalence from R(x, y)
to R(x′, y′). This completes the definition of R̃.

It remains to show that R̃(w, w′) ≃ (w = w′) for every w, w′ : A/R. The direction (w = w′)→
R̃(w, w′) follows by transport once we show that R̃ is reflexive, which is an easy induction. The
other direction R̃(w, w′) → (w = w′) is a mere proposition, so since cR : A → A/R is surjective,
it suffices to assume that w and w′ are of the form cR(x) and cR(y). But in this case, we have the
canonical map R̃(cR(x), cR(y)) :≡ R(x, y)→ (cR(x) = cR(y)). (Note again the appearance of the
encode-decode method.)

The second construction of quotients is as the set of equivalence classes of R (a subset of its
power set):

A � R :≡ { P : A→ Prop | P is an equivalence class of R } .

This requires propositional resizing in order to remain in the same universe as A and R.
Note that if we regard R as a function from A to A→ Prop, then A � R is equivalent to im(R),

as constructed in §10.1.2. Now in Theorem 10.1.5 we have shown that images are coequalizers.
In particular, we immediately get the coequalizer diagram

∑(x,y:A) R(x) = R(y)
pr1 //

pr2
// A // A � R.

We can use this to give an alternative proof that any equivalence relation is effective and that the
two definitions of quotients agree.

Theorem 10.1.9. For any function f : A → B between any two sets, the relation ker(f) : A → A →
Prop given by ker(f , x, y) :≡ (f (x) = f (y)) is effective.

Proof. We will use that im(f) is the coequalizer of pr1, pr2 : (∑(x,y:A) f (x) = f (y))→ A. Note that
the kernel pair of the function

c f :≡ λa.
(

f (a),
∥∥∥(a, refl f (a))

∥∥∥) : A→ im(f)

consists of the two projections

pr1, pr2 :
(

∑
x,y:A

c f (x) = c f (y)
)
→ A.

For any x, y : A, we have equivalences

(c f (x) = c f (y)) ≃
(

∑
p: f (x)= f (y)

p∗
(∥∥∥(x, refl f (x))

∥∥∥) =
∥∥∥(y, refl f (x))

∥∥∥)
≃ (f (x) = f (y)),

where the last equivalence holds because
∥∥fib f (b)

∥∥ is a mere proposition for any b : B. Therefore,
we get that (

∑
x,y:A

c f (x) = c f (y)
)
≃
(

∑
x,y:A

f (x) = f (y)
)

and hence we may conclude that ker f is an effective relation for any function f .

10.1 THE CATEGORY OF SETS 323

Theorem 10.1.10. Equivalence relations are effective and there is an equivalence A/R ≃ A � R.

Proof. We need to analyze the coequalizer diagram

∑(x,y:A) R(x) = R(y)
pr1 //

pr2
// A // A � R

By the univalence axiom, the type R(x) = R(y) is equivalent to the type of homotopies from
R(x) to R(y), which is equivalent to ∏(z:A) R(x, z) ≃ R(y, z). Since R is an equivalence relation,
the latter space is equivalent to R(x, y). To summarize, we get that (R(x) = R(y)) ≃ R(x, y), so
R is effective since it is equivalent to an effective relation. Also, the diagram

∑(x,y:A) R(x, y)
pr1 //

pr2
// A // A � R.

is a coequalizer diagram. Since coequalizers are unique up to equivalence, it follows that A/R ≃
A � R.

We finish this section by mentioning a possible third construction of the quotient of a set A
by an equivalence relation R. Consider the precategory with objects A and hom-sets R; the type
of objects of the Rezk completion (see §9.9) of this precategory will then be the quotient. The
reader is invited to check the details.

10.1.4 Set is a ΠW-pretopos

The notion of a ΠW-pretopos — that is, a locally cartesian closed category with disjoint finite
coproducts, effective equivalence relations, and initial algebras for polynomial endofunctors —
is intended as a “predicative” notion of topos, i.e. a category of “predicative sets”, which can
serve the purpose for constructive mathematics that the usual category of sets does for classical
mathematics.

Typically, in constructive type theory, one resorts to an external construction of “setoids”
— an exact completion — to obtain a category with such closure properties. In particular, the
well-behaved quotients are required for many constructions in mathematics that usually involve
(non-constructive) power sets. It is noteworthy that univalent foundations provides these con-
structions internally (via higher inductive types), without requiring such external constructions.
This represents a powerful advantage of our approach, as we shall see in subsequent examples.

Theorem 10.1.11. The category Set is a ΠW-pretopos.

Proof. We have an initial object 0 and finite, disjoint sums A+ B. These are stable under pullback,
simply because pullback has a right adjoint. Indeed, Set is locally cartesian closed, since for any
map f : A → B between sets, the “fibrant replacement” ∑(a:A) f (a) = b is equivalent to A (over
B), and we have dependent function types for the replacement. We’ve just shown that Set is
regular (Theorem 10.1.5) and that quotients are effective (Lemma 10.1.8). We thus have a locally
cartesian closed pretopos. Finally, since the n-types are closed under the formation of W-types
by Exercise 7.3, and by Theorem 5.4.7 W-types are initial algebras for polynomial endofunctors,
we see that Set is a ΠW-pretopos.

One naturally wonders what, if anything, prevents Set from being an (elementary) topos?
In addition to the structure already mentioned, a topos has a subobject classifier: a pointed object

324 CHAPTER 10. SET THEORY

classifying (equivalence classes of) monomorphisms. (In fact, in the presence of a subobject
classifier, things become somewhat simpler: one merely needs cartesian closure in order to get
the colimits.) In homotopy type theory, univalence implies that the type Prop :≡ ∑(X:U) isProp(X)

does classify monomorphisms (by an argument similar to §4.8), but in general it is as large as the
ambient universe U . Thus, it is a “set” in the sense of being a 0-type, but it is not “small” in the
sense of being an object of U , hence not an object of the category Set. However, if we assume an
appropriate form of propositional resizing (see §3.5), then we can find a small version of Prop, so
that Set becomes an elementary topos.

Theorem 10.1.12. If there is a type Ω : U of all mere propositions, then the category SetU is an elemen-
tary topos.

A sufficient condition for this is the law of excluded middle, in the “mere-propositional”
form that we have called LEM; for then we have Prop = 2, which is small, and which then also
classifies all mere propositions. Moreover, in topos theory a well-known sufficient condition for
LEM is the axiom of choice, which is of course often assumed as an axiom in classical set theory.
In the next section, we briefly investigate the relation between these conditions in our setting.

10.1.5 The axiom of choice implies excluded middle

We begin with the following lemma.

Lemma 10.1.13. If A is a mere proposition then its suspension Σ(A) is a set, and A is equivalent to
N =Σ(A) S.

Proof. To show that Σ(A) is a set, we define a family P : Σ(A) → Σ(A) → U with the property
that P(x, y) is a mere proposition for each x, y : Σ(A), and which is equivalent to its identity type
IdΣ(A). We make the following definitions:

P(N,N) :≡ 1 P(S,N) :≡ A

P(N,S) :≡ A P(S, S) :≡ 1.

We have to check that the definition preserves paths. Given any a : A, there is a meridian
merid(a) : N = S, so we should also have

P(N,N) = P(N,S) = P(S,N) = P(S, S).

But since A is inhabited by a, it is equivalent to 1, so we have

P(N,N) ≃ P(N,S) ≃ P(S,N) ≃ P(S,S).

The univalence axiom turns these into the desired equalities. Also, P(x, y) is a mere proposition
for all x, y : Σ(A), which is proved by induction on x and y, and using the fact that being a mere
proposition is a mere proposition.

Note that P is a reflexive relation. Therefore we may apply Theorem 7.2.2, so it suffices to
construct τ : ∏(x,y:Σ(A)) P(x, y) → (x = y). We do this by a double induction. When x is N, we
define τ(N) by

τ(N,N, u) :≡ reflN and τ(N,S, a) :≡ merid(a).

10.2 CARDINAL NUMBERS 325

If A is inhabited by a then merid(a) : N = S so we also need merid(a)∗(τ(N,N)) = τ(N, S). This
we get by function extensionality using the fact that, for all x : A,

merid(a)∗(τ(N,N, x)) = τ(N,N, x) �merid(a)−1 ≡
reflN �merid(a) = merid(a) = merid(x) ≡ τ(N,S, x).

In a symmetric fashion we may define τ(S) by

τ(S,N, a) :≡ merid(a)−1 and τ(S,S, u) :≡ reflS.

To complete the construction of τ, we need to check merid(a)∗(τ(N)) = τ(S), given any a : A.
The verification proceeds much along the same lines by induction on the second argument of τ.

Thus, by Theorem 7.2.2 we have that Σ(A) is a set and that P(x, y) ≃ (x = y) for all x, y :
Σ(A). Taking x :≡ N and y :≡ S yields A ≃ (N =Σ(A) S) as desired.

Theorem 10.1.14 (Diaconescu). The axiom of choice implies the law of excluded middle.

Proof. We use the equivalent form of choice given in Lemma 3.8.2. Consider a mere proposition
A. The function f : 2 → Σ(A) defined by f (02) :≡ N and f (12) :≡ S is surjective. Indeed,
we have (02, reflN) : fib f (N) and (12, reflS) : fib f (S). Since

∥∥fib f (x)
∥∥ is a mere proposition, by

induction the claimed surjectivity follows.
By Lemma 10.1.13 the suspension Σ(A) is a set, so by the axiom of choice there merely exists

a section g : Σ(A)→ 2 of f . As equality on 2 is decidable we get

(g(f (02)) = g(f (12))) + ¬(g(f (02)) = g(f (12))),

and, since g is a section of f , hence injective,

(f (02) = f (12)) + ¬(f (02) = f (12)).

Finally, since (f (02) = f (12)) = (N = S) = A by Lemma 10.1.13, we have A + ¬A.

Theorem 10.1.15. If the axiom of choice holds then the category Set is a well-pointed boolean elementary
topos with choice.

Proof. Since AC implies LEM, we have a boolean elementary topos with choice by Theorem 10.1.12
and the remark following it. We leave the proof of well-pointedness as an exercise for the reader
(Exercise 10.3).

Remark 10.1.16. The conditions on a category mentioned in the theorem are known as Lawvere’s
axioms for the Elementary Theory of the Category of Sets [Law05].

10.2 Cardinal numbers

Definition 10.2.1. The type of cardinal numbers is the 0-truncation of the type Set of sets:

Card :≡ ∥Set∥0

Thus, a cardinal number, or cardinal, is an inhabitant of Card ≡ ∥Set∥0. Technically, of course,
there is a separate type CardU associated to each universe U .

326 CHAPTER 10. SET THEORY

As usual for truncations, if A is a set, then |A|0 denotes its image under the canonical projec-
tion Set → ∥Set∥0 ≡ Card; we call |A|0 the cardinality of A. By definition, Card is a set. It also
inherits the structure of a semiring from Set.

Definition 10.2.2. The operation of cardinal addition

(– + –) : Card→ Card→ Card

is defined by induction on truncation:

|A|0 + |B|0 :≡ |A + B|0.

Proof. Since Card→ Card is a set, to define (α + –) : Card→ Card for all α : Card, by induction it
suffices to assume that α is |A|0 for some A : Set. Now we want to define (|A|0 + –) : Card →
Card, i.e. we want to define |A|0 + β : Card for all β : Card. However, since Card is a set, by
induction it suffices to assume that β is |B|0 for some B : Set. But now we can define |A|0 + |B|0
to be |A + B|0.

Definition 10.2.3. Similarly, the operation of cardinal multiplication

(– · –) : Card→ Card→ Card

is defined by induction on truncation:

|A|0 · |B|0 :≡ |A× B|0

Lemma 10.2.4. Card is a commutative semiring, i.e. for α, β, γ : Card we have the following.

(α + β) + γ = α + (β + γ)

α + 0 = α

α + β = β + α

(α · β) · γ = α · (β · γ)
α · 1 = α

α · β = β · α
α · (β + γ) = α · β + α · γ

where 0 :≡ |0|0 and 1 :≡ |1|0.

Proof. We prove the commutativity of multiplication, α · β = β · α; the others are exactly anal-
ogous. Since Card is a set, the type α · β = β · α is a mere proposition, and in particular a set.
Thus, by induction it suffices to assume α and β are of the form |A|0 and |B|0 respectively, for
some A, B : Set. Now |A|0 · |B|0 ≡ |A× B|0 and |B|0 · |A|0 ≡ |B× A|0, so it suffices to show
A× B = B× A. Finally, by univalence, it suffices to give an equivalence A× B ≃ B× A. But
this is easy: take (a, b) 7→ (b, a) and its obvious inverse.

Definition 10.2.5. The operation of cardinal exponentiation is also defined by induction on trun-
cation:

|A|0|
B|0 :≡ |B→ A|0.

10.2 CARDINAL NUMBERS 327

Lemma 10.2.6. For α, β, γ : Card we have

α0 = 1

1α = 1

α1 = α

αβ+γ = αβ · αγ

αβ·γ = (αβ)γ

(α · β)γ = αγ · βγ

Proof. Exactly like Lemma 10.2.4.

Definition 10.2.7. The relation of cardinal inequality

(– ≤ –) : Card→ Card→ Prop

is defined by induction on truncation:

|A|0 ≤ |B|0 :≡ ∥inj(A, B)∥

where inj(A, B) is the type of injections from A to B. In other words, |A|0 ≤ |B|0 means that there
merely exists an injection from A to B.

Lemma 10.2.8. Cardinal inequality is a preorder, i.e. for α, β : Card we have

α ≤ α

(α ≤ β)→ (β ≤ γ)→ (α ≤ γ)

Proof. As before, by induction on truncation. For instance, since (α ≤ β) → (β ≤ γ) → (α ≤ γ)

is a mere proposition, by induction on 0-truncation we may assume α, β, and γ are |A|0, |B|0, and
|C|0 respectively. Now since |A|0 ≤ |C|0 is a mere proposition, by induction on (−1)-truncation
we may assume given injections f : A → B and g : B → C. But then g ◦ f is an injection from A
to C, so |A|0 ≤ |C|0 holds. Reflexivity is even easier.

We may likewise show that cardinal inequality is compatible with the semiring operations.

Lemma 10.2.9. Consider the following statements:

(i) There is an injection A→ B.
(ii) There is a surjection B→ A.

Then, assuming excluded middle:

• Given a0 : A, we have (i)→(ii).
• Therefore, if A is merely inhabited, we have (i)→ merely (ii).
• Assuming the axiom of choice, we have (ii)→ merely (i).

Proof. If f : A → B is an injection, define g : B → A at b : B as follows. Since f is injective, the
fiber of f at b is a mere proposition. Therefore, by excluded middle, either there is an a : A with
f (a) = b, or not. In the first case, define g(b) :≡ a; otherwise set g(b) :≡ a0. Then for any a : A,
we have a = g(f (a)), so g is surjective.

The second statement follows from this by induction on truncation. For the third, if g : B →
A is surjective, then by the axiom of choice, there merely exists a function f : A → B with
g(f (a)) = a for all a. But then f must be injective.

328 CHAPTER 10. SET THEORY

Theorem 10.2.10 (Schroeder–Bernstein). Assuming excluded middle, for sets A and B we have

inj(A, B)→ inj(B, A)→ (A ∼= B)

Proof. The usual “back-and-forth” argument applies without significant changes. Note that it
actually constructs an isomorphism A ∼= B (assuming excluded middle so that we can decide
whether a given element belongs to a cycle, an infinite chain, a chain beginning in A, or a chain
beginning in B).

Corollary 10.2.11. Assuming excluded middle, cardinal inequality is a partial order, i.e. for α, β : Card
we have

(α ≤ β)→ (β ≤ α)→ (α = β).

Proof. Since α = β is a mere proposition, by induction on truncation we may assume α and β are
|A|0 and |B|0, respectively, and that we have injections f : A → B and g : B → A. But then the
Schroeder–Bernstein theorem gives an isomorphism A ∼= B, hence an equality |A|0 = |B|0.

Finally, we can reproduce Cantor’s theorem, showing that for every cardinal there is a greater
one.

Theorem 10.2.12 (Cantor). For A : Set, there is no surjection A→ (A→ 2).

Proof. Suppose f : A → (A → 2) is any function, and define g : A → 2 by g(a) :≡ ¬ f (a)(a).
If g = f (a0), then g(a0) = f (a0)(a0) but g(a0) = ¬ f (a0)(a0), a contradiction. Thus, f is not
surjective.

Corollary 10.2.13. Assuming excluded middle, for any α : Card, there is a cardinal β such that α ≤ β

and α ̸= β.

Proof. Let β = 2α. Now we want to show a mere proposition, so by induction we may assume
α is |A|0, so that β ≡ |A→ 2|0. Using excluded middle, we have a function f : A → (A → 2)
defined by

f (a)(a′) :≡
{

12 a = a′

02 a ̸= a′.

And if f (a) = f (a′), then f (a′)(a) = f (a)(a) = 12, so a = a′; hence f is injective. Thus,
α ≡ |A|0 ≤ |A→ 2|0 ≡ 2α.

On the other hand, if 2α ≤ α, then we would have an injection (A→ 2)→ A. By Lemma 10.2.9,
since we have (λx. 02) : A → 2 and excluded middle, there would then be a surjection A →
(A→ 2), contradicting Cantor’s theorem.

10.3 Ordinal numbers

Definition 10.3.1. Let A be a set and

(– < –) : A→ A→ Prop

a binary relation on A. We define by induction what it means for an element a : A to be accessible
by <:

• If b is accessible for every b < a, then a is accessible.

10.3 ORDINAL NUMBERS 329

We write acc(a) to mean that a is accessible.

It may seem that such an inductive definition can never get off the ground, but of course if a
has the property that there are no b such that b < a, then a is vacuously accessible.

Note that this is an inductive definition of a family of types, like the type of vectors consid-
ered in §5.7. More precisely, it has one constructor, say acc<, with type

acc< : ∏
a:A

(
∏
b:A

(b < a)→ acc(b)
)
→ acc(a).

The induction principle for acc says that for any P : ∏(a:A) acc(a)→ U , if we have

f : ∏
(a:A)

∏
(h:∏(b:A)(b<a)→acc(b))

(
∏
(b:A)

∏
(l:b<a)

P(b, h(b, l))
)
→ P(a, acc<(a, h)),

then we have g : ∏(a:A) ∏(c:acc(a)) P(a, c) defined by induction, with

g(a, acc<(a, h)) ≡ f (a, h, λb. λl. g(b, h(b, l))).

This is a mouthful, but generally we apply it only in the simpler case where P : A→ U depends
only on A. In this case the second and third arguments of f may be combined, so that what we
have to prove is

f : ∏
a:A

(
∏
b:A

(b < a)→ acc(b)× P(b)
)
→ P(a).

That is, we assume every b < a is accessible and g(b) : P(b) is defined, and from these define
g(a) : P(a).

The omission of the second argument of P is justified by the following lemma, whose proof
is the only place where we use the more general form of the induction principle.

Lemma 10.3.2. Accessibility is a mere property.

Proof. We must show that for any a : A and s1, s2 : acc(a) we have s1 = s2. We prove this by
induction on s1, with

P1(a, s1) :≡ ∏
s2:acc(a)

(s1 = s2).

Thus, we must show that for any a : A and h1 : ∏(b:A)(b < a)→ acc(b) and

k1 : ∏
(b:A)

∏
(l:b<a)

∏
(t:acc(b))

h1(b, l) = t,

we have acc<(a, h) = s2 for any s2 : acc(a). We regard this statement as ∏(a:A) ∏(s2:acc(a)) P2(a, s2),
where

P2(a, s2) :≡ ∏
(h1 :···)

∏
(k1 :···)

(acc<(a, h1) = s2);

thus we may prove it by induction on s2. Therefore, we assume h2 : ∏(b:A)(b < a) → acc(b),
and k2 with a monstrous but irrelevant type, and must show that for any h1 and k1 with types as
above, we have acc<(a, h1) = acc<(a, h2). By function extensionality, it suffices to show h1(b, l) =
h2(b, l) for all b : A and l : b < a. This follows from k1.

Definition 10.3.3. A binary relation < on a set A is well-founded if every element of A is acces-
sible.

330 CHAPTER 10. SET THEORY

The point of well-foundedness is that for P : A → U , we can use the induction principle of
acc to conclude ∏(a:A) acc(a)→ P(a), and then apply well-foundedness to conclude ∏(a:A) P(a).
In other words, if from ∀(b : A). (b < a) → P(b) we can prove P(a), then ∀(a : A). P(a). This is
called well-founded induction.

Lemma 10.3.4. Well-foundedness is a mere property.

Proof. Well-foundedness of < is the type ∏(a:A) acc(a), which is a mere proposition since each
acc(a) is.

Example 10.3.5. Perhaps the most familiar well-founded relation is the usual strict ordering on
N. To show that this is well-founded, we must show that n is accessible for each n : N. This is
just the usual proof of “strong induction” from ordinary induction on N.

Specifically, we prove by induction on n : N that k is accessible for all k ≤ n. The base case
is just that 0 is accessible, which is vacuously true since nothing is strictly less than 0. For the
inductive step, we assume that k is accessible for all k ≤ n, which is to say for all k < n+ 1; hence
by definition n + 1 is also accessible.

A different relation on N which is also well-founded is obtained by setting only n < succ(n)
for all n : N. Well-foundedness of this relation is almost exactly the ordinary induction principle
of N.

Example 10.3.6. Let A : Set and B : A → Set be a family of sets. Recall from §5.3 that the W-type
W(a:A)B(a) is inductively generated by the single constructor

• sup : ∏(a:A)(B(a)→ W(x:A)B(x))→ W(x:A)B(x)

We define the relation < on W(x:A)B(x) by recursion on its second argument:

• For any a : A and f : B(a) → W(x:A)B(x), we define w < sup(a, f) to mean that there
merely exists a b : B(a) such that w = f (b).

Now we prove that every w : W(x:A)B(x) is accessible for this relation, using the usual induction
principle for W(x:A)B(x). This means we assume given a : A and f : B(a)→ W(x:A)B(x), and also
a lifting f ′ : ∏(b:B(a)) acc(f (b)). But then by definition of <, we have acc(w) for all w < sup(a, f);
hence sup(a, f) is accessible.

Well-foundedness allows us to define functions by recursion and prove statements by in-
duction, such as for instance the following. Recall from §3.5 that P(B) denotes the power set
P(B) :≡ (B→ Prop).

Lemma 10.3.7. Suppose B is a set and we have a function

g : P(B)→ B

Then if < is a well-founded relation on A, there is a function f : A→ B such that for all a : A we have

f (a) = g
({

f (a′)
∣∣ a′ < a

})
.

(We are using the notation for images of subsets from §10.1.2.)

10.3 ORDINAL NUMBERS 331

Proof. We first define, for every a : A and s : acc(a), an element f̄ (a, s) : B. By induction, it
suffices to assume that s is a function assigning to each a′ < a a witness s(a′) : acc(a′), and that
moreover for each such a′ we have an element f̄ (a′, s(a′)) : B. In this case, we define

f̄ (a, s) :≡ g
({

f̄ (a′, s(a′))
∣∣ a′ < a

})
.

Now since < is well-founded, we have a function w : ∏(a:A) acc(a). Thus, we can define
f (a) :≡ f̄ (a, w(a)).

In classical logic, well-foundedness has a more well-known reformulation. In the following,
we say that a subset B : P(A) is nonempty if it is unequal to the empty subset (λx.⊥) : P(X).
We leave it to the reader to verify that assuming excluded middle, this is equivalent to mere
inhabitation, i.e. to the condition ∃(x : A). x ∈ B.

Lemma 10.3.8. Assuming excluded middle, < is well-founded if and only if every nonempty subset
B : P(A) merely has a minimal element.

Proof. Suppose first < is well-founded, and suppose B ⊆ A is a subset with no minimal element.
That is, for any a : A with a ∈ B, there merely exists a b : A with b < a and b ∈ B.

We claim that for any a : A and s : acc(a), we have a /∈ B. By induction, we may assume s is
a function assigning to each a′ < a a proof s(a′) : acc(a′), and that moreover for each such a′ we
have a′ /∈ B. If a ∈ B, then by assumption, there would merely exist a b < a with b ∈ B, which
contradicts this assumption. Thus, a /∈ B; this completes the induction. Since < is well-founded,
we have a /∈ B for all a : A, i.e. B is empty.

Now suppose each nonempty subset merely has a minimal element. Let B = { a : A | ¬acc(a) }.
Then if B is nonempty, it merely has a minimal element. Thus there merely exists an a : A with
a ∈ B such that for all b < a, we have acc(b). But then by definition (and induction on trunca-
tion), a is merely accessible, and hence accessible, contradicting a ∈ B. Thus, B is empty, so < is
well-founded.

Definition 10.3.9. A well-founded relation < on a set A is extensional if for any a, b : A, we have(
∀(c : A). (c < a)⇔ (c < b)

)
→ (a = b).

Note that since A is a set, extensionality is a mere proposition. This notion of “extensionality”
is unrelated to function extensionality, and also unrelated to the extensionality of identity types.
Rather, it is a “local” counterpart of the axiom of extensionality in classical set theory.

Theorem 10.3.10. The type of extensional well-founded relations is a set.

Proof. By the univalence axiom, it suffices to show that if (A,<) is extensional and well-founded
and f : (A,<) ∼= (A,<), then f = idA. We prove by induction on < that f (a) = a for all a : A.
The inductive hypothesis is that for all a′ < a, we have f (a′) = a′.

Now since A is extensional, to conclude f (a) = a it is sufficient to show

∀(c : A). (c < f (a))⇔ (c < a).

However, since f is an automorphism, we have (c < a) ⇔ (f (c) < f (a)). But c < a implies
f (c) = c by the inductive hypothesis, so (c < a) → (c < f (a)). On the other hand, if c < f (a),
then f−1(c) < a, and so c = f (f−1(c)) = f−1(c) by the inductive hypothesis again; thus c < a.
Therefore, we have (c < a)⇔ (c < f (a)) for any c : A, so f (a) = a.

332 CHAPTER 10. SET THEORY

Definition 10.3.11. If (A,<) and (B,<) are extensional and well-founded, a simulation is a
function f : A→ B such that

(i) if a < a′, then f (a) < f (a′), and

(ii) for all a : A and b : B, if b < f (a), then there merely exists an a′ < a with f (a′) = b.

Lemma 10.3.12. Any simulation is injective.

Proof. We prove by double well-founded induction that for any a, b : A, if f (a) = f (b) then
a = b. The inductive hypothesis for a : A says that for any a′ < a, and any b : B, if f (a′) = f (b)
then a = b. The inner inductive hypothesis for b : A says that for any b′ < b, if f (a) = f (b′) then
a = b′.

Suppose f (a) = f (b); we must show a = b. By extensionality, it suffices to show that for
any c : A we have (c < a) ⇔ (c < b). If c < a, then f (c) < f (a) by Definition 10.3.11(i).
Hence f (c) < f (b), so by Definition 10.3.11(ii) there merely exists c′ : A with c′ < b and f (c) =
f (c′). By the inductive hypothesis for a, we have c = c′, hence c < b. The dual argument is
symmetrical.

In particular, this implies that in Definition 10.3.11(ii) the word “merely” could be omitted
without change of sense.

Corollary 10.3.13. If f : A → B is a simulation, then for all a : A and b : B, if b < f (a), there purely
exists an a′ < a with f (a′) = b.

Proof. Since f is injective, ∑(a:A)(f (a) = b) is a mere proposition.

We say that a subset C : P(B) is an initial segment if c ∈ C and b < c imply b ∈ C. The
image of a simulation must be an initial segment, while the inclusion of any initial segment is a
simulation. Thus, by univalence, every simulation A→ B is equal to the inclusion of some initial
segment of B.

Theorem 10.3.14. For a set A, let P(A) be the type of extensional well-founded relations on A. If
<A : P(A) and <B : P(B) and f : A→ B, let H<A<B(f) be the mere proposition that f is a simulation.
Then (P, H) is a standard notion of structure over Set in the sense of §9.8.

Proof. We leave it to the reader to verify that identities are simulations, and that composites of
simulations are simulations. Thus, we have a notion of structure. For standardness, we must
show that if < and ≺ are two extensional well-founded relations on A, and idA is a simulation
in both directions, then < and ≺ are equal. Since extensionality and well-foundedness are mere
propositions, for this it suffices to have ∀(a, b : A). (a < b) ⇔ (a ≺ b). But this follows from
Definition 10.3.11(i) for idA.

Corollary 10.3.15. There is a category whose objects are sets equipped with extensional well-founded
relations, and whose morphisms are simulations.

In fact, this category is a poset.

Lemma 10.3.16. For extensional and well-founded (A,<) and (B,<), there is at most one simulation
f : A→ B.

10.3 ORDINAL NUMBERS 333

Proof. Suppose f , g : A → B are simulations. Since being a simulation is a mere property, it
suffices to show ∀(a : A). (f (a) = g(a)). By induction on <, we may suppose f (a′) = g(a′) for
all a′ < a. And by extensionality of B, to have f (a) = g(a) it suffices to have ∀(b : B). (b <

f (a))⇔ (b < g(a)).
But since f is a simulation, if b < f (a), then we have a′ < a with f (a′) = b. By the inductive

hypothesis, we have also g(a′) = b, hence b < g(a). The dual argument is symmetrical.

Thus, if A and B are equipped with extensional and well-founded relations, we may write
A ≤ B to mean there exists a simulation f : A → B. Corollary 10.3.15 implies that if A ≤ B and
B ≤ A, then A = B.

Definition 10.3.17. An ordinal is a set A with an extensional well-founded relation which is
transitive, i.e. satisfies ∀(a, b, c : A). (a < b)→ (b < c)→ (a < c).

Example 10.3.18. Of course, the usual strict order on N is transitive. It is easily seen to be exten-
sional as well; thus it is an ordinal. As usual, we denote this ordinal by ω.

Let Ord denote the type of ordinals. By the previous results, Ord is a set and has a natural
partial order. We now show that Ord also admits a well-founded relation.

If A is an ordinal and a : A, let A/a :≡ { b : A | b < a } denote the initial segment. Note that if
A/a = A/b as ordinals, then that isomorphism must respect their inclusions into A (since simu-
lations form a poset), and hence they are equal as subsets of A. Therefore, since A is extensional,
a = b. Thus the function a 7→ A/a is an injection A→ Ord.

Definition 10.3.19. For ordinals A and B, a simulation f : A → B is said to be bounded if there
exists b : B such that A = B/b.

The remarks above imply that such a b is unique when it exists, so that boundedness is a
mere property.

We write A < B if there exists a bounded simulation from A to B. Since simulations are
unique, A < B is also a mere proposition.

Theorem 10.3.20. (Ord,<) is an ordinal.

More precisely, this theorem says that the type OrdUi of ordinals in one universe is itself an ordinal
in the next higher universe, i.e. (OrdUi ,<) : OrdUi+1 .

Proof. Let A be an ordinal; we first show that A/a is accessible (in Ord) for all a : A. By well-
founded induction on A, suppose A/b is accessible for all b < a. By definition of accessibility, we
must show that B is accessible in Ord for all B < A/a. However, if B < A/a then there is some
b < a such that B = (A/a)/b = A/b, which is accessible by the inductive hypothesis. Thus, A/a
is accessible for all a : A.

Now to show that A is accessible in Ord, by definition we must show B is accessible for all
B < A. But as before, B < A means B = A/a for some a : A, which is accessible as we just
proved. Thus, Ord is well-founded.

For extensionality, suppose A and B are ordinals such that ∏(C:Ord)(C < A) ⇔ (C < B).
Then for every a : A, since A/a < A, we have A/a < B, hence there is b : B with A/a = B/b.
Define f : A→ B to take each a to the corresponding b; it is straightforward to verify that f is an
isomorphism. Thus A ∼= B, hence A = B by univalence.

Finally, it is easy to see that < is transitive.

334 CHAPTER 10. SET THEORY

Treating Ord as an ordinal is often very convenient, but it has its pitfalls as well. For instance,
consider the following lemma, where we pay attention to how universes are used.

Lemma 10.3.21. Let U be a universe. For any A : OrdU , there is a B : OrdU such that A < B.

Proof. Let B = A + 1, with the element ⋆ : 1 being greater than all elements of A. Then B is an
ordinal and it is easy to see that A ∼= B/⋆.

The ordinal B constructed in the proof of Lemma 10.3.21 is called the successor of A.
This lemma illustrates a potential pitfall of the “typically ambiguous” style of using U to

denote an arbitrary, unspecified universe. Consider the following alternative proof of it.

Another putative proof of Lemma 10.3.21. Note that C < A if and only if C = A/a for some a : A.
This gives an isomorphism A ∼= Ord/A, so that A < Ord. Thus we may take B :≡ Ord.

The second proof would be valid if we had stated Lemma 10.3.21 in a typically ambiguous
style. But the resulting lemma would be less useful, because the second proof would constrain
the second “Ord” in the lemma statement to refer to a higher universe level than the first one.
The first proof allows both universes to be the same.

Similar remarks apply to the next lemma, which could be proved in a less useful way by
observing that A ≤ Ord for any A : Ord.

Lemma 10.3.22. Let U be a universe. For any X : U and F : X → OrdU , there exists B : OrdU such that
Fx ≤ B for all x : X.

Proof. Let B be the set-quotient (see Remark 6.10.1) of the equivalence relation ∼ on ∑(x:X) Fx
defined as follows:

(x, y) ∼ (x′, y′) :≡
(
(Fx)/y

∼= (Fx′)/y′

)
.

Define (x, y) < (x′, y′) if (Fx)/y < (Fx′)/y′ . This clearly descends to the quotient, and can be seen
to make B into an ordinal. Moreover, for each x : X the induced map Fx → B is a simulation.

10.4 Classical well-orderings

We now show the equivalence of our ordinals with the more familiar classical well-orderings.

Lemma 10.4.1. Assuming excluded middle, every ordinal is trichotomous:

∀(a, b : A). (a < b) ∨ (a = b) ∨ (b < a).

Proof. By induction on a, we may assume that for every a′ < a and every b′ : A, we have
(a′ < b′) ∨ (a′ = b′) ∨ (b′ < a′). Now by induction on b, we may assume that for every b′ < b,
we have (a < b′) ∨ (a = b′) ∨ (b′ < a).

By excluded middle, either there merely exists a b′ < b such that a < b′, or there merely
exists a b′ < b such that a = b′, or for every b′ < b we have b′ < a. In the first case, merely a < b
by transitivity, hence a < b as it is a mere proposition. Similarly, in the second case, a < b by
transport. Thus, suppose ∀(b′ : A). (b′ < b)→ (b′ < a).

Now analogously, either there merely exists a′ < a such that b < a′, or there merely exists
a′ < a such that a′ = b, or for every a′ < a we have a′ < b. In the first and second cases,
b < a, so we may suppose ∀(a′ : A). (a′ < a) → (a′ < b). However, by extensionality, our two
suppositions now imply a = b.

10.4 CLASSICAL WELL-ORDERINGS 335

Lemma 10.4.2. A well-founded relation contains no cycles, i.e.

∀(n : N). ∀(a : Nn → A).¬
(
(a0 < a1) ∧ · · · ∧ (an−1 < an) ∧ (an < a0)

)
.

Proof. We prove by induction on a : A that there is no cycle containing a. Thus, suppose by
induction that for all a′ < a, there is no cycle containing a′. But in any cycle containing a, there is
some element less than a and contained in the same cycle.

In particular, a well-founded relation must be irreflexive, i.e. ¬(a < a) for all a.

Theorem 10.4.3. Assuming excluded middle, (A,<) is an ordinal if and only if every nonempty subset
B ⊆ A has a least element.

Proof. If A is an ordinal, then by Lemma 10.3.8 every nonempty subset merely has a minimal
element. But trichotomy implies that any minimal element is a least element. Moreover, least
elements are unique when they exist, so merely having one is as good as having one.

Conversely, if every nonempty subset has a least element, then by Lemma 10.3.8, A is well-
founded. We also have trichotomy, since for any a, b the subset { a, b } :≡ { x : A | x = a ∨ x = b }
merely has a least element, which must be either a or b. This implies transitivity, since if a < b
and b < c, then either a = c or c < a would produce a cycle. Similarly, it implies extensionality,
for if ∀(c : A). (c < a) ⇔ (c < b), then a < b implies (letting c be a) that a < a, which is a cycle,
and similarly if b < a; hence a = b.

In classical mathematics, the characterization of Theorem 10.4.3 is taken as the definition of
a well-ordering, with the ordinals being a canonical set of representatives of isomorphism classes
for well-orderings. In our context, the structure identity principle means that there is no need to
look for such representatives: any well-ordering is as good as any other.

We now move on to consider consequences of the axiom of choice. For any set X, let P+(X)

denote the type of merely inhabited subsets of X:

P+(X) :≡ {Y : P(X) | ∃(x : X). x ∈ Y } .

Assuming excluded middle, this is equivalently the type of nonempty subsets of X, and we have
P(X) ≃ (P+(X)) + 1.

Theorem 10.4.4. Assuming excluded middle, the following are equivalent.

(i) For every set X, there merely exists a function f : P+(X) → X such that f (Y) ∈ Y for all
Y : P+(X).

(ii) Every set merely admits the structure of an ordinal.

Of course, (i) is a standard classical version of the axiom of choice; see Exercise 10.10.

Proof. One direction is easy: suppose (ii). Since we aim to prove the mere proposition (i), we
may assume A is an ordinal. But then we can define f (B) to be the least element of B.

Now suppose (i). As before, since (ii) is a mere proposition, we may assume given such an f .
We extend f to a function

f̄ : P(X) ≃ (P+(X)) + 1 −→ X + 1

336 CHAPTER 10. SET THEORY

in the obvious way. Now for any ordinal A, we can define gA : A → X + 1 by well-founded
recursion:

gA(a) :≡ f̄
(

X \
{

gA(b)
∣∣ (b < a) ∧ (gA(b) ∈ X)

})
(regarding X as a subset of X + 1 in the obvious way).

Let A′ :≡ { a : A | gA(a) ∈ X } be the preimage of X ⊆ X + 1; then we claim the restriction
g′A : A′ → X is injective. For if a, a′ : A with a ̸= a′, then by trichotomy and without loss of
generality, we may assume a′ < a. Thus gA(a′) ∈ { gA(b) | b < a }, so since f (Y) ∈ Y for all Y
we have gA(a) ̸= gA(a′).

Moreover, A′ is an initial segment of A. For gA(a) lies in 1 if and only if { gA(b) | b < a } = X,
and if this holds then it also holds for any a′ > a. Thus, A′ is itself an ordinal.

Finally, since Ord is an ordinal, we can take A :≡ Ord. Let X′ be the image of g′Ord : Ord′ → X;
then the inverse of g′Ord yields an injection H : X′ → Ord. By Lemma 10.3.22, there is an ordinal
C such that Hx ≤ C for all x : X′. Then by Lemma 10.3.21, there is a further ordinal D such that
C < D, hence Hx < D for all x : X′. Now we have

gOrd(D) = f̄
(

X \
{

gOrd(B)
∣∣∣ B < D ∧ (gOrd(B) ∈ X)

})
= f̄

(
X \

{
gOrd(B)

∣∣∣ gOrd(B) ∈ X
})

since if B : Ord and (gOrd(B) ∈ X), then B = Hx for some x : X′, hence B < D. Now if{
gOrd(B)

∣∣∣ gOrd(B) ∈ X
}

is not all of X, then gOrd(D) would lie in X but not in this subset, which would be a contradiction
since D is itself a potential value for B. So this set must be all of X, and hence g′Ord is surjective
as well as injective. Thus, we can transport the ordinal structure on Ord′ to X.

Remark 10.4.5. If we had given the wrong proof of Lemma 10.3.21 or Lemma 10.3.22, then the
resulting proof of Theorem 10.4.4 would be invalid: there would be no way to consistently assign
universe levels. As it is, we require propositional resizing (which follows from LEM) to ensure
that X′ lives in the same universe as X (up to equivalence).

Corollary 10.4.6. Assuming the axiom of choice, the function Ord → Set (which forgets the order
structure) is a surjection.

Note that Ord is a set, while Set is a 1-type. In general, there is no reason for a 1-type to
admit any surjective function from a set. Even the axiom of choice does not appear to imply that
every 1-type does so (although see Exercise 7.9), but it readily implies that this is so for 1-types
constructed out of Set, such as the types of objects of categories of structures as in §9.8. The
following corollary also applies to such categories.

Corollary 10.4.7. Assuming AC, Set admits a weak equivalence functor from a strict category.

Proof. Let X0 :≡ Ord, and for A, B : X0 let homX(A, B) :≡ (A → B). Then X is a strict category,
since Ord is a set, and the above surjection X0 → Set extends to a weak equivalence functor
X → Set.

Now recall from §10.2 that we have a further surjection |– |0 : Set → Card, and hence a
composite surjection Ord→ Card which sends each ordinal to its cardinality.

10.5 THE CUMULATIVE HIERARCHY 337

Theorem 10.4.8. Assuming AC, the surjection Ord→ Card has a section.

Proof. There is an easy and wrong proof of this: since Ord and Card are both sets, AC implies
that any surjection between them merely has a section. However, we actually have a canonical
specified section: because Ord is an ordinal, every nonempty subset of it has a uniquely specified
least element. Thus, we can map each cardinal to the least element in the corresponding fiber.

It is traditional in set theory to identify cardinals with their image in Ord: the least ordinal
having that cardinality.

It follows that Card also canonically admits the structure of an ordinal: in fact, one isomorphic
to Ord. Specifically, we define by well-founded recursion a function ℵ : Ord → Ord, such that
ℵ(A) is the least ordinal having cardinality greater than ℵ(A/a) for all a : A. Then (assuming
AC) the image of ℵ is exactly the image of Card.

10.5 The cumulative hierarchy

We can define a cumulative hierarchy V of all sets in a given universe U as a higher inductive
type, in such a way that V is again a set (in a larger universe U ′), equipped with a binary “mem-
bership” relation x ∈ y which satisfies the usual laws of set theory.

Definition 10.5.1. The cumulative hierarchy V relative to a type universe U is the higher induc-
tive type generated by the following constructors.

(i) For every A : U and f : A→ V, there is an element set(A, f) : V.
(ii) For all A, B : U , f : A→ V and g : B→ V such that(

∀(a : A). ∃(b : B). f (a) =V g(b)
)
∧
(
∀(b : B). ∃(a : A). f (a) =V g(b)

)
(10.5.2)

there is a path set(A, f) =V set(B, g).
(iii) The 0-truncation constructor: for all x, y : V and p, q : x = y, we have p = q.

In set-theoretic language, set(A, f) can be understood as the set (in the sense of classical set
theory) that is the image of A under f , i.e. { f (a) | a ∈ A }. However, we will avoid this notation,
since it would clash with our notation for subtypes (but see (10.5.3) and Definition 10.5.7 below).

The hierarchy V is bootstrapped from the empty map rec0(V) : 0 → V, which gives the
empty set as ∅ = set(0, rec0(V)). Then the singleton {∅} enters V through 1 → V, defined as
⋆ 7→ ∅, and so on. (The definition can also be adapted to include an arbitrary set of “atoms” or
“urelements”, by adding an additional point constructor.) The type V lives in the same universe
as the base universe U .

The second constructor of V has a form unlike any we have seen before: it involves not only
paths in V (which in §6.9 we claimed were slightly fishy) but truncations of sums of them. It
certainly does not fit the general scheme described in §6.13, and thus it may not be obvious what
its induction principle should be. Fortunately, like our first definition of the 0-truncation in §6.9,
it can be re-expressed using auxiliary higher inductive types. We leave it to the reader to work
out the details (see Exercise 10.11).

At the end of the day, the induction principle for V (written in pattern matching language)
says that given P : V → Set, in order to construct h : ∏(x:V) P(x), it suffices to give the following.

(i) For any f : A→ V, construct h(set(A, f)), assuming as given h(f (a)) for all a : A.

338 CHAPTER 10. SET THEORY

(ii) Verify that if f : A → V and g : B → V satisfy (10.5.2), then h(set(A, f)) =P
q h(set(B, g)),

where q is the path arising from the second constructor of V and (10.5.2), assuming induc-
tively that h(f (a)) and h(g(b)) are defined for all a : A and b : B, and that the following
condition holds: (

∀(a : A). ∃(b : B). ∃(p : f (a) = g(b)). h(f (a)) =P
p h(g(b))

)
∧

(
∀(b : B). ∃(a : A). ∃(p : f (a) = g(b)). h(f (a)) =P

p h(g(b))
)

The second clause checks that the map being defined must respect the paths introduced in
(10.5.2). As usual when we state higher induction principles using pattern matching, it may
seem tautologous, but is not. The point is that “h(f (a))” is essentially a formal symbol which
we cannot peek inside of, which h(set(A, f)) must be defined in terms of. Thus, in the second
clause, we assume equality of these formal symbols when appropriate, and verify that the ele-
ments resulting from the construction of the first clause are also equal. Of course, if P is a family
of mere propositions, then the second clause is automatic.

Observe that, by induction, for each v : V there merely exist A : U and f : A → V such that
v = set(A, f). Thus, it is reasonable to try to define the membership relation x ∈ v on V by
setting:

(x ∈ set(A, f)) :≡ (∃(a : A). x = f (a)).

To see that the definition is valid, we must use the recursion principle of V. Thus, suppose we
have a path set(A, f) = set(B, g) constructed through (10.5.2). If x ∈ set(A, f) then there merely
is a : A such that x = f (a), but by (10.5.2) there merely is b : B such that f (a) = g(b), hence
x = g(b) and x ∈ set(B, g). The converse is symmetric.

The subset relation x ⊆ y is defined on V as usual by

(x ⊆ y) :≡ ∀(z : V). z ∈ x ⇒ z ∈ y.

A class may be taken to be a mere predicate on V. We can say that a class C : V → Prop is a
V-set if there merely exists v : V such that

∀(x : V). C(x)⇔ x ∈ v.

We may also use the conventional notation for classes, which matches our standard notation for
subtypes:

{ x | C(x) } :≡ λx. C(x). (10.5.3)

A class C : V → Prop will be called U -small if all of its values C(x) lie in U , specifically C :
V → PropU . Since V lives in the same universe U ′ as does the base universe U from which it is
built, the same is true for the identity types v =V w for any v, w : V. To obtain a well-behaved
theory in the absence of propositional resizing, therefore, it will be convenient to have a U -small
“resizing” of the identity relation, which we can define by induction as follows.

Definition 10.5.4. Define the bisimulation relation

∼ : V ×V −→ PropU

by double induction over V, where for set(A, f) and set(B, g) we let:

set(A, f) ∼ set(B, g) :≡
(
∀(a : A). ∃(b : B). f (a) ∼ g(b)

)
∧
(
∀(b : B). ∃(a : A). f (a) ∼ g(b)

)
.

10.5 THE CUMULATIVE HIERARCHY 339

To verify that the definition is correct, we just need to check that it respects paths set(A, f) =
set(B, g) constructed through (10.5.2), but this is obvious, and that PropU is a set, which it is.
Note that u ∼ v is in PropU by construction.

Lemma 10.5.5. For any u, v : V we have (u =V v) = (u ∼ v).

Proof. An easy induction shows that∼ is reflexive, so by transport we have (u =V v)→ (u ∼ v).
Thus, it remains to show that (u ∼ v) → (u =V v). By induction on u and v, we may assume
they are set(A, f) and set(B, g) respectively. (We can ignore the path constructors of V, since
(u ∼ v) → (u =V v) is a mere proposition.) Then by definition, set(A, f) ∼ set(B, g) implies
(∀(a : A). ∃(b : B). f (a) ∼ g(b)) and conversely. But the inductive hypothesis then tells us that
(∀(a : A). ∃(b : B). f (a) = g(b)) and conversely. So by the path constructor for V we have
set(A, f) =V set(B, g).

One might think that we could omit the 0-truncation constructor of V and prove that V is 0-
truncated by applying Theorem 7.2.2 to the bisimulation. However, in the proof of Lemma 10.5.5
we used the fact that V is 0-truncated, to conclude that (u ∼ v)→ (u =V v) is a mere proposition
so that in the induction it suffices to assume u and v are set(A, f) and set(B, g).

Now we can use the resized identity relation to get the following useful principle.

Lemma 10.5.6. For every u : V there is a given Au : U and monic mu : Au ↣ V such that u =

set(Au, mu).

Proof. Take any presentation u = set(A, f) and factor f : A → V as a surjection followed by an
injection:

f = mu ◦ eu : A ↠ Au ↣ V.

Clearly u = set(Au, mu) if only Au is still in U , which holds if the kernel of eu : A ↠ Au is in
U . But the kernel of eu : A ↠ Au is the pullback along f : A → V of the identity on V, which
we just showed to be U -small, up to equivalence. Now, this construction of the pair (Au, mu)

with mu : Au ↣ V and u = set(Au, mu) from u : V is unique up to equivalence over V, and
hence up to identity by univalence. Thus by the principle of unique choice (3.9.2) there is a map
c : V → ∑(A:U)(A → V) such that c(u) = (Au, mu), with mu : Au ↣ V and u = set(c(u)), as
claimed.

Definition 10.5.7. For u : V, the just constructed monic presentation mu : Au ↣ V such that
u = set(Au, mu) may be called the type of members of u and denoted mu : [u] ↣ V, or even
[u] ↣ V. We can think of [u] as the “subclass of V consisting of members of u”.

Theorem 10.5.8. The following hold for (V,∈):

(i) extensionality:
∀(x, y : V). x ⊆ y ∧ y ⊆ x ⇔ x = y.

(ii) empty set: for all x : V, we have ¬(x ∈ ∅).
(iii) pairing: for all u, v : V, the class {u, v} :≡ { x | x = u ∨ x = v } is a V-set.
(iv) infinity: there is a v : V with ∅ ∈ v and x ∈ v implies x ∪ {x} ∈ v.
(v) union: for all v : V, the class ∪v :≡ { x | ∃(u : V). x ∈ u ∈ v } is a V-set.

(vi) function set: for all u, v : V, the class vu :≡ { x | x : u→ v } is a V-set.1

1Here x : u → v means that x is an appropriate set of ordered pairs, according to the usual way of encoding
functions in set theory.

340 CHAPTER 10. SET THEORY

(vii) ∈-induction: if C : V → Prop is a class such that C(a) holds whenever C(x) for all x ∈ a, then
C(v) for all v : V.

(viii) replacement: given any r : V → V and x : V, the class

{ y | ∃(z : V). z ∈ x ∧ y = r(z) }

is a V-set.
(ix) separation: given any a : V and U -small C : V → PropU , the class

{ x | x ∈ a ∧ C(x) }

is a V-set.

Sketch of proof.

(i) Extensionality: if set(A, f) ⊆ set(B, g) then f (a) ∈ set(B, g) for every a : A, therefore for
every a : A there merely exists b : B such that f (a) = g(b). The assumption set(B, g) ⊆
set(A, f) gives the other half of (10.5.2), therefore set(A, f) = set(B, g).

(ii) Empty set: suppose x ∈ ∅ = set(0, rec0(V)). Then ∃(a : 0). x = rec0(V, a), which is absurd.

(iii) Pairing: given u and v, let w = set(2, rec2(V, u, v)).
(iv) Infinity: take w = set(N, I), where I : N → V is given by the recursion I(0) :≡ ∅ and

I(n + 1) :≡ I(n) ∪ {I(n)}.
(v) Union: Take any v : V and any presentation f : A → V with v = set(A, f). Then let

Ã :≡ ∑(a:A)[f a], where m f a : [f a] ↣ V is the type of members from Definition 10.5.7. Ã is
plainly U -small, and we have ∪v :≡ set(Ã, λx. m f (pr1(x))(pr2(x))).

(vi) Function set: given u, v : V, take the types of members [u] ↣ V and [v] ↣ V, and the
function type [u]→ [v]. We want to define a map

r : ([u]→ [v]) −→ V

with “r(f) = { (x, f (x)) | x : [u] }”, but in order for this to make sense we must first define
the ordered pair (x, y), and then we take the map r′ : x 7→ (x, f (x)), and then we can put
r(f) :≡ set([u], r′). But the ordered pair can be defined in terms of unordered pairing as
usual.

(vii) ∈-induction: let C : V → Prop be a class such that C(a) holds whenever C(x) for all x ∈ a,
and take any v = set(B, g). To show that C(v) by induction, assume that C(g(b)) for all
b : B. For every x ∈ v there merely exists some b : B with x = g(b), and so C(x). Thus
C(v).

(viii) Replacement: let C denote the class in question. The statement “C is a V-set” is a mere
proposition, so we may proceed by induction as follows. Supposing x is set(A, f), we
claim that w :≡ set(A, r ◦ f) is the set we are looking for. If C(y) then there merely exists
z : V and a : A such that z = f (a) and y = r(z), therefore y ∈ w. Conversely, if y ∈ w then
there merely exists a : A such that y = r(f (a)), so if we take z :≡ f (a) we see that C(y)
holds.

(ix) Let us say that a class C : V → Prop is separable if for any a : V the class

a ∩ C :≡ { x | x ∈ a ∧ C(x) }

10.5 THE CUMULATIVE HIERARCHY 341

is a V-set. We need to show that any U -small C : V → PropU is separable. Indeed, given
a = set(A, f), let A′ = ∑(x:A) C(f x), and take f ′ = f ◦ i, where i : A′ → A is the obvious
inclusion. Then we can take a′ = set(A′, f ′) and we have x ∈ a∧C(x)⇔ x ∈ a′ as claimed.
We needed the assumption that C lands in U in order for A′ = ∑(x:A) C(f x) to be in U .

It is also convenient to have a strictly syntactic criterion of separability, so that one can read
off from the expression for a class that it produces a V-set. One such familiar condition is being
“∆0”, which means that the expression is built up from equality x =V y and membership x ∈ y,
using only mere-propositional connectives ¬, ∧, ∨,⇒ and quantifiers ∀, ∃ over particular sets,
i.e. of the form ∃(x ∈ a) and ∀(y ∈ b) (these are called bounded quantifiers).

Corollary 10.5.9. If the class C : V → Prop is ∆0 in the above sense, then it is separable.

Proof. Recall that we have a U -small resizing x ∼ y of identity x = y. Since x ∈ y is defined in
terms of x = y, we also have a U -small resizing of membership

x ∈̃ set(A, f) :≡ ∃(a : A). x ∼ f (a).

Now, let Φ be a ∆0 expression for C, so that as classes Φ = C (strictly speaking, we should
distinguish expressions from their meanings, but we will blur the difference). Let Φ̃ be the result
of replacing all occurrences of = and ∈ by their resized equivalents∼ and ∈̃. Clearly then Φ̃ also
expresses C, in the sense that for all x : V, Φ̃(x)⇔ C(x), and hence Φ̃ = C by univalence. It now
suffices to show that Φ̃ is U -small, for then it will be separable by the theorem.

We show that Φ̃ is U -small by induction on the construction of the expression. The base cases
are x ∼ y and x ∈̃ y, which have already been resized into U . It is also clear that U is closed
under the mere-propositional operations (and (−1)-truncation), so it just remains to check the
bounded quantifiers ∃(x ∈ a) and ∀(y ∈ b). By definition,

∃(x ∈ a)P(x) :≡
∥∥∥∑

x:V
(x ∈̃ a ∧ P(x))

∥∥∥,

∀(y ∈ b)P(x) :≡∏
x:V

(x ∈̃ a→ P(x)).

Let us consider
∥∥∥∑(x:V)(x ∈̃ a ∧ P(x))

∥∥∥. Although the body (x ∈̃ a ∧ P(x)) is U -small since P(x)
is so by the inductive hypothesis, the quantification over V need not stay inside U . However, in
the present case we can replace this with a quantification over the type [a] ↣ V of members of
a, and easily show that

∑
x:V

(x ∈̃ a ∧ P(x)) = ∑
x:[a]

P(x).

The right-hand side does remain in U , since both [a] and P(x) are in U . The case of ∏(x:V)(x ∈̃
a→ P(x)) is analogous, using ∏(x:V)(x ∈̃ a→ P(x)) = ∏(x:[a]) P(x).

We have shown that in type theory with a universe U , the cumulative hierarchy V is a
model of a “constructive set theory” with many of the standard axioms. However, as far as
we know, it lacks the strong collection and subset collection axioms which are included in Con-
structive Zermelo–Fraenkel Set Theory [Acz78]. In the usual interpretation of this set theory into
type theory, these two axioms are consequences of the setoid-like definition of equality; while in
other constructed models of set theory, strong collection may hold for other reasons. We do not
know whether either of these axioms holds in our model (V,∈), but it seems unlikely. Since V

342 CHAPTER 10. SET THEORY

is a higher inductive type inside the system, rather than being an external construction, it is not
surprising that it differs in some ways from prior interpretations.

Finally, consider the result of adding the axiom of choice for sets to our type theory, in the
form AC from §10.1.5 above. This has the consequence that LEM then also holds, by Theo-
rem 10.1.14, and so Set is a topos with subobject classifier 2, by Theorem 10.1.12. In this case,
we have Prop = 2 : U , and so all classes are separable. Thus we have shown:

Lemma 10.5.10. In type theory with AC, the law of (full) separation holds for V: given any class
C : V → Prop and a : V, the class a ∩ C is a V-set.

Theorem 10.5.11. In type theory with AC and a universe U , the cumulative hierarchy V is a model of
Zermelo–Fraenkel set theory with choice, ZFC.

Proof. We have all the axioms listed in Theorem 10.5.8, plus full separation, so we just need to
show that there are power sets P(a) : V for all a : V. But since we have LEM these are simply
function types P(a) = (a→ 2). Thus V is a model of Zermelo–Fraenkel set theory ZF. We leave
the verification of the set-theoretic axiom of choice from AC as an easy exercise.

Notes

The basic properties one expects of the category of sets date back to the early days of elementary
topos theory. The Elementary theory of the category of sets referred to in §10.1.5 was introduced
by Lawvere in [Law05], as a category-theoretic axiomatization of set theory. The notion of ΠW-
pretopos, regarded as a predicative version of an elementary topos, was introduced in [MP02];
see also [Pal09].

The treatment of the category of sets in §10.1 roughly follows that in [RS13]. The fact that
epimorphisms are surjective (Lemma 10.1.4) is well known in classical mathematics, but is not
as trivial as it may seem to prove predicatively. The proof in [MRR88] uses the power set opera-
tion (which is impredicative), although it can also be seen as a predicative proof of the weaker
statement that a map in a universe Ui is surjective if it is an epimorphism in the next universe
Ui+1. A predicative proof for setoids was given by Wilander [Wil10]. Our proof is similar to
Wilander’s, but avoids setoids by using pushouts and univalence.

The implication in Theorem 10.1.14 from AC to LEM is an adaptation to homotopy type theory
of a theorem from topos theory due to Diaconescu [Dia75]; it was posed as a problem already by
Bishop [Bis67, Problem 2].

For the intuitionistic theory of ordinal numbers, see [Tay96, Tay99] and also [JM95]. Defi-
nitions of well-foundedness in type theory by an induction principle, including the inductive
predicate of accessibility, were studied in [Hue80, Pau86, Nor88], although the idea dates back
to Gentzen’s proof of the consistency of arithmetic [Gen36].

The idea of algebraic set theory, which informs our development in §10.5 of the cumulative
hierarchy, is due to [JM95], but it derives from earlier work by [Acz78].

Exercises

Exercise 10.1. Following the pattern of Set, we would like to make a category Type of all types
and maps between them (in a given universe U). In order for this to be a category in the sense
of §9.1, however, we must first declare hom(X, Y) :≡ ∥X → Y∥0, with composition defined by

CHAPTER 10 EXERCISES 343

induction on truncation from ordinary composition (Y → Z)→ (X → Y)→ (X → Z). This was
defined as the homotopy precategory of types in Example 9.1.18. It is still not a category, however,
but only a precategory (its type of objects U is not even a 0-type). It becomes a category by Rezk
completion (see Example 9.9.7), and its type of objects can be identified with ∥U∥1 by Exercise 9.9.
Show that the resulting category Type, unlike Set, is not a pretopos.

Exercise 10.2. Show that if every surjection has a section in the category Set, then the axiom of
choice holds.

Exercise 10.3. Show that with LEM, the category Set is well-pointed, in the sense that the follow-
ing statement holds: for any f , g : A → B, if f ̸= g then there is a function a : 1 → A such that
f (a) ̸= g(a). Show that the slice category Set/2 consisting of functions A→ 2 and commutative
triangles does not have this property. (Hint: the terminal object in Set/2 is the identity function
2→ 2, so in this category, there are objects X that have no elements 1→ X.)

Exercise 10.4. Prove that if (A,<A) and (B,<B) are well-founded, extensional, or ordinals, then
so is A + B, with < defined by

(a < a′) :≡ (a <A a′) for a, a′ : A

(b < b′) :≡ (b <B b′) for b, b′ : B

(a < b) :≡ 1 for (a : A), (b : B)

(b < a) :≡ 0 for (a : A), (b : B).

Exercise 10.5. Prove that if (A,<A) and (B,<B) are well-founded, extensional, or ordinals, then
so is A× B, with < defined by

((a, b) < (a′, b′)) :≡ (a <A a′) ∨ ((a = a′) ∧ (b <B b′)).

Exercise 10.6. Define the usual algebraic operations on ordinals, and prove that they satisfy the
usual properties.

Exercise 10.7. Note that 2 is an ordinal, under the obvious relation < such that 02 < 12 only.

(i) Define a relation < on Prop which makes it into an ordinal.
(ii) Show that 2 =Ord Prop if and only if LEM holds.

Exercise 10.8. Recall that we denote N by ω when regarding it as an ordinal; thus we have also
the ordinal ω + 1. On the other hand, let us define

N∞ :≡
{

a : N→ 2
∣∣∣ ∀(n : N). (an ≤ asucc(n))

}
where ≤ denotes the obvious partial order on 2, with 02 ≤ 12.

(i) Define a relation < on N∞ which makes it into an ordinal.
(ii) Show that ω + 1 =Ord N∞ if and only if the limited principle of omniscience (11.5.8) holds.

Exercise 10.9. Show that if (A,<) is well-founded and extensional and A : U , then there is a sim-
ulation A→ V, where (V,∈) is the cumulative hierarchy from §10.5 built from the universe U .

Exercise 10.10. Show that Theorem 10.4.4(i) is equivalent to the axiom of choice (3.8.1).

Exercise 10.11. Given types A and B, define a bitotal relation to be R : A→ B→ Prop such that(
∀(a : A). ∃(b : B). R(a, b)

)
∧
(
∀(b : B). ∃(a : A). R(a, b)

)
.

For such A, B, R, let A ⊔R B be the higher inductive type generated by

344 CHAPTER 10. SET THEORY

• i : A→ A ⊔R B
• j : B→ A ⊔R B
• For each a : A and b : B such that R(a, b), a path i(a) = j(b).

Show that the cumulative hierarchy V can be defined by the following more straightforward list
of constructors, and that the resulting induction principle is the one given in §10.5.

• For every A : U and f : A→ V, there is an element set(A, f) : V.
• For any A, B : U and bitotal relation R : A → B → Prop, and any map h : A ⊔R B → V,

there is a path set(A, h ◦ i) = set(B, h ◦ j).
• The 0-truncation constructor.

Exercise 10.12. In Constructive Zermelo–Fraenkel Set Theory, the axiom of strong collection has
the form:(
∀(x ∈ v). ∃(y). R(x, y)

)
⇒

∃(w).
[(
∀(x ∈ v). ∃(y ∈ w). R(x, y)

)
∧
(
∀(y ∈ w). ∃(x ∈ v). R(x, y)

)]
Does it hold in the cumulative hierarchy V? (We do not know the answer to this.)

Exercise 10.13. Verify that, if we assume AC, then the cumulative hierarchy V satisfies the usual
set-theoretic axiom of choice, which may be stated in the form:

∀(x : V).
(
(∀(y ∈ x). ∃(z : V). z ∈ y)⇒ ∃(c ∈ (∪x)x). ∀(y ∈ x). c(y) ∈ y

)
Exercise 10.14. Assuming propositional resizing, show that there is a mere predicate isPlump :
Ord→ Prop such that for any A : Ord we have

isPlump(A) =
(
∀(B < A). isPlump(B)

)
∧
(
∀(C, B : Ord). C ≤ B < A∧ isPlump(C)⇒ C < A

)
.

Note that isPlump cannot be defined by a simple well-founded induction over Ord; you must
use a different well-founded relation. We say that an ordinal A is plump [Tay96, Tay99] if
isPlump(A).

Exercise 10.15. Show that LEM is equivalent to the statement “all ordinals are plump”.

Exercise 10.16. Define the plump successor of an ordinal A to be

t(A) :≡ { B : Ord | (B ≤ A) ∧ isPlump(B) }

(i) By definition, t(A) belongs to the next higher universe. Show that assuming propositional
resizing, it is equal to an ordinal in the same universe as A.

(ii) Again assuming propositional resizing, show that if A is plump (Exercise 10.14) then so is
t(A).

Exercise 10.17. A ZF-algebra [JM95] relative to a universe Ui is a poset (see Example 9.1.14) V :
Ui+1, which has all suprema indexed by types in Ui, and is equipped with a “successor” function
s : V → V (not necessarily respecting ≤ in any way).

(i) Show that the cumulative hierarchy (VUi ,⊆, s) is the initial ZF-algebra, where s(x) is the
singleton { x }.

CHAPTER 10 EXERCISES 345

(ii) Show that (OrdUi ,≤, s) is the initial ZF-algebra with the property that x ≤ s(x) for all x,
where s(A) = A + 1 is the successor from Lemma 10.3.21.

(iii) Assuming propositional resizing, show that
(
{ A : OrdUi | isPlump(A) } ,≤, t

)
is the initial

ZF-algebra with the property that (x ≤ y)⇒ (t(x) ≤ t(y)) for all x, y, where t is the plump
successor from Exercise 10.16.

Exercise 10.18. For a category A, a morphism f : homA(a, b) is said to be a split monomorphism
if there exists a morphism g : homA(b, a) such that g ◦ f = 1a. (Such g is called a retraction of f .)
Prove that the following are logically equivalent.

(i) LEM.
(ii) For every sets A and B, if A is inhabited then for every monomorphism f : A → B in Set,

f is also a split monomorphism in Set.

346 CHAPTER 10. SET THEORY

Chapter 11

Real numbers

Any foundation of mathematics worthy of its name must eventually address the construction
of real numbers as understood by mathematical analysis, namely as a complete archimedean
ordered field. There are two notions of completeness. The one by Cauchy requires that the reals
be closed under limits of Cauchy sequences, while the stronger one by Dedekind requires closure
under Dedekind cuts. These lead to two ways of constructing reals, which we study in §11.2 and
§11.3, respectively. In Theorems 11.2.14 and 11.3.50 we characterize the two constructions in
terms of universal properties: the Dedekind reals are the final archimedean ordered field, and
the Cauchy reals the initial Cauchy complete archimedean ordered field.

In traditional constructive mathematics, real numbers always seem to require certain com-
promises. For example, the Dedekind reals work better with power sets or some other form of
impredicativity, while Cauchy reals work well in the presence of countable choice. However, we
give a new construction of the Cauchy reals as a higher inductive-inductive type that seems to
be a third possibility, which requires neither power sets nor countable choice.

In §11.4 we compare the two constructions of reals. The Cauchy reals are included in the
Dedekind reals. They coincide if excluded middle or countable choice holds, but in general the
inclusion might be proper.

In §11.5 we consider three notions of compactness of the closed interval [0, 1]. We first show
that [0, 1] is metrically compact in the sense that it is complete and totally bounded, and that
uniformly continuous maps on metrically compact spaces behave as expected. In contrast, the
Bolzano–Weierstraß property that every sequence has a convergent subsequence implies the
limited principle of omniscience, which is an instance of excluded middle. Finally, we discuss
Heine–Borel compactness. A naive formulation of the finite subcover property does not work,
but a proof relevant notion of inductive covers does. This section is basically standard construc-
tive analysis.

The development of real numbers and analysis in homotopy type theory can be easily made
compatible with classical mathematics. By assuming excluded middle and the axiom of choice
we get standard classical analysis: the Dedekind and Cauchy reals coincide, foundational ques-
tions about the impredicative nature of the Dedekind reals disappear, and the interval is as com-
pact as it could be.

We close the chapter by constructing Conway’s surreals as a higher inductive-inductive type
in §11.6; the construction is more natural in univalent type theory than in classical set theory.

In addition to the basic theory of Chapters 2 and 3, as noted above we use “higher inductive-
inductive types” for the Cauchy reals and the surreals: these combine the ideas of Chapter 6

348 CHAPTER 11. REAL NUMBERS

with the notion of inductive-inductive type mentioned in §5.7. We will also frequently use the
traditional logical notation described in §3.7, and the fact (proven in §10.1) that our “sets” behave
the way we would expect.

Note that the total space of the universal cover of the circle, which in §8.1.5 played a role
similar to “the real numbers” in classical algebraic topology, is not the type of reals we are looking
for. That type is contractible, and thus equivalent to the singleton type, so it cannot be equipped
with a non-trivial algebraic structure.

11.1 The field of rational numbers

We first construct the rational numbers Q, as the reals can then be seen as a completion of Q.
An expert will point out that Q could be replaced by any approximate field, i.e., a subring of
Q in which arbitrarily precise approximate inverses exist. An example is the ring of dyadic
rationals, which are those of the form n/2k. If we were implementing constructive mathematics
on a computer, an approximate field would be more suitable, but we leave such finesse for those
who care about the digits of π.

We constructed the integers Z in §6.10 as a quotient of N×N, and observed that this quotient
is generated by an idempotent. In §6.11 we saw that Z is the free group on 1; we could similarly
show that it is the free commutative ring on 0. The field of rationals Q is constructed along the
same lines as well, namely as the quotient

Q :≡ (Z×N)/≈

where
(u, a) ≈ (v, b) :≡ (u(b + 1) = v(a + 1)).

In other words, a pair (u, a) represents the rational number u/(1 + a). There can be no division
by zero because we cunningly added one to the denominator a. Here too we have a canonical
choice of representatives, namely fractions in lowest terms. Thus we may apply Lemma 6.10.8
to obtain a set Q, which again has a decidable equality.

We do not bother to write down the arithmetical operations on Q as we trust that our readers
know how to compute with fractions even in the case when one is added to the denominator.
Let us just record the conclusion that there is an entirely unproblematic construction of the or-
dered field of rational numbers Q, with a decidable equality and decidable order. It can also be
characterized as the initial ordered field.

Finally, we will denote by Q+ :≡ { q : Q | q > 0 } the type of positive rational numbers.

11.2 Dedekind reals

Let us first recall the basic idea of Dedekind’s construction. We use two-sided Dedekind cuts, as
opposed to an often used one-sided version, because the symmetry makes constructions more
elegant, and it works constructively as well as classically. A Dedekind cut consists of a pair (L, U)

of subsets L, U ⊆ Q, called the lower and upper cut respectively, which are:

(i) inhabited: there are q ∈ L and r ∈ U,

(ii) rounded: q ∈ L⇔ ∃(r ∈ Q). q < r ∧ r ∈ L and r ∈ U ⇔ ∃(q ∈ Q). q ∈ U ∧ q < r,

(iii) disjoint: ¬(q ∈ L ∧ q ∈ U), and

11.2 DEDEKIND REALS 349

(iv) located: q < r ⇒ q ∈ L ∨ r ∈ U.

Reading the roundedness condition from left to right tells us that cuts are open, and from right
to left that they are lower, respectively upper, sets. The locatedness condition states that there is
no large gap between L and U. Because cuts are always open, they never include the “point in
between”, even when it is rational. A typical Dedekind cut looks like this:

L U

We might naively translate the informal definition into type theory by saying that a cut is a pair
of maps L, U : Q → Prop. But we saw in §3.5 that Prop is an ambiguous notation for PropUi

where Ui is a universe. Once we use a particular Ui to define cuts, the type of reals will reside
in the next universe Ui+1, a property of reals two levels higher in Ui+2, a property of subsets of
reals in Ui+3, etc. In principle we should be able to keep track of the universe levels, especially
with the help of a proof assistant, but doing so here would just burden us with bureaucracy
that we prefer to avoid. We shall therefore make a simplifying assumption that a single type of
propositions Ω is sufficient for all our purposes.

In fact, the construction of the Dedekind reals is quite resilient to logical manipulations. There
are several ways in which we can make sense of using a single type Ω:

(i) We could identify Ω with the ambiguous Prop and track all the universes that appear in
definitions and constructions.

(ii) We could assume the propositional resizing axiom, as in §3.5, which essentially collapses
the PropUi

’s to the lowest level, which we call Ω.

(iii) A classical mathematician who is not interested in the intricacies of type-theoretic uni-
verses or computation may simply assume the law of excluded middle (3.4.1) for mere
propositions so that Ω ≡ 2. This not only eradicates questions about levels of Prop, but
also turns everything we do into the standard classical construction of real numbers.

(iv) On the other end of the spectrum one might ask for a minimal requirement that makes the
constructions work. The condition that a mere predicate be a Dedekind cut is expressible
using only conjunctions, disjunctions, and existential quantifiers over Q, which is a count-
able set. Thus we could take Ω to be the initial σ-frame, i.e., a lattice with countable joins in
which binary meets distribute over countable joins. (The initial σ-frame cannot be the two-
point lattice 2 because 2 is not closed under countable joins, unless we assume excluded
middle.) This would lead to a construction of Ω as a higher inductive-inductive type, but
one experiment of this kind in §11.3 is enough.

In all of the above cases Ω is a set. Without further ado, we translate the informal definition
into type theory. Throughout this chapter, we use the logical notation from Definition 3.7.1.

Definition 11.2.1. A Dedekind cut is a pair (L, U) of mere predicates L : Q→ Ω and U : Q→ Ω
which is:

(i) inhabited (i.e., bounded): ∃(q : Q). L(q) and ∃(r : Q). U(r),
(ii) rounded: for all q, r : Q,

L(q)⇔ ∃(r : Q). (q < r) ∧ L(r) and

U(r)⇔ ∃(q : Q). (q < r) ∧U(q),

350 CHAPTER 11. REAL NUMBERS

(iii) disjoint: ¬(L(q) ∧U(q)) for all q : Q,
(iv) located: (q < r)⇒ L(q) ∨U(r) for all q, r : Q.

We let isCut(L, U) denote the conjunction of these conditions. The type of Dedekind reals is

Rd :≡ { (L, U) : (Q→ Ω)× (Q→ Ω) | isCut(L, U) } .

It is apparent that isCut(L, U) is a mere proposition, and since Q → Ω is a set the Dedekind
reals form a set too. See Exercises 11.2 to 11.4 for variants of Dedekind cuts which lead to ex-
tended reals, lower and upper reals, and the interval domain.

There is an embedding Q → Rd which associates with each rational q : Q the cut (Lq, Uq)

where
Lq(r) :≡ (r < q) and Uq(r) :≡ (q < r).

We shall simply write q for the cut (Lq, Uq) associated with a rational number.

11.2.1 The algebraic structure of Dedekind reals

The construction of the algebraic and order-theoretic structure of Dedekind reals proceeds as
usual in intuitionistic logic. Rather than dwelling on details we point out the differences between
the classical and intuitionistic setup. Writing Lx and Ux for the lower and upper cut of a real
number x : Rd, we define addition as

Lx+y(q) :≡ ∃(r, s : Q). Lx(r) ∧ Ly(s) ∧ q = r + s,

Ux+y(q) :≡ ∃(r, s : Q). Ux(r) ∧Uy(s) ∧ q = r + s,

and the additive inverse by

L−x(q) :≡ ∃(r : Q). Ux(r) ∧ q = −r,

U−x(q) :≡ ∃(r : Q). Lx(r) ∧ q = −r.

With these operations (Rd, 0,+,−) is an abelian group. Multiplication is a bit more cumbersome:

Lx·y(q) :≡ ∃(a, b, c, d : Q). Lx(a) ∧Ux(b) ∧ Ly(c) ∧Uy(d) ∧
q < min(a · c, a · d, b · c, b · d),

Ux·y(q) :≡ ∃(a, b, c, d : Q). Lx(a) ∧Ux(b) ∧ Ly(c) ∧Uy(d) ∧
max(a · c, a · d, b · c, b · d) < q.

These formulas are related to multiplication of intervals in interval arithmetic, where intervals
[a, b] and [c, d] with rational endpoints multiply to the interval

[a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)].

For instance, the formula for the lower cut can be read as saying that q < x · y when there are
intervals [a, b] and [c, d] containing x and y, respectively, such that q is to the left of [a, b] · [c, d].
It is generally useful to think of an interval [a, b] such that Lx(a) and Ux(b) as an approximation
of x, see Exercise 11.4.

We now have a commutative ring with unit (Rd, 0, 1,+,−, ·). To treat multiplicative inverses,
we must first introduce order. Define ≤ and < as

(x ≤ y) :≡ ∀(q : Q). Lx(q)⇒ Ly(q),

(x < y) :≡ ∃(q : Q). Ux(q) ∧ Ly(q).

11.2 DEDEKIND REALS 351

Lemma 11.2.2. For all x : Rd and q : Q, Lx(q)⇔ (q < x) and Ux(q)⇔ (x < q).

Proof. If Lx(q) then by roundedness there merely is r > q such that Lx(r), and since Uq(r) it
follows that q < x. Conversely, if q < x then there is r : Q such that Uq(r) and Lx(r), hence Lx(q)
because Lx is a lower set. The other half of the proof is symmetric.

The relation ≤ is a partial order, and < is transitive and irreflexive. Linearity

(x < y) ∨ (y ≤ x)

is valid if we assume excluded middle, but without it we get weak linearity

(x < y)⇒ (x < z) ∨ (z < y). (11.2.3)

At first sight it might not be clear what (11.2.3) has to do with linear order. But if we take
x ≡ u− ϵ and y ≡ u + ϵ for ϵ > 0, then we get

(u− ϵ < z) ∨ (z < u + ϵ).

This is linearity “up to a small numerical error”, i.e., since it is unreasonable to expect that we
can actually compute with infinite precision, we should not be surprised that we can decide <

only up to whatever finite precision we have computed.
To see that (11.2.3) holds, suppose x < y. Then there merely exists q : Q such that Ux(q) and

Ly(q). By roundedness there merely exist r, s : Q such that r < q < s, Ux(r) and Ly(s). Then, by
locatedness Lz(r) or Uz(s). In the first case we get x < z and in the second z < y.

Classically, multiplicative inverses exist for all numbers which are different from zero. How-
ever, without excluded middle, a stronger condition is required. Say that x, y : Rd are apart from
each other, written x # y, when (x < y) ∨ (y < x):

(x # y) :≡ (x < y) ∨ (y < x).

If x # y, then ¬(x = y). The converse is true if we assume excluded middle, but is not provable
constructively. Indeed, if ¬(x = y) implies x # y, then a little bit of excluded middle follows; see
Exercise 11.10.

Theorem 11.2.4. A real is invertible if, and only if, it is apart from 0.

Remark 11.2.5. We observe that a real is invertible if, and only if, it is merely invertible. Indeed,
the same is true in any ring, since a ring is a set, and multiplicative inverses are unique if they
exist. See the discussion following Corollary 3.9.2.

Proof. Suppose x · y = 1. Then there merely exist a, b, c, d : Q such that a < x < b, c < y < d and
0 < min(ac, ad, bc, bd). From 0 < ac and 0 < bc it follows that a, b, and c are either all positive or
all negative. Hence either 0 < a < x or x < b < 0, so that x # 0.

Conversely, if x # 0, then either x > 0 or x < 0. If x > 0, we define x−1 as follows:

Lx−1(q) :≡ (q > 0)⇒ ∃(r : Q). Ux(r) ∧ (qr < 1),

Ux−1(q) :≡ (q > 0) ∧ ∃(r : Q). Lx(r) ∧ (qr > 1).

If x < 0, then we define it by

Lx−1(q) :≡ (q < 0) ∧ ∃(r : Q). Ux(r) ∧ (qr > 1),

Ux−1(q) :≡ (q < 0)⇒ ∃(r : Q). Lx(r) ∧ (qr < 1).

352 CHAPTER 11. REAL NUMBERS

The archimedean principle can be stated in several ways. We find it most illuminating in the
form which says that Q is dense in Rd.

Theorem 11.2.6 (Archimedean principle for Rd). For all x, y : Rd if x < y then there merely exists
q : Q such that x < q < y.

Proof. By definition of <.

Before tackling completeness of Dedekind reals, let us state precisely what algebraic structure
they possess. In the following definition we are not aiming at a minimal axiomatization, but
rather at a useful amount of structure and properties.

Definition 11.2.7. An ordered field is a set F together with constants 0, 1, operations +, −, ·,
min, max, and mere relations ≤, <, # such that:

(i) (F, 0, 1,+,−, ·) is a commutative ring with unit;
(ii) x : F is invertible if, and only if, x # 0;

(iii) (F,≤, min, max) is a lattice;
(iv) the strict order < is transitive, irreflexive, and weakly linear (x < y⇒ x < z ∨ z < y);
(v) apartness # is irreflexive, symmetric and cotransitive (x # y⇒ x # z ∨ y # z);

(vi) for all x, y, z : F:

x ≤ y⇔ ¬(y < x), x < y ≤ z⇒ x < z,

x # y⇔ (x < y) ∨ (y < x), x ≤ y < z⇒ x < z,

x ≤ y⇔ x + z ≤ y + z, x ≤ y ∧ 0 ≤ z⇒ xz ≤ yz,

x < y⇔ x + z < y + z, 0 < z⇒ (x < y⇔ xz < yz),

0 < x + y⇒ 0 < x ∨ 0 < y, 0 < 1.

Every such field has a canonical embedding Q → F. An ordered field is archimedean when for
all x, y : F, if x < y then there merely exists q : Q such that x < q < y.

Theorem 11.2.8. The Dedekind reals form an ordered archimedean field.

Proof. We omit the proof in the hope that what we have demonstrated so far makes the theorem
plausible.

11.2.2 Dedekind reals are Cauchy complete

Recall that x : N→ Q is a Cauchy sequence when it satisfies

∏
(ϵ:Q+)

∑
(n:N)

∏
(m,k≥n)

|xm − xk| < ϵ. (11.2.9)

Note that we did not truncate the inner existential because we actually want to compute rates of
convergence—an approximation without an error estimate carries little useful information. By
Theorem 2.15.7, (11.2.9) yields a function M : Q+ → N, called the modulus of convergence, such
that m, k ≥ M(ϵ) implies |xm − xk| < ϵ. From this we get |xM(δ/2) − xM(ϵ/2)| < δ + ϵ for all
δ, ϵ : Q+. In fact, the map (ϵ 7→ xM(ϵ/2)) : Q+ → Q carries the same information about the limit
as the original Cauchy condition (11.2.9). We shall work with these approximation functions
rather than with Cauchy sequences.

11.2 DEDEKIND REALS 353

Definition 11.2.10. A Cauchy approximation is a map x : Q+ → Rd which satisfies

∀(δ, ϵ : Q+). |xδ − xϵ| < δ + ϵ. (11.2.11)

The limit of a Cauchy approximation x : Q+ → Rd is a number ℓ : Rd such that

∀(ϵ, θ : Q+). |xϵ − ℓ| < ϵ + θ.

Theorem 11.2.12. Every Cauchy approximation in Rd has a limit.

Proof. Note that we are showing existence, not mere existence, of the limit. Given a Cauchy
approximation x : Q+ → Rd, define

Ly(q) :≡ ∃(ϵ, θ : Q+). Lxϵ(q + ϵ + θ),

Uy(q) :≡ ∃(ϵ, θ : Q+). Uxϵ(q− ϵ− θ).

It is clear that Ly and Uy are inhabited, rounded, and disjoint. To establish locatedness, consider
any q, r : Q such that q < r. There is ϵ : Q+ such that 5ϵ < r− q. Since q + 2ϵ < r− 2ϵ merely
Lxϵ(q + 2ϵ) or Uxϵ(r− 2ϵ). In the first case we have Ly(q) and in the second Uy(r).

To show that y is the limit of x, consider any ϵ, θ : Q+. Because Q is dense in Rd there merely
exist q, r : Q such that

xϵ − ϵ− θ/2 < q < xϵ − ϵ− θ/4 < xϵ < xϵ + ϵ + θ/4 < r < xϵ + ϵ + θ/2,

and thus q < y < r. Now either y < xϵ + θ/2 or xϵ − θ/2 < y. In the first case we have

xϵ − ϵ− θ/2 < q < y < xϵ + θ/2,

and in the second
xϵ − θ/2 < y < r < xϵ + ϵ + θ/2.

In either case it follows that |y− xϵ| < ϵ + θ.

For sake of completeness we record the classic formulation as well.

Corollary 11.2.13. Suppose x : N → Rd satisfies the Cauchy condition (11.2.9). Then there exists
y : Rd such that

∏
(ϵ:Q+)

∑
(n:N)

∏
(m≥n)

|xm − y| < ϵ.

Proof. By Theorem 2.15.7 there is M : Q+ → N such that x̄(ϵ) :≡ xM(ϵ/2) is a Cauchy approxi-
mation. Let y be its limit, which exists by Theorem 11.2.12. Given any ϵ : Q+, let n :≡ M(ϵ/4)
and observe that, for any m ≥ n,

|xm − y| ≤ |xm − xn|+ |xn − y| = |xm − xn|+ |x̄(ϵ/2)− y| < ϵ/4 + ϵ/2 + ϵ/4 = ϵ.

11.2.3 Dedekind reals are Dedekind complete

We obtained Rd as the type of Dedekind cuts on Q. But we could have instead started with any
archimedean ordered field F and constructed Dedekind cuts on F. These would again form an
archimedean ordered field F̄, the Dedekind completion of F, with F contained as a subfield.
What happens if we apply this construction to Rd, do we get even more real numbers? The
answer is negative. In fact, we shall prove a stronger result: Rd is final.

Say that an ordered field F is admissible for Ω when the strict order < on F is a map < : F →
F → Ω.

354 CHAPTER 11. REAL NUMBERS

Theorem 11.2.14. Every archimedean ordered field which is admissible for Ω is a subfield of Rd.

Proof. Let F be an archimedean ordered field. For every x : F define Lx, Ux : Q→ Ω by

Lx(q) :≡ (q < x) and Ux(q) :≡ (x < q).

(We have just used the assumption that F is admissible for Ω.) Then (Lx, Ux) is a Dedekind cut.
Indeed, the cuts are inhabited and rounded because F is archimedean and < is transitive, disjoint
because < is irreflexive, and located because < is a weak linear order. Let e : F → Rd be the map
e(x) :≡ (Lx, Ux).

We claim that e is a field embedding which preserves and reflects the order. First of all, notice
that e(q) = q for a rational number q. Next we have the equivalences, for all x, y : F,

x < y⇔ (∃(q : Q). x < q < y)⇔ (∃(q : Q). Ux(q) ∧ Ly(q))⇔ e(x) < e(y),

so e indeed preserves and reflects the order. That e(x + y) = e(x) + e(y) holds because, for all
q : Q,

q < x + y⇔ ∃(r, s : Q). r < x ∧ s < y ∧ q = r + s.

The implication from right to left is obvious. For the other direction, if q < x + y then there
merely exists r : Q such that q− y < r < x, and by taking s :≡ q− r we get the desired r and s.
We leave preservation of multiplication by e as an exercise.

To establish that the Dedekind cuts on Rd do not give us anything new, we need just one
more lemma.

Lemma 11.2.15. If F is admissible for Ω then so is its Dedekind completion.

Proof. Let F̄ be the Dedekind completion of F. The strict order on F̄ is defined by

((L, U) < (L′, U′)) :≡ ∃(q : Q). U(q) ∧ L′(q).

Since U(q) and L′(q) are elements of Ω, the lemma holds as long as Ω is closed under conjunc-
tions and countable existentials, which we assumed from the outset.

Corollary 11.2.16. The Dedekind reals are Dedekind complete: for every real-valued Dedekind cut (L, U)

there is a unique x : Rd such that L(y) = (y < x) and U(y) = (x < y) for all y : Rd.

Proof. By Lemma 11.2.15 the Dedekind completion R̄d of Rd is admissible for Ω, so by Theo-
rem 11.2.14 we have an embedding R̄d → Rd, as well as an embedding Rd → R̄d. But these
embeddings must be isomorphisms, because their compositions are order-preserving field ho-
momorphisms which fix the dense subfield Q, which means that they are the identity. The corol-
lary now follows immediately from the fact that R̄d → Rd is an isomorphism.

11.3 Cauchy reals

The Cauchy reals are, by intent, the completion of Q under limits of Cauchy sequences. In the
classical construction of the Cauchy reals, we consider the set C of all Cauchy sequences in Q and
then form a suitable quotient C/≈. Then, to show that C/≈ is Cauchy complete, we consider a
Cauchy sequence x : N → C/≈, lift it to a sequence of sequences x̄ : N → C, and construct the
limit of x using x̄. However, the lifting of x to x̄ uses the axiom of countable choice (the instance

11.3 CAUCHY REALS 355

of (3.8.1) where X = N) or the law of excluded middle, which we may wish to avoid. Every
construction of reals whose last step is a quotient suffers from this deficiency. There are three
common ways out of the conundrum in constructive mathematics:

(i) Pretend that the reals are a setoid (C,≈), i.e., the type of Cauchy sequences C with a coin-
cidence relation attached to it by administrative decree. A sequence of reals then simply is
a sequence of Cauchy sequences representing them.

(ii) Give in to temptation and accept the axiom of countable choice. After all, the axiom is valid
in most models of constructive mathematics based on a computational viewpoint, such as
realizability models.

(iii) Declare the Cauchy reals unworthy and construct the Dedekind reals instead. Such a ver-
dict is perfectly valid in certain contexts, such as in sheaf-theoretic models of constructive
mathematics. However, as we saw in §11.2, the constructive Dedekind reals have their
own problems.

Using higher inductive types, however, there is a fourth solution, which we believe to be
preferable to any of the above, and interesting even to a classical mathematician. The idea is
that the Cauchy real numbers should be the free complete metric space generated by Q. In general,
the construction of a free gadget of any sort requires applying the gadget operations repeatedly
many times to the generators. For instance, the elements of the free group on a set X are not
just binary products and inverses of elements of X, but words obtained by iterating the product
and inverse constructions. Thus, we might naturally expect the same to be true for Cauchy
completion, with the relevant “operation” being “take the limit of a Cauchy sequence”. (In this
case, the iteration would have to take place transfinitely, since even after infinitely many steps
there will be new Cauchy sequences to take the limit of.)

The argument referred to above shows that if excluded middle or countable choice hold,
then Cauchy completion is very special: when building the completion of a space, it suffices to
stop applying the operation after one step. This may be regarded as analogous to the fact that
free monoids and free groups can be given explicit descriptions in terms of (reduced) words.
However, we saw in §6.11 that higher inductive types allow us to construct free gadgets directly,
whether or not there is also an explicit description available. In this section we show that the
same is true for the Cauchy reals (a similar technique would construct the Cauchy completion
of any metric space; see Exercise 11.9). Specifically, higher inductive types allow us to simulta-
neously add limits of Cauchy sequences and quotient by the coincidence relation, so that we can
avoid the problem of lifting a sequence of reals to a sequence of representatives.

11.3.1 Construction of Cauchy reals

The construction of the Cauchy reals Rc as a higher inductive type is a bit more subtle than
that of the free algebraic structures considered in §6.11. We intend to include a “take the limit”
constructor whose input is a Cauchy sequence of reals, but the notion of “Cauchy sequence
of reals” depends on having some way to measure the “distance” between real numbers. In
general, of course, the distance between two real numbers will be another real number, leading
to a potentially problematic circularity.

However, what we actually need for the notion of Cauchy sequence of reals is not the general
notion of “distance”, but a way to say that “the distance between two real numbers is less than
ϵ” for any ϵ : Q+. This can be represented by a family of binary relations, which we will denote
∼ϵ : Rc → Rc → Prop. The intended meaning of x ∼ϵ y is |x − y| < ϵ, but since we do not

356 CHAPTER 11. REAL NUMBERS

have notions of subtraction, absolute value, or inequality available yet (we are only just defining
Rc, after all), we will have to define these relations ∼ϵ at the same time as we define Rc itself.
And since ∼ϵ is a type family indexed by two copies of Rc, we cannot do this with an ordinary
mutual (higher) inductive definition; instead we have to use a higher inductive-inductive definition.

Recall from §5.7 that the ordinary notion of inductive-inductive definition allows us to de-
fine a type and a type family indexed by it by simultaneous induction. Of course, the “higher”
version of this allows both the type and the family to have path constructors as well as point
constructors. We will not attempt to formulate any general theory of higher inductive-inductive
definitions, but hopefully the description we will give of Rc and ∼ϵ will make the idea transpar-
ent.

Remark 11.3.1. We might also consider a higher inductive-recursive definition, in which ∼ϵ is de-
fined using the recursion principle of Rc, simultaneously with the inductive definition of Rc. We
choose the inductive-inductive route instead for two reasons. Firstly, higher inductive-recursive
definitions seem to be more difficult to justify in homotopical semantics. Secondly, and more im-
portantly, the inductive-inductive definition yields a more powerful induction principle, which
we will need in order to develop even the basic theory of Cauchy reals.

Finally, as we did for the discussion of Cauchy completeness of the Dedekind reals in §11.2.2,
we will work with Cauchy approximations (Definition 11.2.10) instead of Cauchy sequences. Of
course, our Cauchy approximations will now consist of Cauchy reals, rather than Dedekind reals
or rational numbers.

Definition 11.3.2. Let Rc and the relation ∼ : Q+ × Rc × Rc → U be the following higher
inductive-inductive type family. The type Rc of Cauchy reals is generated by the following
constructors:

• rational points: for any q : Q there is a real rat(q).

• limit points: for any x : Q+ → Rc such that

∀(δ, ϵ : Q+). xδ ∼δ+ϵ xϵ (11.3.3)

there is a point lim(x) : Rc. We call x a Cauchy approximation.

• paths: for u, v : Rc such that
∀(ϵ : Q+). u ∼ϵ v (11.3.4)

then there is a path eqRc
(u, v) : u =Rc v.

Simultaneously, the type family ∼ : Rc → Rc → Q+ → U is generated by the following con-
structors. Here q and r denote rational numbers; δ, ϵ, and η denote positive rationals; u and v
denote Cauchy reals; and x and y denote Cauchy approximations:

• for any q, r, ϵ, if −ϵ < q− r < ϵ, then rat(q) ∼ϵ rat(r),

• for any q, y, ϵ, δ, if rat(q) ∼ϵ−δ yδ, then rat(q) ∼ϵ lim(y),

• for any x, r, ϵ, δ, if xδ ∼ϵ−δ rat(r), then lim(x) ∼ϵ rat(r),

• for any x, y, ϵ, δ, η, if xδ ∼ϵ−δ−η yη , then lim(x) ∼ϵ lim(y),

• for any u, v, ϵ, if ξ, ζ : u ∼ϵ v, then ξ = ζ (propositional truncation).

11.3 CAUCHY REALS 357

The first constructor of Rc says that any rational number can be regarded as a real number.
The second says that from any Cauchy approximation to a real number, we can obtain a new real
number called its “limit”. And the third expresses the idea that if two Cauchy approximations
coincide, then their limits are equal.

The first four constructors of∼ specify when two rational numbers are close, when a rational
is close to a limit, and when two limits are close. In the case of two rational numbers, this is just
the usual notion of ϵ-closeness for rational numbers, whereas the other cases can be derived by
noting that each approximant xδ is supposed to be within δ of the limit lim(x).

We remind ourselves of proof-relevance: a real number obtained from lim is represented not
just by a Cauchy approximation x, but also a proof p of (11.3.3), so we should technically have
written lim(x, p) instead of just lim(x). A similar observation also applies to eqRc

and (11.3.4),
but we shall write just eqRc

: u = v instead of eqRc
(u, v, p) : u = v. These abuses of notation

are mitigated by the fact that we are omitting mere propositions and information that is readily
guessed. Likewise, the last constructor of ∼ϵ justifies our leaving the other four nameless.

We are immediately able to populate Rc with many real numbers. For suppose x : N → Q

is a traditional Cauchy sequence of rational numbers, and let M : Q+ → N be its modulus of
convergence. Then rat ◦ x ◦M : Q+ → Rc is a Cauchy approximation, using the first constructor
of ∼ to produce the necessary witness. Thus, lim(rat ◦ x ◦ m) is a real number. Various famous
real numbers such as

√
2, π, e, . . . are all limits of such Cauchy sequences of rationals.

11.3.2 Induction and recursion on Cauchy reals

In order to do anything useful with Rc, of course, we need to give its induction principle. As
is the case whenever we inductively define two or more objects at once, the basic induction
principle for Rc and ∼ requires a simultaneous induction over both at once. Thus, we should
expect it to say that assuming two type families over Rc and ∼, respectively, together with data
corresponding to each constructor, there exist sections of both of these families. However, since
∼ is indexed on two copies of Rc, the precise dependencies of these families is a bit subtle. The
induction principle will apply to any pair of type families:

A : Rc → U
B : ∏

x,y:Rc

A(x)→ A(y)→ ∏
ϵ:Q+

(x ∼ϵ y)→ U .

The type of A is obvious, but the type of B requires a little thought. Since B must depend on ∼,
but ∼ in turn depends on two copies of Rc and one copy of Q+, it is fairly obvious that B must
also depend on the variables x, y : Rc and ϵ : Q+ as well as an element of (x ∼ϵ y). What is
slightly less obvious is that B must also depend on A(x) and A(y).

This may be more evident if we consider the non-dependent case (the recursion principle),
where A is a simple type (rather than a type family). In this case we would expect B not to
depend on x, y : Rc or x ∼ϵ y. But the recursion principle (along with its associated uniqueness
principle) is supposed to say that Rc with ∼ϵ is an “initial object” in some category, so in this
case the dependency structure of A and B should mirror that of Rc and ∼ϵ: that is, we should
have B : A → A → Q+ → U . Combining this observation with the fact that, in the dependent
case, B must also depend on x, y : Rc and x ∼ϵ y, leads inevitably to the type given above for B.

It is helpful to think of B as an ϵ-indexed family of relations between the types A(x) and
A(y). With this in mind, we may write B(x, y, a, b, ϵ, ξ) as (x, a) ⌢ξ

ϵ (y, b). Since ξ : x ∼ϵ y is
unique when it exists, we generally omit it from the notation and write (x, a) ⌢ϵ (y, b); this is

358 CHAPTER 11. REAL NUMBERS

harmless as long as we keep in mind that this relation is only defined when x ∼ϵ y. We may also
sometimes simplify further and write a ⌢ϵ b, with x and y inferred from the types of a and b,
but sometimes it will be necessary to include them for clarity.

Now, given a type family A : Rc → U and a family of relations ⌢ as above, the hypotheses
of the induction principle consist of the following data, one for each constructor of Rc or ∼:

• For any q : Q, an element fq : A(rat(q)).
• For any Cauchy approximation x, and any a : ∏(ϵ:Q+) A(xϵ) such that

∀(δ, ϵ : Q+). (xδ, aδ) ⌢δ+ϵ (xϵ, aϵ), (11.3.5)

an element fx,a : A(lim(x)). We call such a a dependent Cauchy approximation over x.
• For u, v : Rc such that h : ∀(ϵ : Q+). u ∼ϵ v, and all a : A(u) and b : A(v) such that
∀(ϵ : Q+). (u, a) ⌢ϵ (v, b), a dependent path a =A

eqRc (u,v) b.

• For q, r : Q and ϵ : Q+, if −ϵ < q− r < ϵ, we have (rat(q), fq) ⌢ϵ (rat(r), fr).
• For q : Q and δ, ϵ : Q+ and y a Cauchy approximation, and b a dependent Cauchy approx-

imation over y, if rat(q) ∼ϵ−δ yδ, then

(rat(q), fq) ⌢ϵ−δ (yδ, bδ) ⇒ (rat(q), fq) ⌢ϵ (lim(y), fy,b).

• Similarly, for r : Q and δ, ϵ : Q+ and x a Cauchy approximation, and a a dependent Cauchy
approximation over x, if xδ ∼ϵ−δ rat(r), then

(xδ, aδ) ⌢ϵ−δ (rat(r), fr) ⇒ (lim(x), fx,a) ⌢ϵ (rat(q), fr).

• For ϵ, δ, η : Q+ and x, y Cauchy approximations, and a and b dependent Cauchy approxi-
mations over x and y respectively, if we have xδ ∼ϵ−δ−η yη , then

(xδ, aδ) ⌢ϵ−δ−η (yη , bη) ⇒ (lim(x), fx,a) ⌢ϵ (lim(y), fy,b).

• For ϵ : Q+ and x, y : Rc and ξ, ζ : x ∼ϵ y, and a : A(x) and b : A(y), any two elements of
(x, a) ⌢ξ

ϵ (y, b) and (x, a) ⌢ζ
ϵ (y, b) are dependently equal over ξ = ζ. Note that as usual,

this is equivalent to asking that ⌢ takes values in mere propositions.

Under these hypotheses, we deduce functions

f : ∏
x:Rc

A(x)

g : ∏
(x,y:Rc)

∏
(ϵ:Q+)

∏
(ξ :x∼ϵy)

(x, f (x)) ⌢ξ
ϵ (y, f (y))

which compute as expected:

f (rat(q)) :≡ fq, (11.3.6)

f (lim(x)) :≡ fx,(f ,g)[x]. (11.3.7)

Here (f , g)[x] denotes the result of applying f and g to a Cauchy approximation x to obtain a
dependent Cauchy approximation over x. That is, we define (f , g)[x]ϵ :≡ f (xϵ) : A(xϵ), and
then for any ϵ, δ : Q+ we have g(xϵ, xδ, ϵ + δ, ξ) to witness the fact that (f , g)[x] is a dependent

11.3 CAUCHY REALS 359

Cauchy approximation, where ξ : xϵ ∼ϵ+δ xδ arises from the assumption that x is a Cauchy
approximation.

We will never use this notation again, so don’t worry about remembering it. Generally we use
the pattern-matching convention, where f is defined by equations such as (11.3.6) and (11.3.7)
in which the right-hand side of (11.3.7) may involve the symbols f (xϵ) and an assumption that
they form a dependent Cauchy approximation.

However, this induction principle is admittedly still quite a mouthful. To help make sense of
it, we observe that it contains as special cases two separate induction principles for Rc and for∼.
Firstly, suppose given only a type family A : Rc → U , and define ⌢ to be constant at 1. Then
much of the required data becomes trivial, and we are left with:

• for any q : Q, an element fq : A(rat(q)),
• for any Cauchy approximation x, and any a : ∏(ϵ:Q+) A(xϵ), an element fx,a : A(lim(x)),

• for u, v : Rc and h : ∀(ϵ : Q+). u ∼ϵ v, and a : A(u) and b : A(v), we have a =A
eqRc (u,v) b.

Given these data, the induction principle yields a function f : ∏(x:Rc) A(x) such that

f (rat(q)) :≡ fq,

f (lim(x)) :≡ fx, f (x).

We call this principle Rc-induction; it says essentially that if we take ∼ϵ as given, then Rc is
inductively generated by its constructors.

Note that, if A is a mere property, then the third hypothesis in Rc-induction is automatic
(we will see in a moment that these are in fact equivalent statements). Thus, we may prove
mere properties of real numbers by simply proving them for rationals and for limits of Cauchy
approximations. Here is an example.

Lemma 11.3.8. For any u : Rc and ϵ : Q+, we have u ∼ϵ u.

Proof. Define A(u) :≡ ∀(ϵ : Q+). (u ∼ϵ u). Since this is a mere proposition (by the last construc-
tor of ∼), by Rc-induction, it suffices to prove it when u is rat(q) and when u is lim(x). In the
first case, we obviously have |q− q| < ϵ for any ϵ, hence rat(q) ∼ϵ rat(q) by the first constructor
of ∼. And in the second case, we may assume inductively that xδ ∼ϵ xδ for all δ, ϵ : Q+. Then in
particular, we have xϵ/3 ∼ϵ/3 xϵ/3, whence lim(x) ∼ϵ lim(x) by the fourth constructor of ∼.

From Lemma 11.3.8, we infer that a direct application of Rc-induction only has a chance to
succeed if the family A : Rc → U is a mere property. To see this, fix u : Rc. Taking v to be u, the
third hypothesis of Rc-induction tells us that, for any a : A(u), we have a =A

eqRc (u,u) a. Given a

point b : A(u) in addition, we also get a =A
eqRc (u,u) b. From the definition of the dependent path

type, we conclude that the combination of these two paths implies a = b, i.e. all points in A(u)
are equal.

Theorem 11.3.9. Rc is a set.

Proof. We have just shown that the mere relation P(u, v) :≡ ∀(ϵ : Q+). (u ∼ϵ v) is reflexive. Since
it implies identity, by the path constructor of Rc, the result follows from Theorem 7.2.2.

We can also show that although Rc may not be a quotient of the set of Cauchy sequences of
rationals, it is nevertheless a quotient of the set of Cauchy sequences of reals. (Of course, this is not

360 CHAPTER 11. REAL NUMBERS

a valid definition of Rc, but it is a useful property.) We define the type of Cauchy approximations
to be

C :≡ { x : Q+ → Rc | ∀(ϵ, δ : Q+). xδ ∼δ+ϵ xϵ } .

The second constructor of Rc gives a function lim : C → Rc.

Lemma 11.3.10. Every real merely is a limit point: ∀(u : Rc). ∃(x : C). u = lim(x). In other words,
lim : C → Rc is surjective.

Proof. By Rc-induction, we may divide into cases on u. Of course, if u is a limit lim(x), the
statement is trivial. So suppose u is a rational point rat(q); we claim u is equal to lim(λϵ. rat(q)).
By the path constructor of Rc, it suffices to show rat(q) ∼ϵ lim(λϵ. rat(q)) for all ϵ : Q+. And by
the second constructor of ∼, for this it suffices to find δ : Q+ such that rat(q) ∼ϵ−δ rat(q). But by
the first constructor of ∼, we may take any δ : Q+ with δ < ϵ.

Lemma 11.3.11. If A is a set and f : C → A respects coincidence of Cauchy approximations, in the sense
that

∀(x, y : C). lim(x) = lim(y)⇒ f (x) = f (y),

then f factors uniquely through lim : C → Rc.

Proof. Since lim is surjective, by Theorem 10.1.5, Rc is the quotient of C by the kernel pair of lim.
But this is exactly the statement of the lemma.

For the second special case of the induction principle, suppose instead that we take A to be
constant at 1. In this case, ⌢ is simply an ϵ-indexed family of relations on ϵ-close pairs of real
numbers, so we may write u ⌢ϵ v instead of (u, ⋆) ⌢ϵ (v, ⋆). Then the required data reduces
to the following, where q, r denote rational numbers, ϵ, δ, η positive rational numbers, and x, y
Cauchy approximations:

• if −ϵ < q− r < ϵ, then rat(q) ⌢ϵ rat(r),
• if rat(q) ∼ϵ−δ yδ and rat(q) ⌢ϵ−δ yδ, then rat(q) ⌢ϵ lim(y),
• if xδ ∼ϵ−δ rat(r) and xδ ⌢ϵ−δ rat(r), then lim(y) ⌢ϵ rat(q),
• if xδ ∼ϵ−δ−η yη and xδ ⌢ϵ−δ−η yη , then lim(x) ⌢ϵ lim(y).

The resulting conclusion is ∀(u, v : Rc). ∀(ϵ : Q+). (u ∼ϵ v) → (u ⌢ϵ v). We call this principle
∼-induction; it says essentially that if we take Rc as given, then ∼ϵ is inductively generated (as
a family of types) by its constructors. For example, we can use this to show that ∼ is symmetric.

Lemma 11.3.12. For any u, v : Rc and ϵ : Q+, we have (u ∼ϵ v) = (v ∼ϵ u).

Proof. Since both are mere propositions, by symmetry it suffices to show one implication. Thus,
let (u ⌢ϵ v) :≡ (v ∼ϵ u). By ∼-induction, we may reduce to the case that u ∼ϵ v is derived from
one of the four interesting constructors of ∼. In the first case when u and v are both rational, the
result is trivial (we can apply the first constructor again). In the other three cases, the inductive
hypothesis (together with commutativity of addition in Q) yields exactly the input to another of
the constructors of ∼ (the second and third constructors switch, while the fourth stays put).

The general induction principle, which we may call (Rc,∼)-induction, is therefore a sort of
joint Rc-induction and ∼-induction. Consider, for instance, its non-dependent version, which
we call (Rc,∼)-recursion, which is the one that we will have the most use for. Ordinary Rc-
recursion tells us that to define a function f : Rc → A it suffices to:

11.3 CAUCHY REALS 361

(i) for every q : Q construct f (rat(q)) : A,
(ii) for every Cauchy approximation x : Q+ → Rc, construct f (x) : A, assuming that f (xϵ) has

already been defined for all ϵ : Q+,
(iii) prove f (u) = f (v) for all u, v : Rc satisfying ∀(ϵ : Q+). u ∼ϵ v.

However, it is generally quite difficult to show (iii) without knowing something about how f acts
on ϵ-close Cauchy reals. The enhanced principle of (Rc,∼)-recursion remedies this deficiency,
allowing us to specify an arbitrary “way in which f acts on ϵ-close Cauchy reals”, which we can
then prove to be the case by a simultaneous induction with the definition of f . This is the family
of relations ⌢. Since A is independent of Rc, we may assume for simplicity that ⌢ depends
only on A and Q+, and thus there is no ambiguity in writing a ⌢ϵ b instead of (u, a) ⌢ϵ (v, b).
In this case, defining a function f : Rc → A by (Rc,∼)-recursion requires the following cases
(which we now write using the pattern-matching convention).

• For every q : Q, construct f (rat(q)) : A.
• For every Cauchy approximation x : Q+ → Rc, construct f (lim(x)) : A, assuming induc-

tively that f (xϵ) has already been defined for all ϵ : Q+ and form a “Cauchy approximation
with respect to ⌢”, i.e. that ∀(ϵ, δ : Q+). (f (xϵ) ⌢ϵ+δ f (xδ)).

• Prove that the relations ⌢ are separated, i.e. that, for any a, b : A, (∀(ϵ : Q+). a ⌢ϵ b) ⇒
(a = b).

• Prove that if −ϵ < q− r < ϵ for q, r : Q, then f (rat(q)) ⌢ϵ f (rat(r)).
• For any q : Q and any Cauchy approximation y, prove that f (rat(q)) ⌢ϵ f (lim(y)), assum-

ing inductively that rat(q) ∼ϵ−δ yδ and f (rat(q)) ⌢ϵ−δ f (yδ) for some δ : Q+, and that
η 7→ f (xη) is a Cauchy approximation with respect to ⌢.

• For any Cauchy approximation x and any r : Q, prove that f (lim(x)) ⌢ϵ f (rat(r)), assum-
ing inductively that xδ ∼ϵ−δ rat(r) and f (xδ) ⌢ϵ−δ f (rat(r)) for some δ : Q+, and that
η 7→ f (xη) is a Cauchy approximation with respect to ⌢.

• For any Cauchy approximations x, y, prove that f (lim(x)) ⌢ϵ f (lim(y)), assuming induc-
tively that xδ ∼ϵ−δ−η yη and f (xδ) ⌢ϵ−δ−η f (yη) for some δ, η : Q+, and that θ 7→ f (xθ)

and θ 7→ f (yθ) are Cauchy approximations with respect to ⌢.

Note that in the last four proofs, we are free to use the specific definitions of f (rat(q)) and
f (lim(x)) given in the first two data. However, the proof of separatedness must apply to any
two elements of A, without any relation to f : it is a sort of “admissibility” condition on the fam-
ily of relations ⌢. Thus, we often verify it first, immediately after defining ⌢, before going on
to define f (rat(q)) and f (lim(x)).

Under the above hypotheses, (Rc,∼)-recursion yields a function f : Rc → A such that
f (rat(q)) and f (lim(x)) are judgmentally equal to the definitions given for them in the first two
clauses. Moreover, we may also conclude

∀(u, v : Rc). ∀(ϵ : Q+). (u ∼ϵ v)→ (f (u) ⌢ϵ f (v)). (11.3.13)

As a paradigmatic example, (Rc,∼)-recursion allows us to extend functions defined on Q to
all of Rc, as long as they are sufficiently continuous.

Definition 11.3.14. A function f : Q → Rc is Lipschitz if there exists L : Q+ (the Lipschitz
constant) such that

|q− r| < ϵ⇒ (f (q) ∼Lϵ f (r))

362 CHAPTER 11. REAL NUMBERS

for all ϵ : Q+ and q, r : Q. Similarly, g : Rc → Rc is Lipschitz if there exists L : Q+ such that

(u ∼ϵ v)⇒ (g(u) ∼Lϵ g(v))

for all ϵ : Q+ and u, v : Rc..

In particular, note that by the first constructor of ∼, if f : Q → Q is Lipschitz in the obvious

sense, then so is the composite Q
f−→ Q→ Rc.

Lemma 11.3.15. Suppose f : Q → Rc is Lipschitz with constant L : Q+. Then there exists a Lipschitz
map f̄ : Rc → Rc, also with constant L, such that f̄ (rat(q)) ≡ f (q) for all q : Q.

Proof. We define f̄ by (Rc,∼)-recursion, with codomain A :≡ Rc. We define the relation ⌢ :
Rc → Rc → Q+ → Prop to be

(u ⌢ϵ v) :≡ (u ∼Lϵ v).

For q : Q, we define
f̄ (rat(q)) :≡ rat(f (q)).

For a Cauchy approximation x : Q+ → Rc, we define

f̄ (lim(x)) :≡ lim(λϵ. f̄ (xϵ/L)).

For this to make sense, we must verify that y :≡ λϵ. f̄ (xϵ/L) is a Cauchy approximation. How-
ever, the inductive hypothesis for this step is that for any δ, ϵ : Q+ we have f̄ (xδ) ⌢δ+ϵ f̄ (xϵ),
i.e. f̄ (xδ) ∼Lδ+Lϵ f̄ (xϵ). Thus we have

yδ ≡ f (xδ/L) ∼δ+ϵ f (xϵ/L) ≡ yϵ.

For proving separatedness, we simply observe that ∀(ϵ : Q+). a ⌢ϵ b means ∀(ϵ : Q+). a ∼Lϵ

b, which implies ∀(ϵ : Q+). a ∼ϵ b and thus a = b.
To complete the (Rc,∼)-recursion, it remains to verify the four conditions on ⌢. This basi-

cally amounts to proving that f̄ is Lipschitz for all the four constructors of ∼.

(i) When u is rat(q) and v is rat(r) with −ϵ < |q− r| < ϵ, the assumption that f is Lipschitz
yields f (q) ∼Lϵ f (r), hence f̄ (rat(q)) ⌢ϵ f̄ (rat(r)) by definition.

(ii) When u is lim(x) and v is rat(q) with xη ∼ϵ−η rat(q), then the inductive hypothesis is
f̄ (xη) ∼Lϵ−Lη rat(f (q)), which proves f̄ (lim(x)) ∼Lϵ f̄ (rat(q)) by the third constructor of
∼.

(iii) The symmetric case when u is rational and v is a limit is essentially identical.

(iv) When u is lim(x) and v is lim(y), with δ, η : Q+ such that xδ ∼ϵ−δ−η yη , the inductive
hypothesis is f̄ (xδ) ∼Lϵ−Lδ−Lη f̄ (yη), which proves f̄ (lim(x)) ∼Lϵ f̄ (lim(y)) by the fourth
constructor of ∼.

This completes the (Rc,∼)-recursion, and hence the construction of f̄ . The desired equality
f̄ (rat(q)) ≡ f (q) is exactly the first computation rule for (Rc,∼)-recursion, and the additional
condition (11.3.13) says exactly that f̄ is Lipschitz with constant L.

11.3 CAUCHY REALS 363

At this point we have gone about as far as we can without a better characterization of ∼. We
have specified, in the constructors of ∼, the conditions under which we want Cauchy reals of
the two different forms to be ϵ-close. However, how do we know that in the resulting inductive-
inductive type family, these are the only witnesses to this fact? We have seen that inductive type
families (such as identity types, see §5.8) and higher inductive types have a tendency to contain
“more than was put into them”, so this is not an idle question.

In order to characterize ∼ more precisely, we will define a family of relations ≈ϵ on Rc re-
cursively, so that they will compute on constructors, and prove that this family is equivalent to
∼ϵ.

Theorem 11.3.16. There is a family of mere relations ≈ : Rc → Rc → Q+ → Prop such that

(rat(q) ≈ϵ rat(r)) :≡ (−ϵ < q− r < ϵ) (11.3.17)

(rat(q) ≈ϵ lim(y)) :≡ ∃(δ : Q+). rat(q) ≈ϵ−δ yδ (11.3.18)

(lim(x) ≈ϵ rat(r)) :≡ ∃(δ : Q+). xδ ≈ϵ−δ rat(r) (11.3.19)

(lim(x) ≈ϵ lim(y)) :≡ ∃(δ, η : Q+). xδ ≈ϵ−δ−η yη . (11.3.20)

Moreover, we have

(u ≈ϵ v)⇔ ∃(θ : Q+). (u ≈ϵ−θ v) (11.3.21)

(u ≈ϵ v)→ (v ∼δ w)→ (u ≈ϵ+δ w) (11.3.22)

(u ∼ϵ v)→ (v ≈δ w)→ (u ≈ϵ+δ w). (11.3.23)

The additional conditions (11.3.21)–(11.3.23) turn out to be required in order to make the
inductive definition go through. Condition (11.3.21) is called being rounded. Reading it from
right to left gives monotonicity of ≈,

(δ < ϵ) ∧ (u ≈δ v)⇒ (u ≈ϵ v)

while reading it left to right to openness of ≈,

(u ≈ϵ v)⇒ ∃(δ : Q+). (δ < ϵ) ∧ (u ≈δ v).

Conditions (11.3.22) and (11.3.23) are forms of the triangle inequality, which say that≈ is a “mod-
ule” over ∼ on both sides.

Proof. We will define ≈ : Rc → Rc → Q+ → Prop by double (Rc,∼)-recursion. First we will ap-
ply (Rc,∼)-recursion with codomain the subset of Rc → Q+ → Prop consisting of those families
of predicates which are rounded and satisfy the one appropriate form of the triangle inequality.
Thinking of these predicates as half of a binary relation, we will write them as (u, ϵ) 7→ (♢ ≈ϵ u),
with the symbol ♢ referring to the whole relation. Now we can write A precisely as

A :≡
{
♢ : Rc → Q+ → Prop

∣∣∣∣(
∀(u : Rc). ∀(ϵ : Q+).

(
(♢ ≈ϵ u)⇔ ∃(θ : Q+). (♢ ≈ϵ−θ u)

))
∧
(
∀(u, v : Rc). ∀(η, ϵ : Q+). (u ∼ϵ v)→

(
(♢ ≈η u)→ (♢ ≈η+ϵ v)

)
∧
(
(♢ ≈η v)→ (♢ ≈η+ϵ u)

))}

364 CHAPTER 11. REAL NUMBERS

As usual with subsets, we will use the same notation for an inhabitant of A and its first com-
ponent ♢. As the family of relations required for (Rc,∼)-recursion, we consider the following,
which will ensure the other form of the triangle inequality:

(♢⌢ϵ ♡) :≡ ∀(u : Rc). ∀(η : Q+). ((♢ ≈η u)→ (♡ ≈ϵ+η u)) ∧ ((♡ ≈η u)→ (♢ ≈ϵ+η u)).

We observe that these relations are separated. For assuming ∀(ϵ : Q+). (♢ ⌢ϵ ♡), to show
♢ = ♡ it suffices to show (♢ ≈ϵ u) ⇔ (♡ ≈ϵ u) for all u : Rc. But ♢ ≈ϵ u implies ♢ ≈ϵ−θ u
for some θ, by roundedness, which together with ♢ ⌢ϵ ♡ implies ♡ ≈ϵ u; and the converse is
identical.

Now the first two data the recursion principle requires are the following.

• For any q : Q, we must give an element of A, which we denote (rat(q) ≈(–) –).
• For any Cauchy approximation x, if we assume defined a function Q+ → A, which we will

denote by ϵ 7→ (xϵ ≈(–) –), with the property that

∀(u : Rc). ∀(δ, ϵ, η : Q+). (xδ ≈η u)→ (xϵ ≈η+δ+ϵ u), (11.3.24)

we must give an element of A, which we write as (lim(x) ≈(–) –).

In both cases, we give the required definition by using a nested (Rc,∼)-recursion, with codomain
the subset of Q+ → Prop consisting of rounded families of mere propositions. Thinking of these
propositions as zero halves of a binary relation, we will write them as ϵ 7→ (• ≈ϵ △), with
the symbol △ referring to the whole family. Now we can write the codomain of these inner
recursions precisely as

C :≡
{
△ : Q+ → Prop

∣∣∣ ∀(ϵ : Q+).
(
(• ≈ϵ △)⇔ ∃(θ : Q+). (• ≈ϵ−θ △)

)}
We take the required family of relations to be the remnant of the triangle inequality:

(△⌣ϵ □) :≡ ∀(η : Q+). ((• ≈η △)→ (• ≈ϵ+η □)) ∧ ((• ≈η □)→ (• ≈ϵ+η △)).

These relations are separated by the same argument as for ⌢, using roundedness of all elements
of C.

Note that if such an inner recursion succeeds, it will yield a family of predicates ♢ : Rc →
Q+ → Prop which are rounded (since their image in Q+ → Prop lies in C) and satisfy

∀(u, v : Rc). ∀(ϵ : Q+). (u ∼ϵ v)→
(
(♢ ≈(–) u) ⌣ϵ (♢ ≈(–) u)

)
.

Expanding out the definition of ⌣, this yields precisely the third condition for ♢ to belong to A;
thus it is exactly what we need.

It is at this point that we can give the definitions (11.3.17)–(11.3.20), as the first two clauses
of each of the two inner recursions, corresponding to rational points and limits. In each case, we
must verify that the relation is rounded and hence lies in C. In the rational-rational case (11.3.17)
this is clear, while in the other cases it follows from an inductive hypothesis. (In (11.3.18) the
relevant inductive hypothesis is that (rat(q) ≈(–) yδ) : C, while in (11.3.19) and (11.3.20) it is that
(xδ ≈(–) –) : A.)

The remaining data of the sub-recursions consist of showing that (11.3.17)–(11.3.20) satisfy
the triangle inequality on the right with respect to the constructors of ∼. There are eight cases —
four in each sub-recursion — corresponding to the eight possible ways that u, v, and w in (11.3.22)
can be chosen to be rational points or limits. First we consider the cases when u is rat(q).

11.3 CAUCHY REALS 365

(i) Assuming rat(q) ≈ϕ rat(r) and −ϵ < |r− s| < ϵ, we must show rat(q) ≈ϕ+ϵ rat(s). But by
definition of ≈, this reduces to the triangle inequality for rational numbers.

(ii) We assume ϕ, ϵ, δ : Q+ such that rat(q) ≈ϕ rat(r) and rat(r) ∼ϵ−δ yδ, and inductively that

∀(ψ : Q+). (rat(q) ≈ψ rat(r))→ (rat(q) ≈ψ+ϵ−δ yδ). (11.3.25)

We assume also that ψ, δ 7→ (rat(q) ≈ψ yδ) is a Cauchy approximation with respect to ⌣,
i.e.

∀(ψ, ξ, ζ : Q+). (rat(q) ≈ψ yξ)→ (rat(q) ≈ψ+ξ+ζ yζ), (11.3.26)

although we do not need this assumption in this case. Indeed, (11.3.25) with ψ :≡ ϕ yields
immediately rat(q) ≈ϕ+ϵ−δ yδ, and hence rat(q) ≈ϕ+ϵ lim(y) by definition of ≈.

(iii) We assume ϕ, ϵ, δ : Q+ such that rat(q) ≈ϕ lim(y) and yδ ∼ϵ−δ rat(r), and inductively that

∀(ψ : Q+). (rat(q) ≈ψ yδ)→ (rat(q) ≈ψ+ϵ−δ rat(r)). (11.3.27)

∀(ψ, ξ, ζ : Q+). (rat(q) ≈ψ yξ)→ (rat(q) ≈ψ+ξ+ζ yζ). (11.3.28)

By definition, rat(q) ≈ϕ lim(y) means that we have θ : Q+ with rat(q) ≈ϕ−θ yθ . By assump-
tion (11.3.28), therefore, we have also rat(q) ≈ϕ+δ yδ, and then by (11.3.27) it follows that
rat(q) ≈ϕ+ϵ rat(r), as desired.

(iv) We assume ϕ, ϵ, δ, η : Q+ such that rat(q) ≈ϕ lim(y) and yδ ∼ϵ−δ−η zη , and inductively that

∀(ψ : Q+). (rat(q) ≈ψ yδ)→ (rat(q) ≈ψ+ϵ−δ−η zη), (11.3.29)

∀(ψ, ξ, ζ : Q+). (rat(q) ≈ψ yξ)→ (rat(q) ≈ψ+ξ+ζ yζ), (11.3.30)

∀(ψ, ξ, ζ : Q+). (rat(q) ≈ψ zξ)→ (rat(q) ≈ψ+ξ+ζ zζ). (11.3.31)

Again, rat(q) ≈ϕ lim(y) means we have ξ : Q+ with rat(q) ≈ϕ−ξ yξ , while (11.3.30) then
implies rat(q) ≈ϕ+δ yδ and (11.3.29) implies rat(q) ≈ϕ+ϵ−η zη . But by definition of ≈, this
implies rat(q) ≈ϕ+ϵ lim(z) as desired.

Now we move on to the cases when u is lim(x), with x a Cauchy approximation. In this case,
the ambient inductive hypothesis of the definition of (lim(x) ≈(–) –) : A is that we have
(xδ ≈(–) –) : A, so that in addition to being rounded they satisfy the triangle inequality on
the right.

(v) Assuming lim(x) ≈ϕ rat(r) and −ϵ < |r − s| < ϵ, we must show lim(x) ≈ϕ+ϵ rat(s). By
definition of ≈, the former means xδ ≈ϕ−δ rat(r), so that above triangle inequality implies
xδ ≈ϵ+ϕ−δ rat(s), hence lim(x) ≈ϕ+ϵ rat(s) as desired.

(vi) We assume ϕ, ϵ, δ : Q+ such that lim(x) ≈ϕ rat(r) and rat(r) ∼ϵ−δ yδ, and two unneeded
inductive hypotheses. By definition, we have η : Q+ such that xη ≈ϕ−η rat(r), so the
inductive triangle inequality gives xη ≈ϕ+ϵ−η−δ yδ. The definition of ≈ then immediately
yields lim(x) ≈ϕ+ϵ lim(y).

(vii) We assume ϕ, ϵ, δ : Q+ such that lim(x) ≈ϕ lim(y) and yδ ∼ϵ−δ rat(r), and two unneeded
inductive hypotheses. By definition we have ξ, θ : Q+ such that xξ ≈ϕ−ξ−θ yθ . Since y is
a Cauchy approximation, we have yθ ∼θ+δ yδ, so the inductive triangle inequality gives
xξ ≈ϕ+δ−ξ yδ and then xξ ∼ϕ+ϵ−ξ rat(r). The definition of ≈ then gives lim(x) ≈ϕ+ϵ rat(r),
as desired.

366 CHAPTER 11. REAL NUMBERS

(viii) Finally, we assume ϕ, ϵ, δ, η : Q+ such that lim(x) ≈ϕ lim(y) and yδ ∼ϵ−δ−η zη . Then as
before we have ξ, θ : Q+ with xξ ≈ϕ−ξ−θ yθ , and two applications of the triangle inequality
suffices as before.

This completes the two inner recursions, and thus the definitions of the families of relations
(rat(q) ≈(–) –) and (lim(x) ≈(–) –). Since all are elements of A, they are rounded and satisfy
the triangle inequality on the right with respect to ∼. What remains is to verify the conditions
relating to ⌢, which is to say that these relations satisfy the triangle inequality on the left with
respect to the constructors of ∼. The four cases correspond to the four choices of rational or
limit points for u and v in (11.3.23), and since they are all mere propositions, we may apply Rc-
induction and assume that w is also either rational or a limit. This yields another eight cases,
whose proofs are essentially identical to those just given; so we will not subject the reader to
them.

We can now prove:

Theorem 11.3.32. For any u, v : Rc and ϵ : Q+ we have (u ∼ϵ v) = (u ≈ϵ v).

Proof. Since both are mere propositions, it suffices to prove bidirectional implication. For the
left-to-right direction, we use ∼-induction applied to C(u, v, ϵ) :≡ (u ≈ϵ v). Thus, it suffices to
consider the four constructors of ∼. In each case, u and v are specialized to either rational points
or limits, so that the definition of ≈ evaluates, and the inductive hypothesis always applies.

For the right-to-left direction, we use Rc-induction to assume that u and v are rational points
or limits, allowing ≈ to evaluate. But now the definitions of ≈, and the inductive hypotheses,
supply exactly the data required for the relevant constructors of ∼.

Stretching a point, one might call≈ a fibration of “codes” for∼, with the two directions of the
above proof being encode and decode respectively. By the definition of ≈, from Theorem 11.3.32
we get equivalences

(rat(q) ∼ϵ rat(r)) = (−ϵ < q− r < ϵ)

(rat(q) ∼ϵ lim(y)) = ∃(δ : Q+). rat(q) ∼ϵ−δ yδ

(lim(x) ∼ϵ rat(r)) = ∃(δ : Q+). xδ ∼ϵ−δ rat(r)

(lim(x) ∼ϵ lim(y)) = ∃(δ, η : Q+). xδ ∼ϵ−δ−η yη .

Our proof also provides the following additional information.

Corollary 11.3.33. ∼ is rounded and satisfies the triangle inequality:

(u ∼ϵ v) ≃ ∃(θ : Q+). u ∼ϵ−θ v (11.3.34)

(u ∼ϵ v)→ (v ∼δ w)→ (u ∼ϵ+δ w). (11.3.35)

With the triangle inequality in hand, we can show that “limits” of Cauchy approximations
actually behave like limits.

Lemma 11.3.36. For any u : Rc, Cauchy approximation y, and ϵ, δ : Q+, if u ∼ϵ yδ then u ∼ϵ+δ lim(y).

Proof. We use Rc-induction on u. If u is rat(q), then this is exactly the second constructor of ∼.
Now suppose u is lim(x), and that each xη has the property that for any y, ϵ, δ, if xη ∼ϵ yδ then
xη ∼ϵ+δ lim(y). In particular, taking y :≡ x and δ :≡ η in this assumption, we conclude that
xη ∼η+θ lim(x) for any η, θ : Q+.

11.3 CAUCHY REALS 367

Now let y, ϵ, δ be arbitrary and assume lim(x) ∼ϵ yδ. By roundedness, there is a θ such
that lim(x) ∼ϵ−θ yδ. Then by the above observation, for any η we have xη ∼η+θ/2 lim(x),
and hence xη ∼ϵ+η−θ/2 yδ by the triangle inequality. Hence, the fourth constructor of ∼ yields
lim(x) ∼ϵ+2η+δ−θ/2 lim(y). Thus, if we choose η :≡ θ/4, the result follows.

Lemma 11.3.37. For any Cauchy approximation y and any δ, η : Q+ we have yδ ∼δ+η lim(y).

Proof. Take u :≡ yδ and ϵ :≡ η in the previous lemma.

Remark 11.3.38. We might have expected to have yδ ∼δ lim(y), but this fails in examples. For
instance, consider x defined by xϵ :≡ ϵ. Its limit is clearly 0, but we do not have |ϵ− 0| < ϵ, only
≤.

As an application, Lemma 11.3.37 enables us to show that the extensions of Lipschitz func-
tions from Lemma 11.3.15 are unique.

Lemma 11.3.39. Let f , g : Rc → Rc be continuous, in the sense that

∀(u : Rc). ∀(ϵ : Q+). ∃(δ : Q+). ∀(v : Rc). (u ∼δ v)→ (f (u) ∼ϵ f (v))

and analogously for g. If f (rat(q)) = g(rat(q)) for all q : Q, then f = g.

Proof. We prove f (u) = g(u) for all u by Rc-induction. The rational case is just the hypothesis.
Thus, suppose f (xδ) = g(xδ) for all δ. We will show that f (lim(x)) ∼ϵ g(lim(x)) for all ϵ, so that
the path constructor of Rc applies.

Since f and g are continuous, there exist θ, η such that for all v, we have

(lim(x) ∼θ v)→ (f (lim(x)) ∼ϵ/2 f (v))

(lim(x) ∼η v)→ (g(lim(x)) ∼ϵ/2 g(v)).

Choosing δ < min(θ, η), by Lemma 11.3.37 we have both lim(x) ∼θ yδ and lim(x) ∼η yδ. Hence

f (lim(x)) ∼ϵ/2 f (yδ) = g(yδ) ∼ϵ/2 g(lim(x))

and thus f (lim(x)) ∼ϵ g(lim(x)) by the triangle inequality.

11.3.3 The algebraic structure of Cauchy reals

We first define the additive structure (Rc, 0,+,−). Clearly, the additive unit element 0 is just
rat(0), while the additive inverse − : Rc → Rc is obtained as the extension of the additive
inverse − : Q → Q, using Lemma 11.3.15 with Lipschitz constant 1. We have to work a bit
harder for addition.

Lemma 11.3.40. Suppose f : Q×Q→ Q satisfies, for all q, r, s : Q,

| f (q, s)− f (r, s)| ≤ |q− r| and | f (q, r)− f (q, s)| ≤ |r− s|.

Then there is a function f̄ : Rc × Rc → Rc such that f̄ (rat(q), rat(r)) = f (q, r) for all q, r : Q.
Furthermore, for all u, v, w : Rc and q : Q+,

u ∼ϵ v⇒ f̄ (u, w) ∼ϵ f̄ (v, w) and v ∼ϵ w⇒ f̄ (u, v) ∼ϵ f̄ (u, w).

368 CHAPTER 11. REAL NUMBERS

Proof. We use (Rc,∼)-recursion to construct the curried form of f̄ as a map Rc → A where A is
the space of non-expanding real-valued functions:

A :≡ { h : Rc → Rc | ∀(ϵ : Q+). ∀(u, v : Rc). u ∼ϵ v⇒ h(u) ∼ϵ h(v) } .

We shall also need a suitable ⌢ϵ on A, which we define as

(h ⌢ϵ k) :≡ ∀(u : Rc). h(u) ∼ϵ k(u).

Clearly, if ∀(ϵ : Q+). h ⌢ϵ k then h(u) = k(u) for all u : Rc, so ⌢ is separated.
For the base case we define f̄ (rat(q)) : A, where q : Q, as the extension of the Lipschitz map

λr. f (q, r) from Q → Q to Rc → Rc, as constructed in Lemma 11.3.15 with Lipschitz constant 1.
Next, for a Cauchy approximation x, we define f̄ (lim(x)) : Rc → Rc as

f̄ (lim(x))(v) :≡ lim(λϵ. f̄ (xϵ)(v)).

For this to be a valid definition, λϵ. f̄ (xϵ)(v) should be a Cauchy approximation, so consider any
δ, ϵ : Q. Then by assumption f̄ (xδ) ⌢δ+ϵ f̄ (xϵ), hence f̄ (xδ)(v) ∼δ+ϵ f̄ (xϵ)(v). Furthermore,
f̄ (lim(x)) is non-expanding because f̄ (xϵ) is such by induction hypothesis. Indeed, if u ∼ϵ v
then, for all ϵ : Q,

f̄ (xϵ/3)(u) ∼ϵ/3 f̄ (xϵ/3)(v),

therefore f̄ (lim(x))(u) ∼ϵ f̄ (lim(x))(v) by the fourth constructor of ∼.
We still have to check four more conditions, let us illustrate just one. Suppose ϵ : Q+ and for

some δ : Q+ we have rat(q) ∼ϵ−δ yδ and f̄ (rat(q)) ⌢ϵ−δ f̄ (yδ). To show f̄ (rat(q)) ⌢ϵ f̄ (lim(y)),
consider any v : Rc and observe that

f̄ (rat(q))(v) ∼ϵ−δ f̄ (yδ)(v).

Therefore, by the second constructor of∼, we have f̄ (rat(q))(v) ∼ϵ f̄ (lim(y))(v) as required.

We may apply Lemma 11.3.40 to any bivariate rational function which is non-expanding
separately in each variable. Addition is such a function, therefore we get + : Rc ×Rc → Rc.
Furthermore, the extension is unique as long as we require it to be non-expanding in each vari-
able, and just as in the univariate case, identities on rationals extend to identities on reals. Since
composition of non-expanding maps is again non-expanding, we may conclude that addition
satisfies the usual properties, such as commutativity and associativity. Therefore, (Rc, 0,+,−) is
a commutative group.

We may also apply Lemma 11.3.40 to the functions min : Q×Q→ Q and max : Q×Q→ Q,
which turns Rc into a lattice. The partial order ≤ on Rc is defined in terms of max as

(u ≤ v) :≡ (max(u, v) = v).

The relation ≤ is a partial order because it is such on Q, and the axioms of a partial order are
expressible as equations in terms of min and max, so they transfer to Rc.

Another function which extends to Rc by the same method is the absolute value |– |. Again,
it has the expected properties because they transfer from Q to Rc.

From ≤ we get the strict order < by

(u < v) :≡ ∃(q, r : Q). (u ≤ rat(q)) ∧ (q < r) ∧ (rat(r) ≤ v).

That is, u < v holds when there merely exists a pair of rational numbers q < r such that x ≤
rat(q) and rat(r) ≤ v. It is not hard to check that < is irreflexive and transitive, and has other
properties that are expected for an ordered field. The archimedean principle follows directly
from the definition of <.

11.3 CAUCHY REALS 369

Theorem 11.3.41 (Archimedean principle for Rc). For every u, v : Rc such that u < v there merely
exists q : Q such that u < q < v.

Proof. From u < v we merely get r, s : Q such that u ≤ r < s ≤ v, and we may take q :≡
(r + s)/2.

We now have enough structure on Rc to express u ∼ϵ v with standard concepts.

Lemma 11.3.42. If q : Q and u : Rc satisfy u ≤ rat(q), then for any v : Rc and ϵ : Q+, if u ∼ϵ v then
v ≤ rat(q + ϵ).

Proof. Note that the function max(rat(q), –) : Rc → Rc is Lipschitz with constant 1. First con-
sider the case when u = rat(r) is rational. For this we use induction on v. If v is rational, then the
statement is obvious. If v is lim(y), we assume inductively that for any ϵ, δ, if rat(r) ∼ϵ yδ then
yδ ≤ rat(q + ϵ), i.e. max(rat(q + ϵ), yδ) = rat(q + ϵ).

Now assuming ϵ and rat(r) ∼ϵ lim(y), we have θ such that rat(r) ∼ϵ−θ lim(y), hence rat(r) ∼ϵ

yδ whenever δ < θ. Thus, the inductive hypothesis gives max(rat(q+ ϵ), yδ) = rat(q+ ϵ) for such
δ. But by definition,

max(rat(q + ϵ), lim(y)) ≡ lim(λδ. max(rat(q + ϵ), yδ)).

Since the limit of an eventually constant Cauchy approximation is that constant, we have

max(rat(q + ϵ), lim(y)) = rat(q + ϵ),

hence lim(y) ≤ rat(q + ϵ).
Now consider a general u : Rc. Since u ≤ rat(q) means max(rat(q), u) = rat(q), the assump-

tion u ∼ϵ v and the Lipschitz property of max(rat(q),−) imply max(rat(q), v) ∼ϵ rat(q). Thus,
since rat(q) ≤ rat(q), the first case implies max(rat(q), v) ≤ rat(q + ϵ), and hence v ≤ rat(q + ϵ)

by transitivity of ≤.

Lemma 11.3.43. Suppose q : Q and u : Rc satisfy u < rat(q). Then:

(i) For any v : Rc and ϵ : Q+, if u ∼ϵ v then v < rat(q + ϵ).
(ii) There exists ϵ : Q+ such that for any v : Rc, if u ∼ϵ v we have v < rat(q).

Proof. By definition, u < rat(q) means there is r : Q with r < q and u ≤ rat(r). Then by
Lemma 11.3.42, for any ϵ, if u ∼ϵ v then v ≤ rat(r + ϵ). Conclusion (i) follows immediately since
r + ϵ < q + ϵ, while for (ii) we can take any ϵ < q− r.

We are now able to show that the auxiliary relation ∼ is what we think it is.

Theorem 11.3.44. (u ∼ϵ v) ≃ (|u− v| < rat(ϵ)) for all u, v : Rc and ϵ : Q+.

Proof. The Lipschitz properties of subtraction and absolute value imply that if u ∼ϵ v, then
|u− v| ∼ϵ |u− u| = 0. Thus, for the left-to-right direction, it will suffice to show that if u ∼ϵ 0,
then |u| < rat(ϵ). We proceed by Rc-induction on u.

If u is rational, the statement follows immediately since absolute value and order extend the
standard ones on Q+. If u is lim(x), then by roundedness we have θ : Q+ with lim(x) ∼ϵ−θ

0. By the triangle inequality, therefore, we have xθ/3 ∼ϵ−2θ/3 0, so the inductive hypothesis
yields |xθ/3| < rat(ϵ− 2θ/3). But xθ/3 ∼2θ/3 lim(x), hence |xθ/3| ∼2θ/3 |lim(x)| by the Lipschitz
property, so Lemma 11.3.43(i) implies |lim(x)| < rat(ϵ).

370 CHAPTER 11. REAL NUMBERS

In the other direction, we use Rc-induction on u and v. If both are rational, this is the first
constructor of ∼.

If u is rat(q) and v is lim(y), we assume inductively that for any ϵ, δ, if |rat(q)− yδ| < rat(ϵ)

then rat(q) ∼ϵ yδ. Fix an ϵ such that |rat(q) − lim(y)| < rat(ϵ). Since Q is order-dense in Rc,
there exists θ < ϵ with |rat(q)− lim(y)| < rat(θ). Now for any δ, η we have lim(y) ∼2δ yδ, hence
by the Lipschitz property

|rat(q)− lim(y)| ∼δ+η |rat(q)− yδ|.
Thus, by Lemma 11.3.43(i), we have |rat(q)− yδ| < rat(θ + 2δ). So by the inductive hypothesis,
rat(q) ∼θ+2δ yδ, and thus rat(q) ∼θ+4δ lim(y) by the triangle inequality. Thus, it suffices to choose
δ :≡ (ϵ− θ)/4.

The remaining two cases are entirely analogous.

Next, we would like to equip Rc with multiplicative structure. For each q : Q the map
r 7→ q · r is Lipschitz with constant1 |q|+ 1, and so we can extend it to multiplication by q on the
real numbers. Therefore Rc is a vector space over Q. In general, we can define multiplication of
real numbers as

u · v :≡ 1
2 · ((u + v)2 − u2 − v2), (11.3.45)

so we just need squaring u 7→ u2 as a map Rc → Rc. Squaring is not a Lipschitz map, but it is
Lipschitz on every bounded domain, which allows us to patch it together. Define the open and
closed intervals

[u, v] :≡ { x : Rc | u ≤ x ≤ v } and (u, v) :≡ { x : Rc | u < x < v } .

Although technically an element of [u, v] or (u, v) is a Cauchy real number together with a proof,
since the latter inhabits a mere proposition it is uninteresting. Thus, as is common with subset
types, we generally write simply x : [u, v] whenever x : Rc is such that u ≤ x ≤ v, and similarly.

Theorem 11.3.46. There exists a unique function (–)2 : Rc → Rc which extends squaring q 7→ q2 of
rational numbers and satisfies

∀(n : N). ∀(u, v : [−n, n]). |u2 − v2| ≤ 2 · n · |u− v|.

Proof. We first observe that for every u : Rc there merely exists n : N such that −n ≤ u ≤ n, see
Exercise 11.7, so the map

e :
(

∑
n:N

[−n, n]
)
→ Rc defined by e(n, x) :≡ x

is surjective. Next, for each n : N, the squaring map

sn : { q : Q | −n ≤ q ≤ n } → Q defined by sn(q) :≡ q2

is Lipschitz with constant 2n, so we can use Lemma 11.3.15 to extend it to a map s̄n : [−n, n]→ Rc

with Lipschitz constant 2n, see Exercise 11.8 for details. The maps s̄n are compatible: if m < n
for some m, n : N then sn restricted to [−m, m] must agree with sm because both are Lipschitz,
and therefore continuous in the sense of Lemma 11.3.39. Therefore, by Theorem 10.1.5 the map(

∑
n:N

[−n, n]
)
→ Rc, given by (n, x) 7→ sn(x)

factors uniquely through Rc to give us the desired function.

1We defined Lipschitz constants as positive rational numbers.

11.3 CAUCHY REALS 371

At this point we have the ring structure of the reals and the archimedean order. To establish
Rc as an archimedean ordered field, we still need inverses.

Theorem 11.3.47. A Cauchy real is invertible if, and only if, it is apart from zero.

Proof. First, suppose u : Rc has an inverse v : Rc By the archimedean principle there is q : Q

such that |v| < q. Then 1 = |uv| < |u| · v < |u| · q and hence |u| > 1/q, which is to say that u # 0.
For the converse we construct the inverse map

(–)−1 : { u : Rc | u # 0 } → Rc

by patching together functions, similarly to the construction of squaring in Theorem 11.3.46. We
only outline the main steps. For every q : Q let

[q, ∞) :≡ { u : Rc | q ≤ u } and (−∞, q] :≡ { u : Rc | u ≤ −q } .

Then, as q ranges over Q+, the types (−∞, q] and [q, ∞) jointly cover { u : Rc | u # 0 }. On each
such [q, ∞) and (−∞, q] the inverse function is obtained by an application of Lemma 11.3.15
with Lipschitz constant 1/q2. Finally, Theorem 10.1.5 guarantees that the inverse function factors
uniquely through { u : Rc | u # 0 }.

We summarize the algebraic structure of Rc with a theorem.

Theorem 11.3.48. The Cauchy reals form an archimedean ordered field.

11.3.4 Cauchy reals are Cauchy complete

We constructed Rc by closing Q under limits of Cauchy approximations, so it better be the case
that Rc is Cauchy complete. Thanks to Theorem 11.3.44 there is no difference between a Cauchy
approximation x : Q+ → Rc as defined in the construction of Rc, and a Cauchy approximation
in the sense of Definition 11.2.10 (adapted to Rc).

Thus, given a Cauchy approximation x : Q+ → Rc it is quite natural to expect that lim(x)
is its limit, where the notion of limit is defined as in Definition 11.2.10. But this is so by Theo-
rem 11.3.44 and Lemma 11.3.37. We have proved:

Theorem 11.3.49. Every Cauchy approximation in Rc has a limit.

An archimedean ordered field in which every Cauchy approximation has a limit is called
Cauchy complete. The Cauchy reals are the least such field.

Theorem 11.3.50. The Cauchy reals embed into every Cauchy complete archimedean ordered field.

Proof. Suppose F is a Cauchy complete archimedean ordered field. Because limits are unique,
there is an operator lim which takes Cauchy approximations in F to their limits. We define the
embedding e : Rc → F by (Rc,∼)-recursion as

e(rat(q)) :≡ q and e(lim(x)) :≡ lim(e ◦ x).

A suitable ⌢ on F is
(a ⌢ϵ b) :≡ |a− b| < ϵ.

This is a separated relation because F is archimedean. The rest of the clauses for (Rc,∼)-
recursion are easily checked. One would also have to check that e is an embedding of ordered
fields which fixes the rationals.

372 CHAPTER 11. REAL NUMBERS

11.4 Comparison of Cauchy and Dedekind reals

Let us also say something about the relationship between the Cauchy and Dedekind reals. By
Theorem 11.3.48, Rc is an archimedean ordered field. It is also admissible for Ω, as can be easily
checked. (In case Ω is the initial σ-frame it takes a simple induction, while in other cases it is
immediate.) Therefore, by Theorem 11.2.14 there is an embedding of ordered fields

Rc → Rd

which fixes the rational numbers. (We could also obtain this from Theorems 11.2.12 and 11.3.50.)
In general we do not expect Rc and Rd to coincide without further assumptions.

Lemma 11.4.1. If for every x : Rd there merely exists

c : ∏
q,r:Q

(q < r)→ (q < x) + (x < r) (11.4.2)

then the Cauchy and Dedekind reals coincide.

Proof. Note that the type in (11.4.2) is an untruncated variant of (11.2.3), which states that < is
a weak linear order. We already know that Rc embeds into Rd, so it suffices to show that every
Dedekind real merely is the limit of a Cauchy sequence of rational numbers.

Consider any x : Rd. By assumption there merely exists c as in the statement of the lemma,
and by inhabitation of cuts there merely exist a, b : Q such that a < x < b. We construct a
sequence f : N→ { (q, r) ∈ Q×Q | q < r } by recursion:

(i) Set f (0) :≡ (a, b).
(ii) Suppose f (n) is already defined as (qn, rn) such that qn < rn. Define s :≡ (2qn + rn)/3 and

t :≡ (qn + 2rn)/3. Then c(s, t) decides between s < x and x < t. If it decides s < x then we
set f (n + 1) :≡ (s, rn), otherwise f (n + 1) :≡ (qn, t).

Let us write (qn, rn) for the n-th term of the sequence f . Then it is easy to see that qn < x < rn

and |qn − rn| ≤ (2/3)n · |q0 − r0| for all n : N. Therefore q0, q1, . . . and r0, r1, . . . are both Cauchy
sequences converging to the Dedekind cut x. We have shown that for every x : Rd there merely
exists a Cauchy sequence converging to x.

The lemma implies that either countable choice or excluded middle suffice for coincidence of
Rc and Rd.

Corollary 11.4.3. If excluded middle or countable choice holds then Rc and Rd are equivalent.

Proof. If excluded middle holds then (x < y) → (x < z) + (z < y) can be proved: either x < z
or ¬(x < z). In the former case we are done, while in the latter we get z < y because z ≤ x < y.
Therefore, we get (11.4.2) so that we can apply Lemma 11.4.1.

Suppose countable choice holds. The set S = { (q, r) ∈ Q×Q | q < r } is equivalent to N, so
we may apply countable choice to the statement that x is located,

∀((q, r) : S). (q < x) ∨ (x < r).

Note that (q < x) ∨ (x < r) is expressible as an existential statement ∃(b : 2). (b = 02 → q <

x) ∧ (b = 12 → x < r). The (curried form) of the choice function is then precisely (11.4.2) so that
Lemma 11.4.1 is applicable again.

11.5 COMPACTNESS OF THE INTERVAL 373

11.5 Compactness of the interval

We already pointed out that our constructions of reals are entirely compatible with classical logic.
Thus, by assuming the law of excluded middle (3.4.1) and the axiom of choice (3.8.1) we could
develop classical analysis, which would essentially amount to copying any standard book on
analysis.

Nevertheless, anyone interested in computation, for example a numerical analyst, ought to
be curious about developing analysis in a computationally meaningful setting. That analysis in
a constructive setting is even possible was demonstrated by [Bis67]. As a sample of the differ-
ences and similarities between classical and constructive analysis we shall briefly discuss just
one topic—compactness of the closed interval [0, 1] and a couple of theorems surrounding the
concept.

Compactness is no exception to the common phenomenon in constructive mathematics that
classically equivalent notions bifurcate. The three most frequently used notions of compactness
are:

(i) metrically compact: “Cauchy complete and totally bounded”,
(ii) Bolzano–Weierstraß compact: “every sequence has a convergent subsequence”,

(iii) Heine–Borel compact: “every open cover has a finite subcover”.

These are all equivalent in classical mathematics. Let us see how they fare in homotopy type
theory. We can use either the Dedekind or the Cauchy reals, so we shall denote the reals just
as R. We first recall several basic definitions.

Definition 11.5.1. A metric space (M, d) is a set M with a map d : M×M → R satisfying, for
all x, y, z : M,

d(x, y) ≥ 0, d(x, y) = d(y, x),

d(x, y) = 0⇔ x = y, d(x, z) ≤ d(x, y) + d(y, z).

Definition 11.5.2. A Cauchy approximation in M is a sequence x : Q+ → M satisfying

∀(δ, ϵ). d(xδ, xϵ) < δ + ϵ.

The limit of a Cauchy approximation x : Q+ → M is a point ℓ : M satisfying

∀(ϵ, θ : Q+). d(xϵ, ℓ) < ϵ + θ.

A complete metric space is one in which every Cauchy approximation has a limit.

Definition 11.5.3. For a positive rational ϵ, an ϵ-net in a metric space (M, d) is an element of

∑
(n:N)

∑
(x1,...,xn :M)

∀(y : M). ∃(k ≤ n). d(xk, y) < ϵ.

In words, this is a finite sequence of points x1, . . . , xn such that every point in M merely is within
ϵ of some xk.

A metric space (M, d) is totally bounded when it has ϵ-nets of all sizes:

∏
(ϵ:Q+)

∑
(n:N)

∑
(x1,...,xn :M)

∀(y : M). ∃(k ≤ n). d(xk, y) < ϵ.

374 CHAPTER 11. REAL NUMBERS

Remark 11.5.4. In the definition of total boundedness we used sloppy notation ∑(n:N) ∑(x1,...,xn :M).
Formally, we should have written ∑(x:List(M)) instead, where List(M) is the inductive type of finite
lists from §5.1. However, that would make the rest of the statement a bit more cumbersome to
express.

Note that in the definition of total boundedness we require pure existence of an ϵ-net, not
mere existence. This way we obtain a function which assigns to each ϵ : Q+ a specific ϵ-net.
Such a function might be called a “modulus of total boundedness”. In general, when porting
classical metric notions to homotopy type theory, we should use propositional truncation spar-
ingly, typically so that we avoid asking for a non-constant map from R to Q or N. For instance,
here is the “correct” definition of uniform continuity.

Definition 11.5.5. A map f : M→ R on a metric space is uniformly continuous when

∏
(ϵ:Q+)

∑
(δ:Q+)

∀(x, y : M). d(x, y) < δ⇒ | f (x)− f (y)| < ϵ.

In particular, a uniformly continuous map has a modulus of uniform continuity, which is a
function that assigns to each ϵ a corresponding δ.

Let us show that [0, 1] is compact in the first sense.

Theorem 11.5.6. The closed interval [0, 1] is complete and totally bounded.

Proof. Given ϵ : Q+, there is k : N such that 2/k < ϵ, so we may take the ϵ-net xi = i/k for
i = 0, . . . , k. This is an ϵ-net because, for every y : [0, 1] there merely exists i such that 0 ≤ i ≤ k
and (i− 1)/k < y < (i + 1)/k, and so |y− xi| < 2/k < ϵ.

For completeness of [0, 1], consider a Cauchy approximation x : Q+ → [0, 1] and let ℓ be
its limit in R. Since max and min are Lipschitz maps, the retraction r : R → [0, 1] defined by
r(x) :≡ max(0, min(1, x)) commutes with limits of Cauchy approximations, therefore

r(ℓ) = r(lim x) = lim(r ◦ x) = lim x = ℓ,

which means that 0 ≤ ℓ ≤ 1, as required.

We thus have at least one good notion of compactness in homotopy type theory. Unfor-
tunately, it is limited to metric spaces because total boundedness is a metric notion. We shall
consider the other two notions shortly, but first we prove that a uniformly continuous map on
a totally bounded space has a supremum, i.e. an upper bound which is less than or equal to all
other upper bounds.

Theorem 11.5.7. A uniformly continuous map f : M → R on a totally bounded metric space (M, d)
has a supremum m : R. For every ϵ : Q+ there exists u : M such that |m− f (u)| < ϵ.

Proof. Let h : Q+ → Q+ be the modulus of uniform continuity of f . We define an approximation
x : Q+ → R as follows: for any ϵ : Q total boundedness of M gives a h(ϵ)-net y0, . . . , yn. Define

xϵ :≡ max(f (y0), . . . , f (yn)).

We claim that x is a Cauchy approximation. Consider any ϵ, η : Q, so that

xϵ ≡ max(f (y0), . . . , f (yn)) and xη ≡ max(f (z0), . . . , f (zm))

11.5 COMPACTNESS OF THE INTERVAL 375

for some h(ϵ)-net y0, . . . , yn and h(η)-net z0, . . . , zm. Every zi is merely h(ϵ)-close to some yj,
therefore | f (zi)− f (yj)| < ϵ, from which we may conclude that

f (zi) < ϵ + f (yj) ≤ ϵ + xϵ,

therefore xη < ϵ + xϵ. Symmetrically we obtain xη < η + xη , therefore |xη − xϵ| < η + ϵ.
We claim that m :≡ lim x is the supremum of f . To prove that f (x) ≤ m for all x : M it

suffices to show ¬(m < f (x)). So suppose to the contrary that m < f (x). There is ϵ : Q+

such that m + ϵ < f (x). But now merely for some yi participating in the definition of xϵ we get
| f (x)− f (yi) < ϵ, therefore m < f (x)− ϵ < f (yi) ≤ m, a contradiction.

We finish the proof by showing that m satisfies the second part of the theorem, because it is
then automatically a least upper bound. Given any ϵ : Q+, on one hand |m− f (xϵ/2)| < 3ϵ/4,
and on the other | f (xϵ/2) − f (yi)| < ϵ/4 merely for some yi participating in the definition of
xϵ/2, therefore by taking u :≡ yi we obtain |m− f (u)| < ϵ by triangle inequality.

Now, if in Theorem 11.5.7 we also knew that M were complete, we could hope to weaken the
assumption of uniform continuity to continuity, and strengthen the conclusion to existence of a
point at which the supremum is attained. The usual proofs of these improvements rely on the
facts that in a complete totally bounded space

(i) continuity implies uniform continuity, and

(ii) every sequence has a convergent subsequence.

The first statement follows easily from Heine–Borel compactness, and the second is just Bolzano–
Weierstraß compactness. Unfortunately, these are both somewhat problematic. Let us first show
that Bolzano–Weierstraß compactness implies an instance of excluded middle known as the lim-
ited principle of omniscience: for every α : N→ 2,(

∑
n:N

α(n) = 12

)
+
(
∏
n:N

α(n) = 02

)
. (11.5.8)

Computationally speaking, we would not expect this principle to hold, because it asks us to
decide whether infinitely many values of a function are 02.

Theorem 11.5.9. Bolzano–Weierstraß compactness of [0, 1] implies the limited principle of omniscience.

Proof. Given any α : N→ 2, define the sequence x : N→ [0, 1] by

xn :≡
{

0 if α(k) = 02 for all k < n,

1 if α(k) = 12 for some k < n.

If the Bolzano–Weierstraß property holds, there exists a strictly increasing f : N → N such
that x ◦ f is a Cauchy sequence. For a sufficiently large n : N the n-th term x f (n) is within 1/6
of its limit. Either x f (n) < 2/3 or x f (n) > 1/3. If x f (n) < 2/3 then xn converges to 0 and so
∏(n:N) α(n) = 02. If x f (n) > 1/3 then x f (n) = 1, therefore ∑(n:N) α(n) = 12.

While we might not mourn Bolzano–Weierstraß compactness too much, it seems harder to
live without Heine–Borel compactness, as attested by the fact that both classical mathematics
and Brouwer’s Intuitionism accepted it. As we do not want to wade too deeply into general

376 CHAPTER 11. REAL NUMBERS

topology, we shall work with basic open sets. In the case of R these are the open intervals with
rational endpoints. A family of such intervals, indexed by a type I, would be a map

F : I → { (q, r) : Q×Q | q < r } ,

with the idea that a pair of rationals (q, r) with q < r determines the type { x : R | q < x < r }.
It is slightly more convenient to allow degenerate intervals as well, so we take a family of basic
intervals to be a map

F : I → Q×Q.

To be quite precise, a family is a dependent pair (I,F), not just F . A finite family of basic
intervals is one indexed by {m : N | m < n } for some n : N. We usually present it by a finite
list [(q0, r0), . . . , (qn−1, rn−1)]. Finally, a finite subfamily of (I,F) is given by a list of indices
[i1, . . . , in] which then determine the finite family [F (i1), . . . ,F (in)].

As long as we are aware of the distinction between a pair (q, r) and the corresponding inter-
val { x : R | q < x < r }, we may safely use the same notation (q, r) for both. Intersections and
inclusions of intervals are expressible in terms of their endpoints:

(q, r) ∩ (s, t) :≡ (max(q, s), min(r, t)),

(q, r) ⊆ (s, t) :≡ (q < r ⇒ s ≤ q < r ≤ t).

We say that (I, λi. (qi, ri)) (pointwise) covers [a, b] when

∀(x : [a, b]). ∃(i : I). qi < x < ri. (11.5.10)

The Heine–Borel compactness for [0, 1] states that every covering family of [0, 1] merely has a
finite subfamily which still covers [0, 1].

Theorem 11.5.11. If excluded middle holds then [0, 1] is Heine–Borel compact.

Proof. Assume for the purpose of reaching a contradiction that a family (I, λi. (ai, bi)) covers
[0, 1] but no finite subfamily does. We construct a sequence of closed intervals [qn, rn] which are
nested, their sizes shrink to 0, and none of them is covered by a finite subfamily of (I, λi. (ai, bi)).

We set [q0, r0] :≡ [0, 1]. Assuming [qn, rn] has been constructed, let s :≡ (2qn + rn)/3 and
t :≡ (qn + 2rn)/3. Both [qn, t] and [s, rn] are covered by (I, λi. (ai, bi)), but they cannot both have
a finite subcover, or else so would [qn, rn]. Either [qn, t] has a finite subcover or it does not. If it
does we set [qn+1, rn+1] :≡ [s, rn], otherwise we set [qn+1, rn+1] :≡ [qn, t].

The sequences q0, q1, . . . and r0, r1, . . . are both Cauchy and they converge to a point x : [0, 1]
which is contained in every [qn, rn]. There merely exists i : I such that ai < x < bi. Because the
sizes of the intervals [qn, rn] shrink to zero, there is n : N such that ai < qn ≤ x ≤ rn < bi, but this
means that [qn, rn] is covered by a single interval (ai, bi), while at the same time it has no finite
subcover. A contradiction.

Without excluded middle, or a pinch of Brouwerian Intuitionism, we seem to be stuck. Nev-
ertheless, Heine–Borel compactness of [0, 1] can be recovered in a constructive setting, in a fash-
ion that is still compatible with classical mathematics! For this to be done, we need to revisit the
notion of cover. The trouble with (11.5.10) is that the truncated existential allows a space to be
covered in any haphazard way, and so computationally speaking, we stand no chance of merely
extracting a finite subcover. By removing the truncation we get

∏
(x:[0,1])

∑
(i:I)

qi < x < ri, (11.5.12)

11.5 COMPACTNESS OF THE INTERVAL 377

which might help, were it not too demanding of covers. With this definition we could not even
show that (0, 3) and (2, 5) cover [1, 4] because that would amount to exhibiting a non-constant
map [1, 4]→ 2, see Exercise 11.6. Here we can take a lesson from “pointfree topology” (i.e. locale
theory): the notion of cover ought to be expressed in terms of open sets, without reference to
points. Such a “holistic” view of space will then allow us to analyze the notion of cover, and
we shall be able to recover Heine–Borel compactness. Locale theory uses power sets, which
we could obtain by assuming propositional resizing; but instead we can steal ideas from the
predicative cousin of locale theory, which is called “formal topology”.

Suppose that we have a family (I,F) and an interval (a, b). How might we express the fact
that (a, b) is covered by the family, without referring to points? Here is one: if (a, b) equals some
F (i) then it is covered by the family. And another one: if (a, b) is covered by some other family
(J,G), and in turn each G(j) is covered by (I,F), then (a, b) is covered (I,F). Notice that we
are listing rules which can be used to deduce that (I,F) covers (a, b). We should find sufficiently
good rules and turn them into an inductive definition.

Definition 11.5.13. The inductive cover ◁ is a mere relation

◁ : (Q×Q)→
(
∑
I:U

(I → Q×Q)
)
→ Prop

defined inductively by the following rules, where q, r, s, t are rational numbers and (I,F), (J,G)
are families of basic intervals:

(i) reflexivity: F (i) ◁ (I,F) for all i : I,
(ii) transitivity: if (q, r) ◁ (J,G) and ∀(j : J).G(j) ◁ (I,F) then (q, r) ◁ (I,F),

(iii) monotonicity: if (q, r) ⊆ (s, t) and (s, t) ◁ (I,F) then (q, r) ◁ (I,F),
(iv) localization: if (q, r) ◁ (I,F) then (q, r) ∩ (s, t) ◁ (I, λi. (F (i) ∩ (s, t))).
(v) if q < s < t < r then (q, r) ◁ [(q, t), (r, s)],

(vi) (q, r) ◁ ({ (s, t) : Q×Q | q < s < t < r } , λu. u).

The definition should be read as a higher-inductive type in which the listed rules are point
constructors, and the type is (−1)-truncated. The first four clauses are of a general nature and
should be intuitively clear. The last two clauses are specific to the real line: one says that an
interval may be covered by two intervals if they overlap, while the other one says that an interval
may be covered from within. Incidentally, if r ≤ q then (q, r) is covered by the empty family by
the last clause.

Inductive covers enjoy the Heine–Borel property, the proof of which requires a lemma.

Lemma 11.5.14. Suppose q < s < t < r and (q, r) ◁ (I,F). Then there merely exists a finite subfamily
of (I,F) which inductively covers (s, t).

Proof. We prove the statement by induction on (q, r) ◁ (I,F). There are six cases:

(i) Reflexivity: if (q, r) = F (i) then by monotonicity (s, t) is covered by the finite subfamily
[F (i)].

(ii) Transitivity: suppose (q, r) ◁ (J,G) and ∀(j : J).G(j) ◁ (I,F). By the inductive hypothesis
there merely exists [G(j1), . . . ,G(jn)] which covers (s, t). Again by the inductive hypothesis,
each of G(jk) is covered by a finite subfamily of (I,F), and we can collect these into a finite
subfamily which covers (s, t).

378 CHAPTER 11. REAL NUMBERS

(iii) Monotonicity: if (q, r) ⊆ (u, v) and (u, v) ◁ (I,F) then we may apply the inductive hypoth-
esis to (u, v) ◁ (I,F) because u < s < t < v.

(iv) Localization: suppose (q′, r′) ◁ (I,F) and (q, r) = (q′, r′) ∩ (a, b). Because q′ < s < t <

r′, by the inductive hypothesis there is a finite subcover [F (i1), . . . ,F (in)] of (s, t). We
also know that a < s < t < b, therefore (s, t) = (s, t) ∩ (a, b) is covered by [F (i1) ∩
(a, b), . . . ,F (in) ∩ (a, b)], which is a finite subfamily of (I, λi. (F (i) ∩ (a, b))).

(v) If (q, r) ◁ [(q, v), (u, r)] for some q < u < v < r then by monotonicity (s, t) ◁ [(q, v), (u, r)].
(vi) Finally, (s, t) ◁ ({ (u, v) : Q×Q | q < u < v < r } , λz. z) by reflexivity.

Say that (I,F) inductively covers [a, b] when there merely exists ϵ : Q+ such that (a− ϵ, b +
ϵ) ◁ (I,F).

Corollary 11.5.15. A closed interval is Heine–Borel compact for inductive covers.

Proof. Suppose [a, b] is inductively covered by (I,F), so there merely is ϵ : Q+ such that (a −
ϵ, b + ϵ) ◁ (I,F). By Lemma 11.5.14 there is a finite subcover of (a − ϵ/2, b + ϵ/2), which is
therefore a finite subcover of [a, b].

Experience from formal topology shows that the rules for inductive covers are sufficient for a
constructive development of pointfree topology. But we can also provide our own evidence that
they are a reasonable notion.

Theorem 11.5.16.

(i) An inductive cover is also a pointwise cover.
(ii) Assuming excluded middle, a pointwise cover is also an inductive cover.

Proof.

(i) Consider a family of basic intervals (I,F), where we write (qi, ri) :≡ F (i), an interval
(a, b) inductively covered by (I,F), and x such that a < x < b. We prove by induction
on (a, b) ◁ (I,F) that there merely exists i : I such that qi < x < ri. Most cases are pretty
obvious, so we show just two. If (a, b) ◁ (I,F) by reflexivity, then there merely is some
i : I such that (a, b) = (qi, ri) and so qi < x < ri. If (a, b) ◁ (I,F) by transitivity via
(J, λj. (sj, tj)) then by the inductive hypothesis there merely is j : J such that sj < x < tj,
and then since (sj, tj) ◁ (I,F) again by the inductive hypothesis there merely exists i : I
such that qi < x < ri. Other cases are just as exciting.

(ii) Suppose (I, λi. (qi, ri)) pointwise covers (a, b). By Item (vi) of Definition 11.5.13 it suffices to
show that (I, λi. (qi, ri)) inductively covers (c, d) whenever a < c < d < b, so consider such
c and d. By Theorem 11.5.11 there is a finite subfamily [i1, . . . , in] which already pointwise
covers [c, d], and hence (c, d). Let ϵ : Q+ be a Lebesgue number for (qi1 , ri1), . . . , (qin , rin) as
in Exercise 11.12. There is a positive k : N such that 2(d− c)/k < min(1, ϵ). For 0 ≤ i ≤ k
let

ck :≡ ((k− i)c + id)/k.

The intervals (c0, c2), (c1, c3), . . . , (ck−2, ck) inductively cover (c, d) by repeated use of tran-
sitivity and Item (v) in Definition 11.5.13. Because their widths are below ϵ each of them is
contained in some (qi, ri), and we may use transitivity and monotonicity to conclude that
(I, λi. (qi, ri)) inductively cover (c, d).

11.6 THE SURREAL NUMBERS 379

The upshot of the previous theorem is that, as far as classical mathematics is concerned, there
is no difference between a pointwise and an inductive cover. In particular, since it is consistent to
assume excluded middle in homotopy type theory, we cannot exhibit an inductive cover which
fails to be a pointwise cover. Or to put it in a different way, the difference between pointwise and
inductive covers is not what they cover but in the proofs that they cover.

We could write another book by going on like this, but let us stop here and hope that we
have provided ample justification for the claim that analysis can be developed in homotopy
type theory. The curious reader should consult Exercise 11.13 for constructive versions of the
intermediate value theorem.

11.6 The surreal numbers

In this section we consider another example of a higher inductive-inductive type, which draws
together many of our threads: Conway’s field No of surreal numbers [Con76]. The surreal num-
bers are the natural common generalization of the (Dedekind) real numbers (§11.2) and the or-
dinal numbers (§10.3). Conway, working in classical mathematics with excluded middle and
Choice, defines a surreal number to be a pair of sets of surreal numbers, written { L

∣∣ R }, such
that every element of L is strictly less than every element of R. This obviously looks like an
inductive definition, but there are three issues with regarding it as such.

Firstly, the definition requires the relation of (strict) inequality between surreals, so that re-
lation must be defined simultaneously with the type No of surreals. (Conway avoids this issue
by first defining games, which are like surreals but omit the compatibility condition on L and R.)
As with the relation ∼ for the Cauchy reals, this simultaneous definition could a priori be either
inductive-inductive or inductive-recursive. We will choose to make it inductive-inductive, for
the same reasons we made that choice for ∼.

Moreover, we will define strict inequality < and non-strict inequality ≤ for surreals sepa-
rately (and mutually inductively). Conway defines < in terms of ≤, in a way which is sensible
classically but not constructively. Furthermore, a negative definition of < would make it unac-
ceptable as a hypothesis of the constructor of a higher inductive type (see §5.6).

Secondly, Conway says that L and R in { L
∣∣ R } should be “sets of surreal numbers”, but the

naive meaning of this as a predicate No→ Prop is not positive, hence cannot be used as input to
an inductive constructor. However, this would not be a good type-theoretic translation of what
Conway means anyway, because in set theory the surreal numbers form a proper class, whereas
the sets L and R are true (small) sets, not arbitrary subclasses of No. In type theory, this means
that No will be defined relative to a universe U , but will itself belong to the next higher universe
U ′, like the sets Ord and Card of ordinals and cardinals, the cumulative hierarchy V, or even the
Dedekind reals in the absence of propositional resizing. We will then require the “sets” L and R
of surreals to be U -small, and so it is natural to represent them by families of surreals indexed by
some U -small type. (This is all exactly the same as what we did with the cumulative hierarchy
in §10.5.) That is, the constructor of surreals will have type

∏
L,R:U

(L → No)→ (R → No)→ (some condition)→ No

which is indeed strictly positive.
Finally, after giving the mutual definitions of No and its ordering, Conway declares two sur-

real numbers x and y to be equal if x ≤ y and y ≤ x. This is naturally read as passing to a
quotient of the set of “pre-surreals” by an equivalence relation. However, in the absence of the

380 CHAPTER 11. REAL NUMBERS

axiom of choice, such a quotient presents the same problem as the quotient in the usual con-
struction of Cauchy reals: it will no longer be the case that a pair of families of surreals yield a
new surreal { L

∣∣ R }, since we cannot necessarily “lift” L and R to families of pre-surreals. Of
course, we can solve this problem in the same way we did for Cauchy reals, by using a higher
inductive-inductive definition.

Definition 11.6.1. The type No of surreal numbers, along with the relations < : No → No → U
and≤ : No→ No→ U , are defined higher inductive-inductively as follows. The type No has the
following constructors.

• For any L,R : U and functions L → No and R → No, whose values we write as xL and
xR for L : L and R : R respectively, if ∀(L : L). ∀(R : R). xL < xR, then there is a surreal
number x.

• For any x, y : No such that x ≤ y and y ≤ x, we have eqNo(x, y) : x = y.

We will refer to the inputs of the first constructor as a cut. If x is the surreal number constructed
from a cut, then the notation xL will implicitly assume L : L, and similarly xR will assume R : R.
In this way we can usually avoid naming the indexing types L andR, which is convenient when
there are many different cuts under discussion. Following Conway, we call xL a left option of x
and xR a right option.

The path constructor implies that different cuts can define the same surreal number. Thus, it
does not make sense to speak of the left or right options of an arbitrary surreal number x, unless
we also know that x is defined by a particular cut. Thus in what follows we will say, for instance,
“given a cut defining a surreal number x” in contrast to “given a surreal number x”.

The relation ≤ has the following constructors.

• Given cuts defining two surreal numbers x and y, if xL < y for all L, and x < yR for all R,
then x ≤ y.

• Propositional truncation: for any x, y : No, if p, q : x ≤ y, then p = q.

And the relation < has the following constructors.

• Given cuts defining two surreal numbers x and y, if there is an L such that x ≤ yL, then
x < y.

• Given cuts defining two surreal numbers x and y, if there is an R such that xR ≤ y, then
x < y.

• Propositional truncation: for any x, y : No, if p, q : x < y, then p = q.

We compare this with Conway’s definitions:

- If L, R are any two sets of numbers, and no member of L is≥ any member of R, then there is a number { L
∣∣ R }.

All numbers are constructed in this way.
- x ≥ y iff (no xR ≤ y and x ≤ no yL).
- x = y iff (x ≥ y and y ≥ x).
- x > y iff (x ≥ y and y ̸≥ x).

The inclusion of x ≥ y in the definition of x > y is unnecessary if all objects are [surreal] numbers
rather than “games”. Thus, Conway’s < is just the negation of his ≥, so that his condition
for { L

∣∣ R } to be a surreal is the same as ours. Negating Conway’s ≤ and canceling double
negations, we arrive at our definition of <, and we can then reformulate his ≤ in terms of <
without negations.

11.6 THE SURREAL NUMBERS 381

We can immediately populate No with many surreal numbers. Like Conway, we write

{ x, y, z, . . .
∣∣ u, v, w, . . . }

for the surreal number defined by a cut where L → No and R → No are families described
by x, y, z, . . . and u, v, w, Of course, if L or R are 0, we leave the corresponding part of the
notation empty. There is an unfortunate clash with the standard notation { x : A | P(x) } for
subsets, but we will not use the latter in this section.

• We define ιN : N→ No recursively by

ιN(0) :≡ {
∣∣ },

ιN(succ(n)) :≡ { ιN(n)
∣∣ }.

That is, ιN(0) is defined by the cut consisting of 0→ No and 0→ No. Similarly, ιN(succ(n))
is defined by 1→ No (picking out ιN(n)) and 0→ No.

• Similarly, we define ιZ : Z→ No using the sign-case recursion principle (Lemma 6.10.12):

ιZ(0) :≡ {
∣∣ },

ιZ(n + 1) :≡ { ιZ(n)
∣∣ } n ≥ 0,

ιZ(n− 1) :≡ {
∣∣ ιZ(n) } n ≤ 0.

• By a dyadic rational we mean a pair (a, n) where a : Z and n : N, and such that if n > 0
then a is odd. We will write it as a/2n, and identify it with the corresponding rational
number. If QD denotes the set of dyadic rationals, we define ιQD : QD → No by induction
on n:

ιQD(a/20) :≡ ιZ(a),

ιQD(a/2n) :≡ { ιQD(a/2n − 1/2n)
∣∣ ιQD(a/2n + 1/2n) }, for n > 0.

Here we use the fact that if n > 0 and a is odd, then a/2n ± 1/2n is a dyadic rational with
a smaller denominator than a/2n.

• We define ιRd
: Rd → No, where Rd is (any version of) the Dedekind reals from §11.2, by

ιRd
(x) :≡ { q ∈ QD such that q < x

∣∣ q ∈ QD such that x < q }.

Unlike in the previous cases, it is not obvious that this extends ιQD when we regard dyadic
rationals as Dedekind reals. This follows from the simplicity theorem (Theorem 11.6.2).

• Recall the type Ord of ordinals from §10.3, which is well-ordered by the relation <, where
A < B means that A = B/b for some b : B. We define ιOrd : Ord → No by well-founded
recursion (Lemma 10.3.7) on Ord:

ιOrd(A) :≡ { ιOrd(A/a) for all a : A
∣∣ }.

It will also follow from the simplicity theorem that ιOrd restricted to finite ordinals agrees
with ιN. (We caution the reader, however, that unlike the above examples, ιOrd is not con-
structively injective unless we restrict it to a smaller class of ordinals; see Exercises 11.16
and 11.17.)

382 CHAPTER 11. REAL NUMBERS

• A few more interesting examples taken from Conway:

ω :≡ { 0, 1, 2, 3, . . .
∣∣ } (also an ordinal)

−ω :≡ {
∣∣ . . . ,−3,−2,−1, 0 }

1/ω :≡ { 0
∣∣ 1, 1

2 , 1
4 , 1

8 , . . . }
ω− 1 :≡ { 0, 1, 2, 3, . . .

∣∣ω }
ω/2 :≡ { 0, 1, 2, 3, . . .

∣∣ . . . , ω− 2, ω− 1, ω }.

In identifying surreal numbers presented by different cuts, the following simple observation
is useful.

Theorem 11.6.2 (Conway’s simplicity theorem). Suppose x and z are surreal numbers defined by cuts,
and that the following hold.

• xL < z < xR for all L and R.
• For every left option zL of z, there exists a left option xL′ with zL ≤ xL′ .
• For every right option zR of z, there exists a right option xR′ with xR′ ≤ zR.

Then x = z.

Proof. Applying the path constructor of No, we must show x ≤ z and z ≤ x. The first entails
showing xL < z for all L, which we assumed, and x < zR for all R. But by assumption, for any
zR there is an xR′ with xR′ ≤ zR hence x < zR as desired. Thus x ≤ z; the proof of z ≤ x is
symmetric.

In order to say much more about surreal numbers, however, we need their induction princi-
ple. The mutual induction principle for (No,≤,<) applies to three families of types:

A : No→ U
B : ∏

(x,y:No)
∏

(a:A(x))
∏

(b:A(y))
(x ≤ y)→ U

C : ∏
(x,y:No)

∏
(a:A(x))

∏
(b:A(y))

(x < y)→ U .

As with the induction principle for Cauchy reals, it is helpful to think of B and C as families
of relations between the types A(x) and A(y). Thus we write B(x, y, a, b, ξ) as (x, a) Pξ (y, b)
and C(x, y, a, b, ξ) as (x, a) ◁ξ (y, b). Similarly, we usually omit the ξ since it inhabits a mere
proposition and so is uninteresting, and we may often omit x and y as well, writing simply a P b
or a ◁ b. With these notations, the hypotheses of the induction principle are the following.

• For any cut defining a surreal number x, together with

(i) for each L, an element aL : A(xL), and
(ii) for each R, an element aR : A(xR), such that

(iii) for all L and R we have (xL, aL) ◁ (xR, aR)

there is a specified element fa : A(x). We call such data a dependent cut over the cut
defining x.

• For any x, y : No with a : A(x) and b : A(y), if x ≤ y and y ≤ x and also (x, a) P (y, b) and
(y, b) P (x, a), then a =A

eqNo
b.

11.6 THE SURREAL NUMBERS 383

• Given cuts defining two surreal numbers x and y, and dependent cuts a over x and b over
y, such that for all L we have xL < y and (xL, aL) ◁ (y, fb), and for all R we have x < yR

and (x, fa) ◁ (yR, bR), then (x, fa) P (y, fb).

• P takes values in mere propositions.

• Given cuts defining two surreal numbers x and y, dependent cuts a over x and b over y,
and an L0 such that x ≤ yL0 and (x, fa) P (yL0 , bL0), we have (x, fa) ◁ (y, fb).

• Given cuts defining two surreal numbers x and y, dependent cuts a over x and b over y,
and an R0 such that xR0 ≤ y together with (xR0 , aR0), P (y, fb), we have (x, fa) ◁ (y, fb).

• ◁ takes values in mere propositions.

Under these hypotheses we deduce a function f : ∏(x:No) A(x) such that

f (x) ≡ f f [x] (11.6.3)

(x ≤ y) ⇒ (x, f (x)) P (y, f (y))

(x < y) ⇒ (x, f (x)) ◁ (y, f (y)).

In the computation rule (11.6.3) for the point constructor, x is a surreal number defined by a cut,
and f [x] denotes the dependent cut over x defined by applying f (and using the fact that f takes
< to ◁). As usual, we will generally use pattern-matching notation, where the definition of f
on a cut { xL

∣∣ xR } may use the symbols f (xL) and f (xR) and the assumption that they form a
dependent cut.

As with the Cauchy reals, we have special cases resulting from trivializing some of A, P,
and ◁. Taking P and ◁ to be constant at 1, we have No-induction, which for simplicity we state
only for mere properties:

• Given P : No → Prop, if P(x) holds whenever x is a surreal number defined by a cut such
that P(xL) and P(xR) hold for all L and R, then P(x) holds for all x : No.

This should be compared with Conway’s remark:

In general when we wish to establish a proposition P(x) for all numbers x, we will prove it inductively
by deducing P(x) from the truth of all the propositions P(xL) and P(xR). We regard the phrase “all
numbers are constructed in this way” as justifying the legitimacy of this procedure.

With No-induction, we can prove

Theorem 11.6.4 (Conway’s Theorem 0).

(i) For any x : No, we have x ≤ x.

(ii) For any x : No defined by a cut, we have xL < x and x < xR for all L and R.

Proof. Note first that if x ≤ x, then whenever x occurs as a left option of some cut y, we have
x < y by the first constructor of <, and similarly whenever x occurs as a right option of a cut y,
we have y < x by the second constructor of <. In particular, (i)⇒(ii).

We prove (i) by No-induction on x. Thus, assume x is defined by a cut such that xL ≤ xL and
xR ≤ xR for all L and R. But by our observation above, these assumptions imply xL < x and
x < xR for all L and R, yielding x ≤ x by the constructor of ≤.

Corollary 11.6.5. No is a 0-type.

384 CHAPTER 11. REAL NUMBERS

Proof. The mere relation R(x, y) :≡ (x ≤ y) ∧ (y ≤ x) implies identity by the path constructor of
No, and contains the diagonal by Theorem 11.6.4(i). Thus, Theorem 7.2.2 applies.

By contrast, Conway’s Theorem 1 (transitivity of≤) is somewhat harder to establish with our
definition; see Corollary 11.6.17.

We will also need the joint recursion principle, (No,≤,<)-recursion. It is convenient to state
this as follows. Suppose A is a type equipped with relations P : A → A → Prop and ◁ : A →
A→ Prop. Then we can define f : No→ A by doing the following.

(i) For any x defined by a cut, assuming f (xL) and f (xR) to be defined such that f (xL) ◁
f (xR) for all L and R, we must define f (x). (We call this the primary clause of the recursion.)

(ii) Prove that P is antisymmetric: if a P b and b P a, then a = b.
(iii) For x, y defined by cuts such that xL < y for all L and x < yR for all R, and assuming

inductively that f (xL) ◁ f (y) for all L, f (x) ◁ f (yR) for all R, and also that f (xL) ◁ f (xR)

and f (yL) ◁ f (yR) for all L and R, we must prove f (x) P f (y).
(iv) For x, y defined by cuts and an L0 such that x ≤ yL0 , and assuming inductively that f (x) P

f (yL0), and also that f (xL) ◁ f (xR) and f (yL) ◁ f (yR) for all L and R, we must prove
f (x) ◁ f (y).

(v) For x, y defined by cuts and an R0 such that xR0 ≤ y, and assuming inductively that
f (xR0) P f (y), and also that f (xL) ◁ f (xR) and f (yL) ◁ f (yR) for all L and R, we must
prove f (x) ◁ f (y).

The last three clauses can be more concisely described by saying we must prove that f (as defined
in the first clause) takes ≤ to P and < to ◁. We will refer to these properties by saying that f
preserves inequalities. Moreover, in proving that f preserves inequalities, we may assume the
particular instance of ≤ or < to be obtained from one of its constructors, and we may also use
inductive hypotheses that f preserves all inequalities appearing in the input to that constructor.

If we succeed at (i)–(v) above, then we obtain f : No → A, which computes on cuts as
specified by (i), and which preserves all inequalities:

∀(x, y : No).
(
(x ≤ y)→ (f (x) P f (y))

)
∧
(
(x < y)→ (f (x) ◁ f (y))

)
.

Like (Rc,∼)-recursion for the Cauchy reals, this recursion principle is essential for defining func-
tions on No, since we cannot first define a function on “pre-surreals” and only later prove that it
respects the notion of equality.

Example 11.6.6. Let us define the negation function No → No. We apply the joint recursion prin-
ciple with A :≡ No, with (x P y) :≡ (y ≤ x), and (x ◁ y) :≡ (y < x). Clearly this P is
antisymmetric.

For the main clause in the definition, we assume x defined by a cut, with −xL and −xR

defined such that −xL ◁ −xR for all L and R. By definition, this means −xR < −xL for all L and
R, so we can define −x by the cut {−xR

∣∣ − xL }. This notation, which follows Conway, refers to
the cut whose left options are indexed by the type R indexing the right options of x, and whose
right options are indexed by the type L indexing the left options of x, with the corresponding
familiesR → No and L → No defined by composing those for x with negation.

We now have to verify that f preserves inequalities.

• For x ≤ y, we may assume xL < y for all L and x < yR for all R, and show −y ≤ −x. But
inductively, we may assume −y < −xL and −yR < −x, which gives the desired result, by
definition of −y, −x, and the constructor of ≤.

11.6 THE SURREAL NUMBERS 385

• For x < y, in the first case when it arises from some x ≤ yL0 , we may inductively assume
−yL0 ≤ −x, in which case −y < −x follows by the constructor of <.

• Similarly, if x < y arises from xR0 ≤ y, the inductive hypothesis is −y ≤ −xR, yielding
−y < −x again.

To do much more than this, however, we will need to characterize the relations ≤ and <

more explicitly, as we did for the Cauchy reals in Theorem 11.3.32. Also as there, we will have to
simultaneously prove a couple of essential properties of these relations, in order for the induction
to go through.

Theorem 11.6.7. There are relations ⪯ : No → No → Prop and ≺ : No → No → Prop such that if x
and y are surreals defined by cuts, then

(x ⪯ y) :≡
(
∀(L). xL ≺ y

)
∧
(
∀(R). x ≺ yR)

(x ≺ y) :≡
(
∃(L). x ⪯ yL) ∨ (∃(R). xR ⪯ y

)
.

Moreover, we have
(x ≺ y)→ (x ⪯ y) (11.6.8)

and all the reasonable transitivity properties making ≺ and ⪯ into a “bimodule” over ≤ and <:

(x ≤ y)→ (y ⪯ z)→ (x ⪯ z) (x ⪯ y)→ (y ≤ z)→ (x ⪯ z)
(x ≤ y)→ (y ≺ z)→ (x ≺ z) (x ⪯ y)→ (y < z)→ (x ≺ z)
(x < y)→ (y ⪯ z)→ (x ≺ z) (x ≺ y)→ (y ≤ z)→ (x ≺ z).

(11.6.9)

Proof. We define ⪯ and ≺ by double (No,≤,<)-induction on x, y. The first induction is a simple
recursion, whose codomain is the subset A of (No→ Prop)× (No→ Prop) consisting of pairs of
predicates of which one implies the other and which satisfy “transitivity on the right”, i.e. (11.6.8)
and the right column of (11.6.9) with (x ⪯ –) and (x ≺ –) replaced by the two given predicates.
As in the proof of Theorem 11.3.16, we regard these predicates as half of binary relations, writing
them as y 7→ (♢ ⪯ y) and y 7→ (♢ ≺ y), with ♢ denoting the pair of relations. We equip A with
the following two relations:

(♢ P ♡) :≡ ∀(y : No).
(
(♡ ⪯ y)→ (♢ ⪯ y)

)
∧
(
(♡ ≺ y)→ (♢ ≺ y)

)
,

(♢ ◁ ♡) :≡ ∀(y : No).
(
(♡ ⪯ y)→ (♢ ≺ y)

)
.

Note that P is antisymmetric, since if ♢ P ♡ and ♡ P ♢, then (♡ ⪯ y) ⇔ (♢ ⪯ y) and
(♡ ≺ y) ⇔ (♢ ≺ y) for all y, hence ♢ = ♡ by univalence for mere propositions and function
extensionality. Moreover, to say that a function No → A preserves inequalities is exactly to say
that, when regarded as a pair of binary relations on No, it satisfies “transitivity on the left” (the
left column of (11.6.9)).

Now for the primary clause of the recursion, we assume given x defined by a cut, and rela-
tions (xL ≺ –), (xR ≺ –), (xL ⪯ –), and (xR ⪯ –) for all L and R, of which the strict ones imply
the non-strict ones, which satisfy transitivity on the right, and such that

∀(L, R). ∀(y : No).
(
(xR ⪯ y)→ (xL ≺ y)

)
. (11.6.10)

We now have to define (x ≺ y) and (x ⪯ y) for all y. Here in contrast to Theorem 11.3.16,
rather than a nested recursion, we use a nested induction, in order to be able to inductively use

386 CHAPTER 11. REAL NUMBERS

transitivity on the left with respect to the inequalities xL < x and x < xR. Define A′ : No → U
by taking A′(y) to be the subset A′ of Prop× Prop consisting of two mere propositions, denoted
△ ⪯ y and△ ≺ y (with△ : A′(y)), such that

(△ ≺ y)→ (△ ⪯ y) (11.6.11)

∀(L). (△ ⪯ y)→ (xL ≺ y) (11.6.12)

∀(R). (xR ⪯ y)→ (△ ≺ y). (11.6.13)

Using notation analogous to P and ◁, we equip A′ with the two relations defined for△ : A′(y)
and □ : A′(z) by

(△ ⊑ □) :≡
(
(△ ⪯ y)→ (□ ⪯ z)

)
∧
(
(△ ≺ y)→ (□ ≺ z)

)
(△ < □) :≡

(
(△ ⪯ y)→ (□ ≺ z)

)
.

Again,⊑ is evidently antisymmetric in the appropriate sense. Moreover, a function ∏(y:No) A′(y)
which preserves inequalities is precisely a pair of predicates of which one implies the other,
which satisfy transitivity on the right, and transitivity on the left with respect to the inequalities
xL < x and x < xR. Thus, this inner induction will provide what we need to complete the
primary clause of the outer recursion.

For the primary clause of the inner induction, we assume also given y defined by a cut, and
properties (x ≺ yL), (x ≺ yR), (x ⪯ yL), and (x ⪯ yR) for all L and R, with the strict ones
implying the non-strict ones, transitivity on the left with respect to xL < x and x < xR, and
on the right with respect to yL < yR. We can now give the definitions specified in the theorem
statement:

(x ⪯ y) :≡ (∀(L). xL ≺ y) ∧ (∀(R). x ≺ yR), (11.6.14)

(x ≺ y) :≡ (∃(L). x ⪯ yL) ∨ (∃(R). xR ⪯ y). (11.6.15)

For this to define an element of A′(y), we must show first that (x ≺ y)→ (x ⪯ y). The assump-
tion x ≺ y has two cases. On one hand, if there is L0 with x ⪯ yL0 , then by transitivity on the
right with respect to yL0 < yR, we have x ≺ yR for all R. Moreover, by transitivity on the left
with respect to xL < x, we have xL ≺ yL0 for any L, hence xL ≺ y by transitivity on the right.
Thus, x ⪯ y.

On the other hand, if there is R0 with xR0 ⪯ y, then by (11.6.10), we have xL ≺ y for all L.
And by transitivity on the left and right with respect to x < xR0 and y < yR, we have x ≺ yR for
any R. Thus, x ⪯ y.

We also need to show that these definitions are transitive on the left with respect to xL < x
and x < xR. But if x ⪯ y, then xL ≺ y for all L by definition; while if xR ⪯ y, then x ≺ y also by
definition.

Thus, (11.6.14) and (11.6.15) do define an element of A′(y). We now have to verify that this
definition preserves inequalities, as a dependent function into A′, i.e. that these relations are
transitive on the right. Remember that in each case, we may assume inductively that they are
transitive on the right with respect to all inequalities arising in the inequality constructor.

• Suppose x ⪯ y and y ≤ z, the latter arising from yL < z and y < zR for all L and R. Then
the inductive hypothesis (of the inner recursion) applied to y < zR yields x ≺ zR for any R.
Moreover, by definition x ⪯ y implies that xL ≺ y for any L, so by the inductive hypothesis
of the outer recursion we have xL ≺ z. Thus, x ⪯ z.

11.6 THE SURREAL NUMBERS 387

• Suppose x ⪯ y and y < z. First, suppose y < z arises from y ≤ zL0 . Then the inner
inductive hypothesis applied to y ≤ zL0 yields x ⪯ zL0 , hence x ≺ z.

Second, suppose y < z arises from yR0 ≤ z. Then by definition, x ⪯ y implies x ≺ yR0 , and
then the inner inductive hypothesis for yR0 ≤ z yields x ≺ z.

• Suppose x ≺ y and y ≤ z, the latter arising from yL < z and y < zR for all L and R. By
definition, x ≺ y implies there merely exists R0 with xR0 ⪯ y or L0 with x ⪯ yL0 . If xR0 ⪯ y,
then the outer inductive hypothesis yields xR0 ⪯ z, hence x ≺ z. If x ⪯ yL0 , then the inner
inductive hypothesis for yL0 < z (which holds by the constructor of y ≤ z) yields x ≺ z.

This completes the inner induction. Thus, for any x defined by a cut, we have (x ≺ –) and
(x ⪯ –) defined by (11.6.14) and (11.6.15), and transitive on the right.

To complete the outer recursion, we need to verify these definitions are transitive on the left.
After a No-induction on z, we end up with three cases that are essentially identical to those just
described above for transitivity on the right. Hence, we omit them.

Theorem 11.6.16. For any x, y : No we have (x < y) = (x ≺ y) and (x ≤ y) = (x ⪯ y).

Proof. From left to right, we use (No,≤,<)-induction where A(x) :≡ 1, with⪯ and≺ supplying
the relations P and ◁. In all the constructor cases, x and y are defined by cuts, so the definitions
of ⪯ and ≺ evaluate, and the inductive hypotheses apply.

From right to left, we use No-induction to assume that x and y are defined by cuts. But now
the definitions of ⪯ and ≺, and the inductive hypotheses, supply exactly the data required for
the relevant constructors of ≤ and <.

Corollary 11.6.17. The relations ≤ and < on No satisfy

∀(x, y : No). (x < y)→ (x ≤ y)

and are transitive:

(x ≤ y)→ (y ≤ z)→ (x ≤ z)

(x ≤ y)→ (y < z)→ (x < z)

(x < y)→ (y ≤ z)→ (x < z).

As with the Cauchy reals, the joint (No,≤,<)-recursion principle remains essential when
defining all operations on No.

Example 11.6.18. We define + : No → No → No by recursion on the first argument, followed
by induction on the second argument. For the outer recursion, we take the codomain to be
the subset of No → No consisting of functions g such that (x < y) → (g(x) < g(y)) and
(x ≤ y) → (g(x) ≤ g(y)) for all x, y. For such g, h we define (g P h) :≡ ∀(x : No). g(x) ≤ h(x)
and (g ◁ h) :≡ ∀(x : No). g(x) < h(x). Clearly P is antisymmetric.

For the primary clause of the recursion, we suppose x defined by a cut, that the functions
(xL + –) and (xR + –) are defined, preserve inequalities, and satisfy xL + y < xR + y, and we
define (x + –). As in Theorem 11.6.7, rather than an inner recursion, we use an inner induction
into the family A : No→ U , where A(y) is the subset of those z : No such that each xL + y < z and
each xR + y > z. We equip A with the relations ≤ and < induced from No, so that antisymmetry
is obvious. For the primary clause of the inner recursion, we suppose also y defined by a cut,
with each x + yL and x + yR defined and satisfying xL + yL < x + yL, xL + yR < x + yR, x +

388 CHAPTER 11. REAL NUMBERS

yL < xR + yL, and x + yR < xR + yR (these come from the additional conditions imposed on
elements of A(y)), and also x + yL < x + yR (since the elements x + yL and x + yR of A(y) form
a dependent cut). Now we give Conway’s definition:

x + y :≡ { xL + y, x + yL ∣∣ xR + y, x + yR }.

In other words, the left options of x + y are all numbers of the form xL + y for some left option
xL, or x + yL for some left option yL. We must show that each of these left options is less than
each of these right options:

• xL + y < xR + y by the outer inductive hypothesis.

• xL + y < xL + yR < x + yR, the first since (xL + –) preserves inequalities, and the second
since x + yR : A(yR).

• x + yL < xR + yL < xR + y, the first since x + yL : A(yL) and the second since (xR + –)
preserves inequalities.

• x + yL < x + yR by the inner inductive hypothesis (specifically, the fact that we have a
dependent cut).

We also have to show that x + y thusly defined lies in A(y), i.e. that xL + y < x + y and x + y <

xR + y; but this is true by Theorem 11.6.4(ii).
Next we have to verify that the definition of (x + –) preserves inequality:

• If y ≤ z arises from knowing that yL < z and y < zR for all L and R, then the inner inductive
hypothesis gives x + yL < x + z and x + y < x + zR, while the outer inductive hypotheses
give xL + y ≤ xL + z and xR + y ≤ xR + z. Moreover, since xR + y is by definition a right
option of x + y, we have x + y < xR + y. Similarly, we find that xL + z is a left option
of x + z, so that xL + z < x + z. Thus, using transitivity, we have xL + y < x + z and
x + y < xR + z; so we may conclude x + y ≤ x + z by the constructor of ≤.

• If y < z arises from an L0 with y ≤ zL0 , then inductively x+ y ≤ x+ zL0 , hence x+ y < x+ z
since x + zL0 is a right option of x + z.

• Similarly, if y < z arises from yR0 ≤ z, then x + y < x + z since x + yR0 ≤ x + z.

This completes the inner induction. For the outer recursion, we have to verify that + preserves
inequality on the left as well. After an No-induction, this proceeds in exactly the same way.

In the Appendix to Part Zero of [Con76], Conway discusses how the surreal numbers may
be formalized in ZFC set theory: by iterating along the ordinals and passing to sets of repre-
sentatives of lowest rank for each equivalence class, or by representing numbers with “sign-
expansions”. He then remarks that

The curiously complicated nature of these constructions tells us more about the nature of formalizations
within ZF than about our system of numbers. . .

and goes on to advocate for a general theory of “permissible kinds of construction” which should
include

(i) Objects may be created from earlier objects in any reasonably constructive fashion.

(ii) Equality among the created objects can be any desired equivalence relation.

CHAPTER 11 NOTES 389

Condition (i) can be naturally read as justifying general principles of inductive definition, such as
those presented in §§5.6 and 5.7. In particular, the condition of strict positivity for constructors
can be regarded as a formalization of what it means to be “reasonably constructive”. Condi-
tion (ii) then suggests we should extend this to higher inductive definitions of all sorts, in which
we can impose path constructors making objects equal in any reasonable way. For instance, in
the next paragraph Conway says:

. . . we could also, for instance, freely create a new object (x, y) and call it the ordered pair of x and y.
We could also create an ordered pair [x, y] different from (x, y) but co-existing with it. . . If instead we
wanted to make (x, y) into an unordered pair, we could define equality by means of the equivalence
relation (x, y) = (z, t) if and only if x = z, y = t or x = t, y = z.

The freedom to introduce new objects with new names, generated by certain forms of construc-
tors, is precisely what we have in the theory of inductive definitions. Just as with our two copies
of the natural numbers N and N′ in §5.2, if we wrote down an identical definition to the cartesian
product type A× B, we would obtain a distinct product type A×′ B whose canonical elements
we could freely write as [x, y]. And we could make one of these a type of unordered pairs by
adding a suitable path constructor.

To be sure, Conway’s point was not to complain about ZF in particular, but to argue against
all foundational theories at once:

. . . this proposal is not of any particular theory as an alternative to ZF. . . What is proposed is instead
that we give ourselves the freedom to create arbitrary mathematical theories of these kinds, but prove
a metatheorem which ensures once and for all that any such theory could be formalized in terms of any
of the standard foundational theories.

One might respond that, in fact, univalent foundations is not one of the “standard foundational
theories” which Conway had in mind, but rather the metatheory in which we may express our
ability to create new theories, and about which we may prove Conway’s metatheorem. For
instance, the surreal numbers are one of the “mathematical theories” Conway has in mind, and
we have seen that they can be constructed and justified inside univalent foundations. Similarly,
Conway remarked earlier that

. . . set theory would be such a theory, sets being constructed from earlier ones by processes correspond-
ing to the usual axioms, and the equality relation being that of having the same members.

This description closely matches the higher-inductive construction of the cumulative hierarchy
of set theory in §10.5. Conway’s metatheorem would then correspond to the fact we have re-
ferred to several times that we can construct a model of univalent foundations inside ZFC (which
is outside the scope of this book).

However, univalent foundations is so rich and powerful in its own right that it would be
foolish to relegate it to only a metatheory in which to construct set-like theories. We have seen
that even at the level of sets (0-types), the higher inductive types in univalent foundations yield
direct constructions of objects by their universal properties (§6.11), such as a constructive theory
of Cauchy completion (§11.3). But most importantly, the potential to model homotopy theory
and category theory directly in the foundational system (Chapters 8 and 9) gives univalent foun-
dations an advantage which no set-theoretic foundation can match.

Notes

Defining algebraic operations on Dedekind reals, especially multiplication, is both somewhat
tricky and tedious. There are several ways to get arithmetic going: each has its own advantages,

390 CHAPTER 11. REAL NUMBERS

but they all seem to require some technical work. For instance, Richman [Ric08] defines mul-
tiplication on the Dedekind reals first on the positive cuts and then extends it algebraically to
all Dedekind cuts, while Conway [Con76] has observed that the definition of multiplication for
surreal numbers works well for Dedekind reals.

Our treatment of the Dedekind reals borrows many ideas from [BT09] where the Dedekind
reals are constructed in the context of Abstract Stone Duality. This is a (restricted) form of simply
typed λ-calculus with a distinguished object Σ which classifies open sets, and by duality also the
closed ones. In [BT09] you can also find detailed proofs of the basic properties of arithmetical
operations.

The fact that Rc is the least Cauchy complete archimedean ordered field, as was proved in
Theorem 11.3.50, indicates that our Cauchy reals probably coincide with the Escardó-Simpson
reals [ES01]. It would be interesting to check whether this is really the case. The notion of Es-
cardó-Simpson reals, or more precisely the corresponding closed interval, is interesting because
it can be stated in any category with finite products.

In constructive set theory augmented by the “regular extension axiom”, one may also try
to define Cauchy completion by closing under limits of Cauchy sequences with a transfinite
iteration. It would also be interesting to check whether this construction agrees with ours.

It is constructive folklore that coincidence of Cauchy and Dedekind reals requires dependent
choice but it is less well known that countable choice suffices. Recall that dependent choice
states that for a total relation R on A, by which we mean ∀(x : A). ∃(y : A). R(x, y), and for any
a : A there merely exists f : N → A such that f (0) = a and R(f (n), f (n + 1)) for all n : N.
Our Corollary 11.4.3 uses the typical trick for converting an application of dependent choice to
one using countable choice. Namely, we use countable choice once to make in advance all the
choices that could come up, and then use the choice function to avoid the dependent choices.

The intricate relationship between various notions of compactness in a constructive setting is
discussed in [BIS02]. Palmgren [Pal07] has a good comparison between pointwise analysis and
pointfree topology.

The surreal numbers were defined by [Con76], using a sort of inductive definition but with-
out justifying it explicitly in terms of any foundational system. For this reason, some later
authors have tended to use sign-expansions or other more explicit presentations which can be
coded more obviously into set theory. The idea of representing them in type theory was first con-
sidered by Hancock, while Setzer and Forsberg [FS12] noted that the surreals and their inequal-
ity relations < and ≤ naturally form an inductive-inductive definition. The higher inductive-
inductive version presented here, which builds in the correct notion of equality for surreals, is
new.

Exercises

Exercise 11.1. Give an alternative definition of the Dedekind reals by first defining the square and
then use Eq. (11.3.45). Check that one obtains a commutative ring.

Exercise 11.2. Suppose we remove the boundedness condition (i) in Definition 11.2.1. Then we
obtain the extended reals which contain −∞ :≡ (0, Q) and ∞ :≡ (Q, 0). Which definitions of
arithmetical operations on cuts still make sense for extended reals? What algebraic structure do
we get?

Exercise 11.3. By considering one-sided cuts we obtain lower and upper Dedekind reals, respec-
tively. For example, a lower real is given by a predicate L : Q→ Ω which is

CHAPTER 11 EXERCISES 391

(i) inhabited: ∃(q : Q). L(q) and
(ii) rounded: L(q) = ∃(r : Q). q < r ∧ L(r).

(We could also require ∃(r : Q).¬L(r) to exclude the cut ∞ :≡ Q.) Which arithmetical operations
can you define on the lower reals? In particular, what happens with the additive inverse?

Exercise 11.4. Suppose we remove the locatedness condition in Definition 11.2.1. Then we obtain
the interval domain I because cuts are allowed to have “gaps”, which are just intervals. Define
the partial order ⊑ on I by

((L, U) ⊑ (L′, U′)) :≡ (∀(q : Q). L(q)⇒ L′(q)) ∧ (∀(q : Q). U(q)⇒ U′(q)).

What are the maximal elements of I with respect to I? Define the “endpoint” operations which
assign to an element of the interval domain its lower and upper endpoints. Are the endpoints
reals, lower reals, or upper reals (see Exercise 11.3)? Which definitions of arithmetical operations
on cuts still make sense for the interval domain?

Exercise 11.5. Show that, for all x, y : Rd,

¬(x < y)⇒ y ≤ x

and
(x ≤ y) ≃

(
∏

ϵ:Q+

x < y + ϵ
)

.

Does ¬(x ≤ y) imply y < x?

Exercise 11.6.

(i) Assuming excluded middle, construct a non-constant map Rd → Z.
(ii) Suppose f : Rd → Z is a map such that f (0) = 0 and f (x) ̸= 0 for all x > 0. Derive from

this the limited principle of omniscience (11.5.8).

Exercise 11.7. Show that in an ordered field F, density of Q and the traditional archimedean
axiom are equivalent:

(∀(x, y : F). x < y⇒ ∃(q : Q). x < q < y)⇔ (∀(x : F). ∃(k : Z). x < k).

Exercise 11.8. Suppose a, b : Q and f : { q : Q | a ≤ q ≤ b } → Rc is Lipschitz with constant L.
Show that there exists a unique extension f̄ : [a, b]→ Rc of f which is Lipschitz with constant L.
Hint: rather than redoing Lemma 11.3.15 for closed intervals, observe that there is a retraction
r : Rc → [−n, n] and apply Lemma 11.3.15 to f ◦ r.

Exercise 11.9. Generalize the construction of Rc to construct the Cauchy completion of any metric
space. First, think about which notion of real numbers is most natural as the codomain for the
distance function of a metric space. Does it matter? Next, work out the details of two construc-
tions:

(i) Follow the construction of Cauchy reals to define the completion of a metric space as an
inductive-inductive type closed under limits of Cauchy sequences.

(ii) Use the following construction due to Lawvere [Law74] and Richman [Ric00], where the
completion of a metric space (M, d) is given as the type of locations. A location is a function
f : M→ R such that

392 CHAPTER 11. REAL NUMBERS

(a) f (x) ≥ | f (y)− d(x, y)| for all x, y : M, and

(b) infx∈M f (x) = 0, by which we mean ∀(ϵ : Q+). ∃(x : M). | f (x)| < ϵ and ∀(x :
M). f (x) ≥ 0.

The idea is that f looks like it is measuring the distance from a point.

Finally, prove the following universal property of metric completions: a locally uniformly con-
tinuous map from a metric space to a Cauchy complete metric space extends uniquely to a locally
uniformly continuous map on the completion. (We say that a map is locally uniformly continu-
ous if it is uniformly continuous on open balls.)

Exercise 11.10. Markov’s principle says that for all f : N→ 2,

(¬¬∃(n : N). f (n) = 12)⇒ ∃(n : N). f (n) = 12.

This is a particular instance of the law of double negation (3.4.2). Show that ∀(x, y : Rd). x ̸=
y⇒ x # y implies Markov’s principle. Does the converse hold as well?

Exercise 11.11. Verify that the following “no zero divisors” property holds for the real numbers:
xy # 0⇔ x # 0∧ y # 0.

Exercise 11.12. Suppose (q1, r1), . . . , (qn, rn) pointwise cover (a, b). Then there is ϵ : Q+ such that
whenever a < x < y < b and |x − y| < ϵ then there merely exists i such that qi < x < ri and
qi < y < ri. Such an ϵ is called a Lebesgue number for the given cover.

Exercise 11.13. Prove the following approximate version of the intermediate value theorem:

If f : [0, 1]→ R is uniformly continuous and f (0) < 0 < f (1) then for every ϵ : Q+ there
merely exists x : [0, 1] such that | f (x)| < ϵ.

Hint: do not try to use the bisection method because it leads to the axiom of choice. Instead,
approximate f with a piecewise linear map. How do you construct a piecewise linear map?

Exercise 11.14. Check whether everything in [Knu74] can be done using the higher inductive-
inductive surreals of §11.6.

Exercise 11.15. Recall the function ιRd
: Rd → No defined on page 381.

(i) Show that ιRd
is injective.

(ii) There are obvious extensions of ιRd
to the extended reals (Exercise 11.2) and the interval

domain (Exercise 11.4). Are they injective?

Exercise 11.16. Show that the function ιOrd : Ord → No defined on page 381 is injective if and
only if LEM holds.

Exercise 11.17. Define a type POrd equipped with binary relations ≤ and < by mimicking the
definition of No but using only left options.

(i) Construct a map j : POrd→ No and show that it is an embedding.
(ii) Show that POrd is an ordinal (in the next higher universe, like Ord) under the relation <.

(iii) Assuming propositional resizing, show that POrd is equivalent to the subset

{ A : Ord | isPlump(A) }

of Ord from Exercise 10.14. Conclude that ιOrd : Ord → No is injective when restricted to
plump ordinals.

CHAPTER 11 EXERCISES 393

In the absence of propositional resizing, we may still refer to elements of POrd (or their images
in No) as plump ordinals.

Exercise 11.18. Define a surreal number to be a pseudo-ordinal if it is equal to a cut { xL
∣∣ } with

no right options (but its left options may themselves have right options). Show that the statement
“every pseudo-ordinal is a plump ordinal” is equivalent to LEM.

Exercise 11.19. Note that Theorem 11.6.7 and Example 11.6.18 both use a similar pattern to define
a function No → No → B: an outer No-recursion whose codomain is the set of order-preserving
functions No→ B, followed by an inner No-induction into a family A : No→ U where A(y) is a
subset of B ensuring that the inequalities xL < x and x < xR are also preserved. Formulate and
prove a general principle of “double No-recursion” that generalizes these proofs.

APPENDIX

Appendix

Formal type theory

Just as one can develop mathematics in set theory without explicitly using the axioms of Zermelo–
Fraenkel set theory, in this book we have developed mathematics in univalent foundations with-
out explicitly referring to a formal system of homotopy type theory. Nevertheless, it is important
to have a precise description of homotopy type theory as a formal system in order to, for example,

• state and prove its metatheoretic properties, including logical consistency,
• construct models, e.g. in simplicial sets, model categories, higher toposes, etc., and
• implement it in proof assistants like COQ or AGDA.

Even the logical consistency of homotopy type theory, namely that in the empty context there is
no term a : 0, is not obvious: if we had erroneously chosen a definition of equivalence for which
0 ≃ 1, then univalence would imply that 0 has an element, since 1 does. Nor is it obvious that,
for example, our definition of S1 as a higher inductive type yields a type which behaves like the
ordinary circle.

There are two aspects of type theory which we must pin down before addressing such ques-
tions. Recall from the Introduction that type theory comprises a set of rules specifying when the
judgments a : A and a ≡ a′ : A hold—for example, products are characterized by the rule that
whenever a : A and b : B, (a, b) : A × B. To make this precise, we must first define precisely
the syntax of terms—the objects a, a′, A, . . . which these judgments relate; then, we must define
precisely the judgments and their rules of inference—the manner in which judgments can be
derived from other judgments.

In this appendix, we present two formulations of Martin-Löf type theory, and of the exten-
sions that constitute homotopy type theory. The first presentation (Appendix A.1) describes the
syntax of terms and the forms of judgments as an extension of the untyped λ-calculus, while
leaving the rules of inference informal. The second (Appendix A.2) defines the terms, judg-
ments, and rules of inference inductively in the style of natural deduction, as is customary in
much type-theoretic literature.

Preliminaries

In Chapter 1, we presented the two basic judgments of type theory. The first, a : A, asserts that
a term a has type A. The second, a ≡ b : A, states that the two terms a and b are judgmentally
equal at type A. These judgments are inductively defined by a set of inference rules described
in Appendix A.2.

398 APPENDIX. A. FORMAL TYPE THEORY

To construct an element a of a type A is to derive a : A; in the book, we give informal
arguments which describe the construction of a, but formally, one must specify a precise term a
and a full derivation that a : A.

However, the main difference between the presentation of type theory in the book and in
this appendix is that here judgments are explicitly formulated in an ambient context, or list of
assumptions, of the form

x1 : A1, x2 : A2, . . . , xn : An.

An element xi : Ai of the context expresses the assumption that the variable xi has type Ai. The
variables x1, . . . , xn appearing in the context must be distinct. We abbreviate contexts with the
letters Γ and ∆.

The judgment a : A in context Γ is written

Γ ⊢ a : A

and means that a : A under the assumptions listed in Γ. When the list of assumptions is empty,
we write simply

⊢ a : A

or
· ⊢ a : A

where · denotes the empty context. The same applies to the equality judgment

Γ ⊢ a ≡ b : A

However, such judgments are sensible only for well-formed contexts, a notion captured by
our third and final judgment

(x1 : A1, x2 : A2, . . . , xn : An) ctx

expressing that each Ai is a type in the context x1 : A1, x2 : A2, . . . , xi−1 : Ai−1. In particu-
lar, therefore, if Γ ⊢ a : A and Γ ctx, then we know that each Ai contains only the variables
x1, . . . , xi−1, and that a and A contain only the variables x1, . . . , xn.

In informal mathematical presentations, the context is implicit. At each point in a proof, the
mathematician knows which variables are available and what types they have, either by histor-
ical convention (n is usually a number, f is a function, etc.) or because variables are explicitly
introduced with sentences such as “let x be a real number”. We discuss some benefits of using
explicit contexts in Appendices A.2.4 and A.2.5.

We write B[a/x] for the substitution of a term a for free occurrences of the variable x in the
term B, with possible capture-avoiding renaming of bound variables, as discussed in §1.2. The
general form of substitution

B[a1, . . . , an/x1, . . . , xn]

substitutes expressions a1, . . . , an for the variables x1, . . . , xn simultaneously.
To bind a variable x in an expression B means to incorporate both of them into a larger ex-

pression, called an abstraction, whose purpose is to express the fact that x is “local” to B, i.e., it is
not to be confused with other occurrences of x appearing elsewhere. Bound variables are famil-
iar to programmers, but less so to mathematicians. Various notations are used for binding, such
as x 7→ B, λx. B, and x . B, depending on the situation. We may write C[a] for the substitution of
a term a for the variable in the abstracted expression, i.e., we may define (x.B)[a] to be B[a/x].

A.1 THE FIRST PRESENTATION 399

As discussed in §1.2, changing the name of a bound variable everywhere within an expression
(“α-conversion”) does not change the expression. Thus, to be very precise, an expression is an
equivalence class of syntactic forms which differ in names of bound variables.

One may also regard each variable xi of a judgment

x1 : A1, x2 : A2, . . . , xn : An ⊢ a : A

to be bound in its scope, consisting of the expressions Ai+1, . . . , An, a, and A.

A.1 The first presentation

The objects and types of our type theory may be written as terms using the following syntax,
which is an extension of λ-calculus with variables x, x′, . . . , primitive constants c, c′, . . . , defined
constants f , f ′, . . . , and term forming operations

t ::= x | λx. t | t(t′) | c | f

The notation used here means that a term t is either a variable x, or it has the form λx. t where x
is a variable and t is a term, or it has the form t(t′) where t and t′ are terms, or it is a primitive
constant c, or it is a defined constant f . The syntactic markers ’λ’, ’(’, ’)’, and ’.’ are punctuation
for guiding the human eye.

We use t(t1, . . . , tn) as an abbreviation for the repeated application t(t1)(t2) . . . (tn). We may
also use infix notation, writing t1 ⋆ t2 for ⋆(t1, t2) when ⋆ is a primitive or defined constant.

Each defined constant has zero, one or more defining equations. There are two kinds of
defined constant. An explicit defined constant f has a single defining equation

f (x1, . . . , xn) :≡ t,

where t does not involve f . For example, we might introduce the explicit defined constant ◦with
defining equation

◦(x, y)(z) :≡ x(y(z)),

and use infix notation x ◦ y for ◦(x, y). This of course is just composition of functions.
The second kind of defined constant is used to specify a (parameterized) mapping f (x1, . . . , xn, x),

where x ranges over a type whose elements are generated by zero or more primitive constants.
For each such primitive constant c there is a defining equation of the form

f (x1, . . . , xn, c(y1, . . . , ym)) :≡ t,

where f may occur in t, but only in such a way that it is clear that the equations determine a
totally defined function. The paradigm examples of such defined functions are the functions
defined by primitive recursion on the natural numbers. We may call this kind of definition of
a function a total recursive definition. In computer science and logic this kind of definition of a
function on a recursive data type has been called a definition by structural recursion.

Convertibility t ↓ t′ between terms t and t′ is the equivalence relation generated by the
defining equations for constants, the computation rule

(λx. t)(u) :≡ t[u/x],

and the rules which make it a congruence with respect to application and λ-abstraction:

400 APPENDIX. A. FORMAL TYPE THEORY

• if t ↓ t′ and s ↓ s′ then t(s) ↓ t′(s′), and
• if t ↓ t′ then (λx. t) ↓ (λx. t′).

The equality judgment t ≡ u : A is then derived by the following single rule:

• if t : A, u : A, and t ↓ u, then t ≡ u : A.

Judgmental equality is an equivalence relation.
Note that the type theory of this presentation diverges from that used in the main body of the

text in not including the judgmental uniqueness principle f ≡ (λx. f (x)) for functions. Such an
equality requires that judgmental equality be sensitive to the type of the terms involved, as this
equality only makes sense when f is known to be a function, whereas in this presentation the
convertibility relation is type-independent. The second presentation in Appendix A.2 includes
the uniqueness principle.

A.1.1 Type universes

We postulate a hierarchy of universes denoted by primitive constants

U0, U1, U2, . . .

The first two rules for universes say that they form a cumulative hierarchy of types:

• Um : Un for m < n,
• if A : Um and m ≤ n, then A : Un,

and the third expresses the idea that an object of a universe can serve as a type and stand to the
right of a colon in judgments:

• if Γ ⊢ A : Un, and x is a new variable,1 then ⊢ (Γ, x : A) ctx.

In the body of the book, an equality judgment A ≡ B : Un between types A and B is usually
abbreviated to A ≡ B. This is an instance of typical ambiguity, as we can always switch to a
larger universe, which however does not affect the validity of the judgment.

The following conversion rule allows us to replace a type by one equal to it in a typing
judgment:

• if a : A and A ≡ B then a : B.

A.1.2 Dependent function types (Π-types)

We introduce a primitive constant cΠ, but write cΠ(A, λx. B) as ∏(x:A) B. Judgments concerning
such expressions and expressions of the form λx. b are introduced by the following rules:

• if Γ ⊢ A : Un and Γ, x : A ⊢ B : Un, then Γ ⊢ ∏(x:A) B : Un

• if Γ, x : A ⊢ b : B then Γ ⊢ (λx. b) : (∏(x:A) B)
• if Γ ⊢ g : ∏(x:A) B and Γ ⊢ t : A then Γ ⊢ g(t) : B[t/x]

If x does not occur freely in B, we abbreviate ∏(x:A) B as the non-dependent function type A→ B
and derive the following rule:

1By “new” we mean that it does not appear in Γ or A.

A.1 THE FIRST PRESENTATION 401

• if Γ ⊢ g : A→ B and Γ ⊢ t : A then Γ ⊢ g(t) : B

Using non-dependent function types and leaving implicit the context Γ, the rules above can be
written in the following alternative style that we use in the rest of this section of the appendix:

• if A : Un and B : A→ Un, then ∏(x:A) B(x) : Un

• if x : A ⊢ b : B(x) then λx. b : ∏(x:A) B(x)

• if g : ∏(x:A) B(x) and t : A then g(t) : B(t)

A.1.3 Dependent pair types (Σ-types)

We introduce primitive constants cΣ and cpair. An expression of the form cΣ(A, λa. B) is written
as ∑(a:A) B, and an expression of the form cpair(a, b) is written as (a, b). We write A× B instead
of ∑(x:A) B if x is not free in B.

Judgments concerning such expressions are introduced by the following rules:

• if A : Un and B : A→ Un, then ∑(x:A) B(x) : Un

• if, in addition, a : A and b : B(a), then (a, b) : ∑(x:A) B(x)

If we have A and B as above, C : (∑(x:A) B(x))→ Um, and

d : ∏(x:A)∏(y:B(x))C((x, y))

we can introduce a defined constant

f : ∏(p:∑(x:A) B(x))C(p)

with the defining equation

f ((x, y)) :≡ d(x, y).

Note that C, d, x, and y may contain extra implicit parameters x1, . . . , xn if they were obtained in
some non-empty context; therefore, the fully explicit recursion schema is

f (x1, . . . , xn, (x(x1, . . . , xn), y(x1, . . . , xn))) :≡ d(x1, . . . , xn, (x(x1, . . . , xn), y(x1, . . . , xn))).

A.1.4 Coproduct types

We introduce primitive constants c+, cinl, and cinr. We write A + B instead of c+(A, B), inl(a)
instead of cinl(a), and inr(a) instead of cinr(a):

• if A, B : Un then A + B : Un

• moreover, inl : A→ A + B and inr : B→ A + B

If we have A and B as above, C : A + B → Um, d : ∏(x:A) C(inl(x)), and e : ∏(y:B) C(inr(y)), then
we can introduce a defined constant f : ∏(z:A+B) C(z) with the defining equations

f (inl(x)) :≡ d(x) and f (inr(y)) :≡ e(y).

402 APPENDIX. A. FORMAL TYPE THEORY

A.1.5 The finite types

We introduce primitive constants ⋆, 0, 1, satisfying the following rules:

• 0 : U0, 1 : U0

• ⋆ : 1

Given C : 0 → Un we can introduce a defined constant f : ∏(x:0) C(x), with no defining
equations.

Given C : 1 → Un and d : C(⋆) we can introduce a defined constant f : ∏(x:1) C(x), with
defining equation f (⋆) :≡ d.

A.1.6 Natural numbers

The type of natural numbers is obtained by introducing primitive constants N, 0, and succ with
the following rules:

• N : U0,

• 0 : N,

• succ : N→N.

Furthermore, we can define functions by primitive recursion. If we have C : N → Uk we can
introduce a defined constant f : ∏(x:N) C(x) whenever we have

d : C(0)

e : ∏(x:N)(C(x)→ C(succ(x)))

with the defining equations

f (0) :≡ d and f (succ(x)) :≡ e(x, f (x)).

A.1.7 W-types

For W-types we introduce primitive constants cW and csup. An expression of the form cW(A, λx. B)
is written as W(x:A)B, and an expression of the form csup(x, u) is written as sup(x, u):

• if A : Un and B : A→ Un, then W(x:A)B(x) : Un

• if moreover, a : A and u : B(a)→ W(x:A)B(x) then sup(a, u) : W(x:A)B(x).

Here also we can define functions by total recursion. If we have A and B as above and C :
(W(x:A)B(x)) → Um, then we can introduce a defined constant f : ∏(z:W(x:A)B(x)) C(z) whenever
we have

d : ∏(a:A)∏(u:B(a)→W(x:A)B(x))((∏(y:B(a))C(u(y)))→ C(sup(a, u)))

with the defining equation

f (sup(a, u)) :≡ d(a, u, f ◦ u).

A.2 THE SECOND PRESENTATION 403

A.1.8 Identity types

We introduce primitive constants c= and crefl . We write a =A b for c=(A, a, b) and refla for
crefl(A, a), when a : A is understood:

• If A : Un, a : A, and b : A then a =A b : Un.
• If a : A then refla : a =A a.

Given a : A, if y : A, z : a =A y ⊢ C : Um and ⊢ d : C[a, refla/y, z] then we can introduce a defined
constant

f : ∏(y:A)∏(z:a=Ay)C

with defining equation
f (a, refla) :≡ d.

A.2 The second presentation

In this section, there are three kinds of judgments

Γ ctx Γ ⊢ a : A Γ ⊢ a ≡ a′ : A

which we specify by providing inference rules for deriving them. A typical inference rule has
the form

J1 · · · Jk

J
NAME

It says that we may derive the conclusion J , provided that we have already derived the hy-
potheses J1, . . . ,Jk. (Note that, being judgments rather than types, these are not hypotheses
internal to the type theory in the sense of §1.1; they are instead hypotheses in the deductive sys-
tem, i.e. the metatheory.) On the right we write the NAME of the rule, and there may be extra
side conditions that need to be checked before the rule is applicable.

A derivation of a judgment is a tree constructed from such inference rules, with the judgment
at the root of the tree. For example, with the rules given below, the following is a derivation of
· ⊢ λx. x : 1→ 1.

· ctx
ctx-EMP

⊢ 1 : U0
1-FORM

x:1 ctx
ctx-EXT

x:1 ⊢ x : 1
Vble

· ⊢ λx. x : 1→ 1
Π-INTRO

A.2.1 Contexts

A context is a list
x1:A1, x2:A2, . . . , xn:An

which indicates that the distinct variables x1, . . . , xn are assumed to have types A1, . . . , An, re-
spectively. The list may be empty. We abbreviate contexts with the letters Γ and ∆, and we may
juxtapose them to form larger contexts.

404 APPENDIX. A. FORMAL TYPE THEORY

The judgment Γ ctx formally expresses the fact that Γ is a well-formed context, and is gov-
erned by the rules of inference

· ctx
ctx-EMP

x1:A1, . . . , xn−1:An−1 ⊢ An : Ui

(x1:A1, . . . , xn:An) ctx
ctx-EXT

with a side condition for the second rule: the variable xn must be distinct from the variables
x1, . . . , xn−1. Note that the hypothesis and conclusion of ctx-EXT are judgments of different forms:
the hypothesis says that in the context of variables x1, . . . , xn−1, the expression An has type Ui;
while the conclusion says that the extended context (x1:A1, . . . , xn:An) is well-formed.

It is a meta-theoretic property of the system that if any judgment of the form Γ ⊢ a : A or
Γ ⊢ a ≡ a′ : A is derivable, then so is the judgment Γ ctx that the context Γ is well-formed.
The premises of all the rules are chosen to include just enough well-formedness hypotheses to
make this property provable, but no more. For instance, it is not necessary for ctx-EXT to hypoth-
esize well-formedness of (x1:A1, . . . , xn−1:An−1), as that will follow from the derivability of its
premise; but it is necessary for the Vble rule in the next section to hypothesize well-formedness
of its context. This choice is only one of the many possible ways to formulate a type theory
precisely, but a detailed investigation of such issues is beyond the scope of this appendix.

A.2.2 Structural rules

The fact that the context holds assumptions is expressed by the rule which says that we may
derive those typing judgments which are listed in the context:

(x1:A1, . . . , xn:An) ctx

x1:A1, . . . , xn:An ⊢ xi : Ai
Vble

As with ctx-EXT, the hypothesis and conclusion of the rule Vble are judgments of different forms,
only now they are reversed: we start with a well-formed context and derive a typing judgment.

The following important principles, called substitution and weakening, need not be ex-
plicitly assumed. Rather, it is possible to show, by induction on the structure of all possible
derivations, that whenever the hypotheses of these rules are derivable, their conclusion is also
derivable.2 For the typing judgments these principles are manifested as

Γ ⊢ a : A Γ, x:A, ∆ ⊢ b : B

Γ, ∆[a/x] ⊢ b[a/x] : B[a/x]
Subst1

Γ ⊢ A : Ui Γ, ∆ ⊢ b : B

Γ, x:A, ∆ ⊢ b : B
Wkg1

and for judgmental equalities they become

Γ ⊢ a : A Γ, x:A, ∆ ⊢ b ≡ c : B

Γ, ∆[a/x] ⊢ b[a/x] ≡ c[a/x] : B[a/x]
Subst2

Γ ⊢ a ≡ b : A Γ, x:A, ∆ ⊢ c : C

Γ, ∆[a/x] ⊢ c[a/x] ≡ c[b/x] : C[a/x]
Subst3

Γ ⊢ A : Ui Γ, ∆ ⊢ b ≡ c : B

Γ, x:A, ∆ ⊢ b ≡ c : B
Wkg2

In addition to the judgmental equality rules given for each type former, we also assume that
judgmental equality is an equivalence relation respected by typing.

2Such rules are called admissible.

A.2 THE SECOND PRESENTATION 405

Γ ⊢ a : A

Γ ⊢ a ≡ a : A

Γ ⊢ a ≡ b : A

Γ ⊢ b ≡ a : A

Γ ⊢ a ≡ b : A Γ ⊢ b ≡ c : A

Γ ⊢ a ≡ c : A

Γ ⊢ a : A Γ ⊢ A ≡ B : Ui

Γ ⊢ a : B

Γ ⊢ a ≡ b : A Γ ⊢ A ≡ B : Ui

Γ ⊢ a ≡ b : B

Finally, we assume that judgmental equality is a congruence respected by typing, i.e., that each
type and term-former preserves judgmental equality in each of its arguments. For instance, along
with the Π-INTRO rule, we assume the rule

Γ ⊢ A : Ui Γ, x:A ⊢ B : Ui Γ, x:A ⊢ b ≡ b′ : B

Γ ⊢ λx. b ≡ λx. b′ : ∏(x:A)B
Π-INTRO-EQ

Completing the case of dependent function types, two similar rules, Π-FORM-EQ and Π-ELIM-
EQ, are assumed. Taken together, these local principles (at every type) imply the global congru-
ence principles Subst2 and Subst3 above. We will omit these local rules for brevity.

A.2.3 Type universes

We postulate an infinite hierarchy of type universes

U0, U1, U2, . . .

Each universe is contained in the next, and any type in Ui is also in Ui+1:

Γ ctx

Γ ⊢ Ui : Ui+1
U -INTRO

Γ ⊢ A : Ui

Γ ⊢ A : Ui+1
U -CUMUL

We shall set up the rules of type theory in such a way that Γ ⊢ a : A implies Γ ⊢ A : Ui for some
i. In other words, if A plays the role of a type then it is in some universe. Another property of
our type system is that Γ ⊢ a ≡ b : A implies Γ ⊢ a : A and Γ ⊢ b : A.

A.2.4 Dependent function types (Π-types)

In §1.2, we introduced non-dependent functions A → B in order to define a family of types as
a function λ(x : A). B : A → Ui, which then gives rise to a type of dependent functions ∏(x:A) B.
But with explicit contexts we may replace λ(x : A). B : A→ Ui with the judgment

x:A ⊢ B : Ui.

Consequently, we may define dependent functions directly, without reference to non-dependent
ones. This way we follow the general principle that each type former, with its constants and
rules, should be introduced independently of all other type formers. In fact, henceforth each
type former is introduced systematically by:

• a formation rule, stating when the type former can be applied;
• some introduction rules, stating how to inhabit the type;
• elimination rules, or an induction principle, stating how to use an element of the type;
• computation rules, which are judgmental equalities explaining what happens when elim-

ination rules are applied to results of introduction rules;

406 APPENDIX. A. FORMAL TYPE THEORY

• optional uniqueness principles, which are judgmental equalities explaining how every
element of the type is uniquely determined by the results of elimination rules applied to it.

(See also Remark 1.5.1.)
For the dependent function type these rules are:

Γ ⊢ A : Ui Γ, x:A ⊢ B : Ui

Γ ⊢ ∏(x:A)B : Ui
Π-FORM

Γ, x:A ⊢ b : B

Γ ⊢ λ(x : A). b : ∏(x:A)B
Π-INTRO

Γ ⊢ f : ∏(x:A)B Γ ⊢ a : A

Γ ⊢ f (a) : B[a/x]
Π-ELIM

Γ, x:A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (λ(x : A). b)(a) ≡ b[a/x] : B[a/x]
Π-COMP

Γ ⊢ f : ∏(x:A)B

Γ ⊢ f ≡ (λx. f (x)) : ∏(x:A)B
Π-UNIQ

The expression λ(x : A). b binds free occurrences of x in b, as does ∏(x:A) B for B.
When x does not occur freely in B so that B does not depend on A, we obtain as a special case

the ordinary function type A→ B :≡ ∏(x:A) B. We take this as the definition of→.
We may abbreviate an expression λ(x : A). b as λx. b, with the understanding that the omitted

type A should be filled in appropriately before type-checking.

A.2.5 Dependent pair types (Σ-types)

In §1.6, we needed→ and ∏ types in order to define the introduction and elimination rules for
∑; as with ∏, contexts allow us to state the rules for ∑ independently. Recall that the elimination
rule for a positive type such as Σ is called induction and denoted by ind.

Γ ⊢ A : Ui Γ, x:A ⊢ B : Ui

Γ ⊢ ∑(x:A)B : Ui
Σ-FORM

Γ, x:A ⊢ B : Ui Γ ⊢ a : A Γ ⊢ b : B[a/x]

Γ ⊢ (a, b) : ∑(x:A)B
Σ-INTRO

Γ, z:∑(x:A)B ⊢ C : Ui Γ, x:A, y:B ⊢ g : C[(x, y)/z] Γ ⊢ p : ∑(x:A)B

Γ ⊢ ind∑(x:A) B(z.C, x.y.g, p) : C[p/z]
Σ-ELIM

Γ, z:∑(x:A)B ⊢ C : Ui Γ, x:A, y:B ⊢ g : C[(x, y)/z]
Γ ⊢ a : A Γ ⊢ b : B[a/x]

Γ ⊢ ind∑(x:A) B(z.C, x.y.g, (a, b)) ≡ g[a, b/x, y] : C[(a, b)/z]
Σ-COMP

The expression ∑(x:A) B binds free occurrences of x in B. Furthermore, because ind∑(x:A) B has
some arguments with free variables beyond those in Γ, we bind (following the variable names
above) z in C, and x and y in g. These bindings are written as z.C and x.y.g, to indicate the names
of the bound variables. In particular, we treat ind∑(x:A) B as a primitive, two of whose arguments
contain binders; this is superficially similar to, but different from, ind∑(x:A) B being a function that
takes functions as arguments.

A.2 THE SECOND PRESENTATION 407

When B does not contain free occurrences of x, we obtain as a special case the cartesian
product A× B :≡ ∑(x:A) B. We take this as the definition of the cartesian product.

Notice that we don’t postulate a judgmental uniqueness principle for Σ-types, even though
we could have; see Corollary 2.7.3 for a proof of the corresponding propositional uniqueness
principle.

A.2.6 Coproduct types

Γ ⊢ A : Ui Γ ⊢ B : Ui

Γ ⊢ A + B : Ui
+-FORM

Γ ⊢ A : Ui Γ ⊢ B : Ui
Γ ⊢ a : A

Γ ⊢ inl(a) : A + B
+-INTRO1

Γ ⊢ A : Ui Γ ⊢ B : Ui
Γ ⊢ b : B

Γ ⊢ inr(b) : A + B
+-INTRO2

Γ, z:(A + B) ⊢ C : Ui
Γ, x:A ⊢ c : C[inl(x)/z] Γ, y:B ⊢ d : C[inr(y)/z]

Γ ⊢ e : A + B

Γ ⊢ indA+B(z.C, x.c, y.d, e) : C[e/z]
+-ELIM

Γ, z:(A + B) ⊢ C : Ui Γ, x:A ⊢ c : C[inl(x)/z] Γ, y:B ⊢ d : C[inr(y)/z]
Γ ⊢ a : A

Γ ⊢ indA+B(z.C, x.c, y.d, inl(a)) ≡ c[a/x] : C[inl(a)/z]
+-COMP1

Γ, z:(A + B) ⊢ C : Ui Γ, x:A ⊢ c : C[inl(x)/z] Γ, y:B ⊢ d : C[inr(y)/z]
Γ ⊢ b : B

Γ ⊢ indA+B(z.C, x.c, y.d, inr(b)) ≡ d[b/y] : C[inr(b)/z]
+-COMP2

In indA+B, z is bound in C, x is bound in c, and y is bound in d.

A.2.7 The empty type 0

Γ ctx

Γ ⊢ 0 : Ui
0-FORM

Γ, x:0 ⊢ C : Ui Γ ⊢ a : 0

Γ ⊢ ind0(x.C, a) : C[a/x]
0-ELIM

In ind0, x is bound in C. The empty type has no introduction rule and no computation rule.

A.2.8 The unit type 1

Γ ctx

Γ ⊢ 1 : Ui
1-FORM

Γ ctx

Γ ⊢ ⋆ : 1
1-INTRO

Γ, x:1 ⊢ C : Ui Γ ⊢ c : C[⋆/x] Γ ⊢ a : 1

Γ ⊢ ind1(x.C, c, a) : C[a/x]
1-ELIM

Γ, x:1 ⊢ C : Ui Γ ⊢ c : C[⋆/x]

Γ ⊢ ind1(x.C, c, ⋆) ≡ c : C[⋆/x]
1-COMP

In ind1 the variable x is bound in C.
Notice that we do not postulate a judgmental uniqueness principle for the unit type; see §1.5

for a proof of the corresponding propositional uniqueness statement.

408 APPENDIX. A. FORMAL TYPE THEORY

A.2.9 The natural number type

We give the rules for natural numbers, following §1.9.

Γ ctx

Γ ⊢N : Ui
N-FORM

Γ ctx

Γ ⊢ 0 : N
N-INTRO1

Γ ⊢ n : N

Γ ⊢ succ(n) : N
N-INTRO2

Γ, x:N ⊢ C : Ui Γ ⊢ c0 : C[0/x] Γ, x:N, y:C ⊢ cs : C[succ(x)/x] Γ ⊢ n : N

Γ ⊢ indN(x.C, c0, x.y.cs, n) : C[n/x]
N-ELIM

Γ, x:N ⊢ C : Ui Γ ⊢ c0 : C[0/x] Γ, x:N, y:C ⊢ cs : C[succ(x)/x]

Γ ⊢ indN(x.C, c0, x.y.cs, 0) ≡ c0 : C[0/x]
N-COMP1

Γ, x:N ⊢ C : Ui Γ ⊢ c0 : C[0/x] Γ, x:N, y:C ⊢ cs : C[succ(x)/x] Γ ⊢ n : N

Γ ⊢ indN(x.C, c0, x.y.cs, succ(n))

≡ cs[n, indN(x.C, c0, x.y.cs, n)/x, y] : C[succ(n)/x]

N-COMP2

In indN, x is bound in C, and x and y are bound in cs.
Other inductively defined types follow the same general scheme.

A.2.10 Identity types

The presentation here corresponds to the (unbased) path induction principle for identity types
in §1.12.

Γ ⊢ A : Ui Γ ⊢ a : A Γ ⊢ b : A

Γ ⊢ a =A b : Ui
=-FORM

Γ ⊢ A : Ui Γ ⊢ a : A

Γ ⊢ refla : a =A a
=-INTRO

Γ, x:A, y:A, p:x =A y ⊢ C : Ui
Γ, z:A ⊢ c : C[z, z, reflz/x, y, p] Γ ⊢ a : A Γ ⊢ b : A Γ ⊢ p′ : a =A b

Γ ⊢ ind=A(x.y.p.C, z.c, a, b, p′) : C[a, b, p′/x, y, p]
=-ELIM

Γ, x:A, y:A, p:x =A y ⊢ C : Ui Γ, z:A ⊢ c : C[z, z, reflz/x, y, p] Γ ⊢ a : A

Γ ⊢ ind=A(x.y.p.C, z.c, a, a, refla) ≡ c[a/z] : C[a, a, refla/x, y, p]
=-COMP

In ind=A , x, y, and p are bound in C, and z is bound in c.

A.2.11 Definitions

Although the rules we have listed so far allow us to construct everything we need directly, we
would still like to be able to use named constants, such as isequiv, as a matter of convenience.
Informally, we can think of these constants simply as abbreviations, but the situation is a bit
subtler in the formalization.

For example, consider function composition, which takes f : A → B and g : B → C to
g ◦ f : A → C. Somewhat unexpectedly, to make this work formally, ◦ must take as arguments
not only f and g, but also their types A, B, C:

◦ :≡ λ(A :Ui). λ(B :Ui). λ(C :Ui). λ(g : B→ C). λ(f : A→ B). λ(x : A). g(f (x)).

A.3 HOMOTOPY TYPE THEORY 409

From a practical perspective, we do not want to annotate each application of ◦ with A, B and C,
as they are usually quite easily guessed from surrounding information. We would like to simply
write g ◦ f . Then, strictly speaking, g ◦ f is not an abbreviation for λ(x : A). g(f (x)), because it
involves additional implicit arguments which we want to suppress.

Inference of implicit arguments, typical ambiguity (§1.3), ensuring that symbols are only de-
fined once, etc., are collectively called elaboration. Elaboration must take place prior to check-
ing a derivation, and is thus not usually presented as part of the core type theory. However,
it is essentially impossible to use any implementation of type theory which does not perform
elaboration; see [Coq12, Nor07] for further discussion.

A.3 Homotopy type theory

In this section we state the additional axioms of homotopy type theory which distinguish it
from standard Martin-Löf type theory: function extensionality, the univalence axiom, and higher
inductive types. We state them in the style of the second presentation Appendix A.2, although
the first presentation Appendix A.1 could be used just as well.

A.3.1 Function extensionality and univalence

There are two basic ways of introducing axioms which do not introduce new syntax or judgmen-
tal equalities (function extensionality and univalence are of this form): either add a primitive
constant to inhabit the axiom, or prove all theorems which depend on the axiom by hypothesiz-
ing a variable that inhabits the axiom, cf. §1.1. While these are essentially equivalent, we opt for
the former approach because we feel that the axioms of homotopy type theory are an essential
part of the core theory.

Axiom 2.9.3 is formalized by introduction of a constant funext which asserts that happly is an
equivalence:

Γ ⊢ f : ∏(x:A)B Γ ⊢ g : ∏(x:A)B

Γ ⊢ funext(f , g) : isequiv(happly f ,g)
Π-EXT

The definitions of happly and isequiv can be found in (2.9.2) and §4.5, respectively.
Axiom 2.10.3 is formalized in a similar fashion, too:

Γ ⊢ A : Ui Γ ⊢ B : Ui

Γ ⊢ univalence(A, B) : isequiv(idtoeqvA,B)
Ui-UNIV

The definition of idtoeqv can be found in (2.10.2).

A.3.2 The circle

Here we give an example of a basic higher inductive type; others follow the same general scheme,
albeit with elaborations.

Note that the rules below do not precisely follow the pattern of the ordinary inductive types
in Appendix A.2: the rules refer to the notions of transport and functoriality of maps (§2.2), and
the second computation rule is a propositional, not judgmental, equality. These differences are
discussed in §6.2.

410 APPENDIX. A. FORMAL TYPE THEORY

Γ ctx

Γ ⊢ S1 : Ui
S1-FORM

Γ ctx

Γ ⊢ base : S1 S1-INTRO1
Γ ctx

Γ ⊢ loop : base =S1 base
S1-INTRO2

Γ, x:S1 ⊢ C : Ui Γ ⊢ b : C[base/x] Γ ⊢ ℓ : b =C
loop b Γ ⊢ p : S1

Γ ⊢ indS1(x.C, b, ℓ, p) : C[p/x]
S1-ELIM

Γ, x:S1 ⊢ C : Ui Γ ⊢ b : C[base/x] Γ ⊢ ℓ : b =C
loop b

Γ ⊢ indS1(x.C, b, ℓ, base) ≡ b : C[base/x]
S1-COMP1

Γ, x:S1 ⊢ C : Ui Γ ⊢ b : C[base/x] Γ ⊢ ℓ : b =C
loop b

Γ ⊢ S1-loopcomp : apd(λy. ind
S1 (x.C,b,ℓ,y))(loop) = ℓ

S1-COMP2

In indS1 , x is bound in C. The notation b =C
loop b for dependent paths was introduced in §6.2.

A.4 Basic metatheory

This section discusses the meta-theoretic properties of the type theory presented in Appendix A.1,
and similar results hold for Appendix A.2. Figuring out which of these still hold when we add
the features from Appendix A.3 quickly leads to open questions, as discussed at the end of this
section.

Recall that Appendix A.1 defines the terms of type theory as an extension of the untyped
λ-calculus. The λ-calculus has its own notion of computation, namely the computation rule:

(λx. t)(u) :≡ t[u/x].

This rule, together with the defining equations for the defined constants form rewriting rules that
determine reduction steps for a rewriting system. These steps yield a notion of computation
in the sense that each rule has a natural direction: one simplifies (λx. t)(u) by evaluating the
function at its argument.

Moreover, this system is confluent, that is, if a simplifies in some number of steps to both a′

and a′′, there is some b to which both a′ and a′′ eventually simplify. Thus we can define t ↓ u to
mean that t and u simplify to the same term.

(The situation is similar in Appendix A.2: Although there we presented the computation
rules as undirected equalities ≡, we can give an operational semantics by saying that the appli-
cation of an eliminator to an introductory form simplifies to its equal, not the other way around.)

Using standard techniques from type theory, it is possible to show that the system in Ap-
pendix A.1 has the following properties:

Theorem A.4.1. If A : U and A ↓ A′ then A′ : U . If t : A and t ↓ t′ then t′ : A.

We say that a term is normalizable (respectively, strongly normalizable) if some (respec-
tively, every), sequence of rewriting steps from the term terminates.

Theorem A.4.2. If A : U then A is strongly normalizable. If t : A then A and t are strongly normaliz-
able.

We say that a term is in normal form if it cannot be further simplified, and that a term is
closed if no variable occurs freely in it. A closed normal type has to be a primitive type, i.e.,
of the form c(⃗v) for some primitive constant c (where the list v⃗ of closed normal terms may be
omitted if empty, for instance, as with N). In fact, we can explicitly describe all normal forms:

APPENDIX A NOTES 411

Lemma A.4.3. The terms in normal form can be described by the following syntax:

v ::= k | λx. v | c(⃗v) | f (⃗v),

k ::= x | k(v) | f (⃗v)(k),

where f (⃗v) represents a partial application of the defined function f . In particular, a type in normal form
is of the form k or c(⃗v).

Theorem A.4.4. If A is in normal form then the judgment A : U is decidable. If A : U and t is in normal
form then the judgment t : A is decidable.

Logical consistency (of the system in Appendix A.1) follows immediately: if we had a : 0 in
the empty context, then by Theorems A.4.1 and A.4.2, a simplifies to a normal term a′ : 0. But by
Lemma A.4.3 no such term exists.

Corollary A.4.5. The system in Appendix A.1 is logically consistent.

Similarly, we have the canonicity property that if a : N in the empty context, then a simplifies
to a normal term succk(0) for some numeral k.

Corollary A.4.6. The system in Appendix A.1 has the canonicity property.

Finally, if a, A are in normal form, it is decidable whether a : A; in other words, because type-
checking amounts to verifying the correctness of a proof, this means we can always “recognize
a correct proof when we see one”.

Corollary A.4.7. The property of being a proof in the system in Appendix A.1 is decidable.

The above results do not apply to the extended system of homotopy type theory (i.e., the
above system extended by Appendix A.3), since occurrences of the univalence axiom and con-
structors of higher inductive types never simplify, breaking Lemma A.4.3. It is an open question
whether one can simplify applications of these constants in order to restore canonicity. We also
do not have a schema describing all permissible higher inductive types, nor are we certain how
to correctly formulate their rules (e.g., whether the computation rules on higher constructors
should be judgmental equalities).

The consistency of Martin-Löf type theory extended with univalence and higher inductive
types could be shown by inventing an appropriate normalization procedure, but currently the
only proofs that these systems are consistent are via semantic models—for univalence, a model
in Kan complexes due to Voevodsky [KLV12], and for higher inductive types, a model due to
Lumsdaine and Shulman [LS17].

Other metatheoretic issues, and a summary of our current results, are discussed in greater
length in the “Constructivity” and “Open problems” sections of the introduction to this book.

Notes

The system of rules with introduction (primitive constants) and elimination and computation
rules (defined constant) is inspired by Gentzen natural deduction. The possibility of strengthen-
ing the elimination rule for existential quantification was indicated in [How80]. The strengthen-
ing of the axioms for disjunction appears in [ML98], and for absurdity elimination and identity

412 APPENDIX. A. FORMAL TYPE THEORY

type in [ML75]. The W-types were introduced in [ML82]. They generalize a notion of trees
introduced by [Tai68].

The generalized form of primitive recursion for natural numbers and ordinals appear in
[Hil26]. This motivated Gödel’s system T, [Göd58], which was analyzed by [Tai67], who used,
following [Göd58], the terminology “definitional equality” for conversion: two terms are judg-
mentally equal if they reduce to a common term by means of a sequence of applications of the
reduction rules. This terminology was also used by de Bruijn [dB73] in his presentation of AU-
TOMATH.

Our second presentation comprises fairly standard presentation of intensional Martin-Löf
type theory, with some additional features needed in homotopy type theory. Compared to a
reference presentation of [Hof97], the type theory of this book has a few non-critical differences:

• universes à la Russell, in the sense of [ML84]; and
• judgmental η and function extensionality for Π types;

and a few features essential for homotopy type theory:

• the univalence axiom; and
• higher inductive types.

As a matter of convenience, the book primarily defines functions by induction using definition
by pattern matching. It is possible to formalize the notion of pattern matching, as done in Ap-
pendix A.1. However, the standard type-theoretic presentation, adopted in Appendix A.2, is to
introduce a single dependent eliminator for each type former, from which functions out of that
type must be defined. This approach is easier to formalize both syntactically and semantically,
as it amounts to the universal property of the type former. The two approaches are equivalent;
see §1.10 for a longer discussion.

Bibliography

[AB04] Steven Awodey and Andrej Bauer. Propositions as [types]. Journal of Logic and Computation,
14(4):447–471, 2004. (Cited on pages 117, 203, and 234.)

[Acz78] Peter Aczel. The type theoretic interpretation of constructive set theory. In A. MacIntyre,
L. Pacholski, and J. Paris, editors, Logic Colloquium ’77, volume 96 of Studies in Logic and the
Foundations of Mathematics, pages 55–66. North-Holland, Amsterdam, 1978. (Cited on pages
341 and 342.)

[AG02] Peter Aczel and Nicola Gambino. Collection principles in dependent type theory. In Paul
Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack, editors, Types for Proofs and
Programs, International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Selected Pa-
pers, volume 2277 of Lecture Notes in Computer Science, pages 1–23. Springer, 2002. (Cited on
page 117.)

[AGS12] Steve Awodey, Nicola Gambino, and Kristina Sojakova. Inductive types in homotopy type
theory. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Sci-
ence, pages 95–104. IEEE Computer Society, 2012, arXiv:1201.3898. (Cited on page 163.)

[AKL13] Jeremy Avigad, Krzysztof Kapulkin, and Peter LeFanu Lumsdaine. Homotopy limits in Coq,
2013. arXiv:1304.0680. (Cited on page 97.)

[AKS13] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the
Rezk completion, 2013. arXiv:1303.0584. (Cited on page 313.)

[Alt99] Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2–5, 1999, pages 412–420, 1999. (Cited
on page 204.)

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now! In
Aaron Stump and Hongwei Xi, editors, Proceedings of the ACM Workshop Programming Lan-
guages meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007, 2007. (Cited
on page 204.)

[Ang13] Carlo Angiuli. The (∞, 1)-accidentopos model of unintentional type theory. Sigbovik ’13, April
1 2013. (No citations.)

[AW09] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types. Math-
ematical Proceedings of the Cambridge Philosophical Society, 146:45–55, 2009. (Cited on pages 3
and 96.)

[Bau13] Andrej Bauer. Five stages of accepting constructive mathematics, 2013. http://video.
ias.edu/members/1213/0318-AndrejBauer. (No citations.)

[BCH13] Bruno Barras, Thierry Coquand, and Simon Huber. A generalization of Takeuti-Gandy inter-
pretation. https://ncatlab.org/ufias2012/files/semi.pdf, 2013. (Cited on page
10.)

[Bee85] Michael Beeson. Foundations of Constructive Mathematics. Springer, 1985. (Cited on page 51.)

http://arxiv.org/abs/1304.0680/
http://arxiv.org/abs/1303.0584/
http://video.ias.edu/members/1213/0318-AndrejBauer
http://video.ias.edu/members/1213/0318-AndrejBauer
https://ncatlab.org/ufias2012/files/semi.pdf

414

[Ber09] Julia E. Bergner. A survey of (∞, 1)-categories. In John C. Baez and J. Peter May, editors,
Towards Higher Categories, volume 152 of The IMA Volumes in Mathematics and its Applications,
pages 69–83. Springer, 2009, arXiv:math.CT/0610239. (Cited on page 313.)

[Bis67] Erret Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967.
(Cited on pages 342 and 373.)

[BIS02] Douglas Bridges, Hajime Ishihara, and Peter Schuster. Compactness and continuity, construc-
tively revisited. In Julian C. Bradfield, editor, Computer Science Logic, 16th International Work-
shop, CSL 2002, 11th Annual Conference of the EACSL, Edinburgh, Scotland, UK, September 22-25,
2002, Proceedings, volume 2471 of Lecture Notes in Computer Science, pages 89–102. Springer,
2002. (Cited on page 390.)

[Bla83] Andreas Blass. Words, free algebras, and coequalizers. Fundamenta Mathematicae, 117(2):117–
160, 1983. (Cited on page 196.)

[Bla79] Georges Blanc. Équivalence naturelle et formules logiques en théorie des catégories. Archiv für
Mathematische Logik und Grundlagenforschung, 19(3-4):131–137, 1978/79. (Cited on page 313.)

[Bou68] Nicolas Bourbaki. Theory of Sets. Hermann, Paris, 1968. (Cited on page 96.)

[BSP11] Clark Barwick and Christopher Schommer-Pries. On the unicity of the homotopy theory of
higher categories, 2011. arXiv:1112.0040. (Cited on page 288.)

[BT09] Andrej Bauer and Paul Taylor. The Dedekind reals in abstract Stone duality. Mathematical
structures in computer science, 19(4):757–838, 2009. (Cited on page 390.)

[Bun79] Marta Bunge. Stack completions and Morita equivalence for categories in a topos. Cahiers de
Topologie et Géométrie Différentielle, 20(4):401–436, 1979. (Cited on page 314.)

[CAB+86] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, Robert W.
Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and
Scott F. Smith. Implementing Mathematics with the NuPRL Proof Development System. Prentice
Hall, 1986. (Cited on pages 51, 53, 117, and 203.)

[Car95] Aurelio Carboni. Some free constructions in realizability and proof theory. Journal of Pure and
Applied Algebra, 103:117–148, 1995. (Cited on page 204.)

[CDP14] Jesper Cockx, Dominique Devriese, and Frank Piessens. Pattern matching without K. In
Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, ICFP
2014, Gothenburg, Sweden, September 1-3, 2014, 2014. (Cited on page 52.)

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68,
1940. (Cited on page 2.)

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941. (Cited on
page 2.)

[CM85] Robert L. Constable and N. P. Mendler. Recursive definitions in type theory. In Rohit Parikh,
editor, Logics of Programs, Conference, Brooklyn College, June 17–19, 1985, Proceedings, volume
193 of Lecture Notes in Computer Science, pages 61–78, 1985. (Cited on page 163.)

[Con76] John H. Conway. On numbers and games. A K Peters Ltd., 1976. (Cited on pages 379, 388,
and 390.)

[Con85] Robert L. Constable. Constructive mathematics as a programming logic I: Some principles
of theory. In Annals of Mathematics, volume 24, pages 21–37. Elsevier Science Publishers, B.V.
(North-Holland), 1985. Reprinted from Topics in the Theory of Computation, Selected Papers of
the International Conference on Foundations of Computation Theory, FCT ’83. (Cited on page
117.)

http://arxiv.org/abs/1112.0040/

BIBLIOGRAPHY 415

[Coq92a] Thierry Coquand. The paradox of trees in type theory. BIT Numerical Mathematics, 32(1):10–14,
1992. (Cited on page 23.)

[Coq92b] Thierry Coquand. Pattern matching with dependent types. In Proceedings of the Workshop on
Types for Proofs and Programs, pages 71–83, 1992. (Cited on page 52.)

[Coq12] Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA-Rocquencourt, 2012.
(Cited on pages 51 and 409.)

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types. In COLOG-88 (Tallinn,
1988), volume 416 of Lecture Notes in Computer Science, pages 50–66. Springer, 1990. (Cited on
page 163.)

[dB73] Nicolaas Govert de Bruijn. AUTOMATH, a language for mathematics. Les Presses de l’Université
de Montréal, Montreal, Quebec, 1973. Séminaire de Mathématiques Supérieures, No. 52 (Été
1971). (Cited on pages 51, 52, and 412.)

[Dia75] Radu Diaconescu. Axiom of choice and complementation. Proceedings of the American Mathe-
matical Society, 51:176–178, 1975. (Cited on page 342.)

[dPGM04] Valeria de Paiva, Rajeev Goré, and Michael Mendler. Modalities in constructive logics and
type theories. Journal of Logic and Computation, 14(4):439–446, 2004. (Cited on page 234.)

[Dyb91] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic
semantics. In Gerard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 280–30.
Cambridge University Press, 1991. (Cited on page 163.)

[Dyb00] Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type
theory. Journal of Symbolic Logic, 65(2):525–549, 2000. (Cited on page 163.)

[ES01] Martı́n Hötzel Escardó and Alex K. Simpson. A universal characterization of the closed Eu-
clidean interval. In 16th Annual IEEE Symposium on Logic in Computer Science, Boston, Mas-
sachusetts, USA, June 16-19, 2001, Proceedings, pages 115–125. IEEE Computer Society, 2001.
(Cited on page 390.)

[EucBC] Euclid. Elements, Vols. 1–13. Elsevier, 300 BC. (Cited on page 57.)

[Fre76] Peter Freyd. Properties invariant within equivalence types of categories. In Algebra, topology,
and category theory (a collection of papers in honor of Samuel Eilenberg), pages 55–61. Academic
Press, 1976. (Cited on page 313.)

[FS12] Fredrik Nordvall Forsberg and Anton Setzer. A finite axiomatisation of inductive-inductive
definitions. http://cs.swan.ac.uk/˜csfnf/papers/indind_finite.pdf, 2012.
(Cited on page 390.)

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garil-
lot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Lau-
rence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Thery. A machine-checked proof of
the odd order theorem. In Interactive Theorem Proving, 2013. (Cited on page 6.)

[Gar09] Richard Garner. On the strength of dependent products in the type theory of Martin-Löf.
Annals of Pure and Applied Logic, 160(1):1–12, 2009. (Cited on page 96.)

[Gen36] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen,
112(1):493–565, 1936. (Cited on page 342.)

[Göd58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica. International Journal of Philosophy, 12:280–287, 1958. (Cited on page 412.)

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. http://www.math.
cornell.edu/˜hatcher/AT/ATpage.html. (Cited on page 282.)

http://cs.swan.ac.uk/~csfnf/papers/indind_finite.pdf
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

416

[Hed98] Michael Hedberg. A coherence theorem for Martin-Löf’s type theory. Journal of Functional
Programming, 8(4):413–436, 1998. (Cited on page 233.)

[Hey66] Arend Heyting. Intuitionism: an introduction. Studies in logic and the foundations of mathe-
matics. North-Holland Pub. Co., 1966. (Cited on page 51.)

[Hil26] David Hilbert. Über das Unendliche. Mathematische Annalen, 95(1):161–190, 1926. (Cited on
page 412.)

[Hof95] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, University of
Edinburgh, 1995. (Cited on page 204.)

[Hof97] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and logics of com-
putation, volume 14 of Publictions of the Newton Institute, pages 79–130. Cambridge University
Press, Cambridge, 1997. (Cited on page 412.)

[How80] William A. Howard. The formulae-as-types notion of construction. In J. Roger Seldin,
Jonathan P.; Hindley, editor, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479–490. Academic Press, 1980. original paper manuscript from 1969. (Cited
on pages 51, 52, 96, and 411.)

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Gio-
vanni Sambin and Jan M. Smith, editors, Twenty-five years of constructive type theory (Venice,
1995), volume 36 of Oxford Logic Guides, pages 83–111. Oxford University Press, New York,
1998. (Cited on pages 4, 96, and 313.)

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems: Abstract properties and applications to term rewriting systems. Journal of the ACM,
27(4):797–821, 1980. (Cited on page 342.)

[Jac99] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the Foundations
of Mathematics. Elsevier, 1999. (Cited on page 117.)

[JM95] A. Joyal and I. Moerdijk. Algebraic set theory, volume 220 of London Mathematical Society Lecture
Note Series. Cambridge University Press, 1995. (Cited on pages 342 and 344.)

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium: Volumes 1 and 2.
Number 43 in Oxford Logic Guides. Oxford Science Publications, 2002. (Cited on pages 117
and 321.)

[JT91] André Joyal and Myles Tierney. Strong stacks and classifying spaces. In Category Theory.
Proceedings of the International Conference held in Como, Italy, July 22–28, 1990, volume 1488 of
Lecture Notes in Mathematics, pages 213–236. Springer, Berlin, 1991. (Cited on page 314.)

[KECA13] Nicolai Kraus, Martın Escardó, Thierry Coquand, and Thorsten Altenkirch. Generalizations of
Hedberg’s theorem. In Masahito Hasegawa, editor, 11th International Conference, Typed Lambda
Calculus and Applications 2013, Eindhoven, The Netherlands, June 26–28, 2013. Proceedings, vol-
ume 7941 of Lecture Notes in Computer Science, pages 173–188. Springer Berlin Heidelberg,
2013. (Cited on pages 118 and 233.)

[KLN04] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern Perspective on Type Theory:
From its Origins until Today. Number 29 in Applied Logic. Kluwer, 2004. (Cited on page 2.)

[KLV12] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model of
univalent foundations, 2012. arXiv:1211.2851. (Cited on pages 10, 96, 163, and 411.)

[Knu74] Donald Ervin Knuth. Surreal Numbers. Addison-Wesley, 1974. (Cited on page 392.)

[Kol32] Andrey Kolmogorov. Zur Deutung der intuitionistischen Logik. Mathematische Zeitschrift,
35:58–65, 1932. (Cited on page 8.)

http://arxiv.org/abs/1211.2851/

BIBLIOGRAPHY 417

[Law74] F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del
Seminario Matematico e Fisico di Milano, 43:135–166, 1974. Reprinted as Reprints in Theory and
Applications of Categories 1:1–37, 2002. (Cited on page 391.)

[Law05] F. William Lawvere. An elementary theory of the category of sets (long version) with commen-
tary. Reprints in Theory and Applications of Categories, 11:1–35, 2005. Reprinted and expanded
from Proc. Nat. Acad. Sci. U.S.A. 52 (1964), With comments by the author and Colin McLarty.
(Cited on pages 6, 325, and 342.)

[Law06] F. William Lawvere. Adjointness in foundations. Reprints in Theory and Applications of Cate-
gories, 16:1–16, 2006. Reprinted from Dialectica 23 (1969). (Cited on pages 51 and 163.)

[LH12] Daniel R. Licata and Robert Harper. Canonicity for 2-dimensional type theory. In Proceedings
of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 337–348, New York, NY, USA, 2012. ACM. (Cited on pages 9, 10, and 96.)

[LS13] Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the circle in
homotopy type theory. In LICS 2013: Proceedings of the Twenty-Eighth Annual ACM/IEEE Sym-
posium on Logic in Computer Science, 2013. (Cited on page 96.)

[LS17] Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types.
arXiv:1705.07088, 2017. (Cited on pages 10, 163, 203, and 411.)

[Lum10] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. Typed lambda calculi
and applications, 6:1–19, 2010. arXiv:0812.0409. (Cited on page 96.)

[Lur09] Jacob Lurie. Higher topos theory. Number 170 in Annals of Mathematics Studies. Princeton
University Press, 2009. arXiv:math.CT/0608040. (Cited on pages 9, 137, 234, and 277.)

[Mak95] Michael Makkai. First order logic with dependent sorts, with applications to category theory.
http://www.math.mcgill.ca/makkai/folds/, 1995. (Cited on page 313.)

[Mak01] Michael Makkai. On comparing definitions of weak n-category. http://www.math.
mcgill.ca/makkai/, August 2001. (Cited on page 313.)

[ML71] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In
Proceedings of the Second Scandinavian Logic Symposium (University of Oslo 1970), volume 63 of
Studies in Logic and the Foundations of Mathematics, pages 179–216. North-Holland, 1971. (Cited
on page 163.)

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.
Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80 of
Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland, 1975. (Cited
on pages 2, 51, 53, 95, 163, and 412.)

[ML82] Per Martin-Löf. Constructive mathematics and computer programming. In L. Jonathan Co-
hen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic, Methodology and
Philosophy of Science VI, Proceedings of the Sixth International Congress of Logic, Methodology and
Philosophy of Science, Hannover 1979, volume 104 of Studies in Logic and the Foundations of Math-
ematics, pages 153–175. North-Holland, 1982. (Cited on pages 2, 51, 163, and 412.)

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis, 1984.
Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980. (Cited on pages
2, 51, 52, and 412.)

[ML98] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and Jan M. Smith,
editors, Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic
Guides, pages 127–172. Oxford University Press, 1998. (Cited on pages 2, 51, 52, and 411.)

[ML06] Per Martin-Löf. 100 years of Zermelo’s axiom of choice: what was the problem with it? The
Computer Journal, 49(3):345–350, 2006. (Cited on page 117.)

http://arxiv.org/abs/0812.0409/
http://arxiv.org/abs/math.CT/0608040
http://www.math.mcgill.ca/makkai/folds/
http://www.math.mcgill.ca/makkai/
http://www.math.mcgill.ca/makkai/

418

[Mog89] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1989. (Cited on page 234.)

[MP00] Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. In Proceedings of the Work-
shop on Proof Theory and Complexity, PTAC’98 (Aarhus), volume 104, pages 189–218, 2000. (Cited
on page 163.)

[MP02] Ieke Moerdijk and Erik Palmgren. Type theories, toposes and constructive set theory: pred-
icative aspects of AST. Annals of Pure and Applied Logic, 114(1–3):155–201, 2002. (Cited on page
342.)

[MRR88] Ray Mines, Fred Richman, and Wim Ruitenburg. A course in constructive algebra. Springer-
Verlag, 1988. (Cited on page 342.)

[MS05] Maria Emilia Maietti and Giovanni Sambin. Toward a minimalist foundation for constructive
mathematics. In Laura Crosilla and Peter Schuster, editors, From Sets and Types to Topology and
Analysis: Practicable Foundations for Constructive Mathematics, volume 48 of Oxford Logic Guides,
pages 91–114. Clarendon Press, 2005. (Cited on page 117.)

[Nor88] Bengt Nordström. Terminating general recursion. BIT Numerical Mathematics, 28(3):605–619,
1988. (Cited on page 342.)

[Nor07] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers, Göteborg University, 2007. (Cited on pages 51 and 409.)

[Pal07] Erik Palmgren. A constructive and functorial embedding of locally compact metric spaces
into locales. Topology and its Applications, 154(9):1854–1880, 2007. (Cited on page 390.)

[Pal09] Erik Palmgren. Constructivist and structuralist foundations: Bishop’s and Lawvere’s theories
of sets. http://www.math.uu.se/˜palmgren/cetcs.pdf, 2009. (Cited on page 342.)

[Pau86] Lawrence C. Paulson. Constructing recursion operators in intuitionistic type theory. Journal
of Symbolic Computation, 2(4):325–355, 1986. (Cited on page 342.)

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. (Cited on page 2.)

[PM93] Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties. In
Marc Bezem and Jan Friso Groote, editors, Proceedings of the conference Typed Lambda Calculi
and Applications, number 664 in Lecture Notes in Computer Science, 1993. (Cited on page 53.)

[PPM90] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the calculus of
constructions. In Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt,
editors, Mathematical Foundations of Programming Semantics, 5th International Conference, Tulane
University, New Orleans, Louisiana, USA, March 29 – April 1, 1989, Proceedings, number 442 in
Lecture Notes in Computer Science, pages 209–228. Springer, 1990. (Cited on page 163.)

[PS89] Kent Petersson and Dan Synek. A set constructor for inductive sets in Martin-Löf’s type
theory. In David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné,
editors, Category Theory and Computer Science, Manchester, UK, September 5–8, 1989, Proceedings,
volume 389 of Lecture Notes in Computer Science, pages 128–140. Springer, 1989. (Cited on page
163.)

[Rez01] Charles Rezk. A model for the homotopy theory of homotopy theory. Transactions of the
American Mathematical Society, 353(3):973–1007, 2001. arXiv:math.AT/9811037. (Cited on page
313.)

[Rez05] Charles Rezk. Toposes and homotopy toposes. http://www.math.uiuc.edu/˜rezk/
homotopy-topos-sketch.pdf, 2005. (Cited on pages 9 and 137.)

[Ric00] Fred Richman. The fundamental theorem of algebra: a constructive development without
choice. Pacific Journal of Mathematics, 196(1):213–230, 2000. (Cited on page 391.)

http://www.math.uu.se/~palmgren/cetcs.pdf
https://arxiv.org/abs/math.AT/9811037
http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf
http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf

BIBLIOGRAPHY 419

[Ric08] Fred Richman. Real numbers and other completions. Mathematical Logic Quarterly, 54(1):98–
108, 2008. (Cited on page 390.)

[RS13] Egbert Rijke and Bas Spitters. Sets in homotopy type theory, 2013. arXiv:1305.3835. (Cited on
page 342.)

[Rus08] Bertand Russell. Mathematical logic based on the theory of types. American Journal of Mathe-
matics, 30:222–262, 1908. (Cited on page 2.)

[Sco70] Dana Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger,
editors, Symposium on Automatic Demonstration, volume 125, pages 237–275. Springer-Verlag,
1970. (Cited on page 51.)

[Som10] Giovanni Sommaruga. History and Philosophy of Constructive Type Theory. Number 290 in
Synthese Library. Kluwer, 2010. (Cited on page 2.)

[Spi11] Arnaud Spiwack. A Journey Exploring the Power and Limits of Dependent Type Theory. PhD thesis,
École Polytechnique, Palaiseau, France, 2011. (Cited on page 117.)

[SS12] Urs Schreiber and Michael Shulman. Quantum gauge field theory in cohesive homotopy type
theory. Quantum Physics and Logic, 2012. (Cited on page 234.)

[Str93] Thomas Streicher. Investigations into intensional type theory, 1993. Habilitationsschrift,
Ludwig-Maximilians-Universität München. (Cited on pages 52, 53, and 208.)

[Tai67] William W. Tait. Intensional interpretations of functionals of finite type. I. The Journal of
Symbolic Logic, 32:198–212, 1967. (Cited on pages 51 and 412.)

[Tai68] William W. Tait. Constructive reasoning. In Logic, Methodology and Philos. Sci. III (Proc. Third
Internat. Congr., Amsterdam, 1967), pages 185–199. North-Holland, Amsterdam, 1968. (Cited
on pages 51, 52, and 412.)

[Tay96] Paul Taylor. Intuitionistic sets and ordinals. The Journal of Symbolic Logic, 61(3):705–744, 1996.
(Cited on pages 342 and 344.)

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999. (Cited on
pages 342 and 344.)

[TV02] Bertrand Toën and Gabriele Vezzosi. Homotopical algebraic geometry I: Topos theory, 2002.
arXiv:math/0207028. (Cited on page 9.)

[TvD88a] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics. Vol. I, volume 121 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
1988. An introduction. (Cited on pages 8 and 117.)

[TvD88b] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics. Vol. II, volume 123 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
1988. An introduction. (Cited on pages 8 and 117.)

[vdBG11] Benno van den Berg and Richard Garner. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society, 102(2):370–394, 2011,
http://plms.oxfordjournals.org/content/102/2/370.full.pdf+html. (Cited on page 96.)

[vdBM15] Benno van den Berg and Ieke Moerdijk. W-types in homotopy type theory. Mathematical
Structures in Computer Science, 25:1100–1115, 6 2015. (Cited on page 163.)

[Voe06] Vladimir Voevodsky. A very short note on the homotopy λ-calculus. http:
//www.math.ias.edu/˜vladimir/Site3/Univalent_Foundations_files/
Hlambda_short_current.pdf, 2006. (Cited on page 3.)

[Voe12] Vladimir Voevodsky. A universe polymorphic type system. https://ncatlab.org/
ufias2012/files/Universe+polymorphic+type+sytem.pdf, 2012. (Cited on pages
10 and 117.)

http://arxiv.org/abs/1305.3835/
http://arxiv.org/abs/math/0207028/
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
https://ncatlab.org/ufias2012/files/Universe+polymorphic+type+sytem.pdf
https://ncatlab.org/ufias2012/files/Universe+polymorphic+type+sytem.pdf

420

[War08] Michael A. Warren. Homotopy Theoretic Aspects of Constructive Type Theory. PhD thesis,
Carnegie Mellon University, 2008. (Cited on page 96.)

[Wik13] Wikipedia. Homotopy groups of spheres, April 2013. (Cited on page 243.)

[Wil10] Olov Wilander. Setoids and universes. Mathematical Structures in Computer Science, 20(4):563–
576, 2010. (Cited on page 342.)

[WR27] Alfred North Whitehead and Bertrand Russell. Principia mathematica, 3 vol.s. Cambridge Uni-
versity Press, Cambridge, 1910–1913; Second edition, 1925–1927. (Cited on pages 96 and 117.)

Index of symbols

x :≡ a definition, p. 19

a ≡ b judgmental equality, p. 18

a =A b identity type, p. 45

a = b identity type, p. 45

x := b propositional equality by definition, p. 170

IdA(a, b) identity type, p. 45

a =P
p b dependent path type, p. 170

a ̸= b disequality, p. 51

reflx reflexivity path at x, p. 45

p−1 path reversal, p. 58

p � q path concatenation, p. 59

p �l r left whiskering, p. 64

r �r q right whiskering, p. 64

r ⋆ s horizontal concatenation of 2-paths, p. 64

g ◦ f composite of functions, p. 53

g ◦ f composite of morphisms in a precategory, p. 286

f−1 quasi-inverse of an equivalence, p. 73

f−1 inverse of an isomorphism in a precategory, p. 287

0 empty type, p. 32

1 unit type, p. 26

⋆ canonical inhabitant of 1, p. 26

2 type of booleans, p. 33

12, 02 constructors of 2, p. 33

0I , 1I point constructors of the interval I, p. 173

AC axiom of choice, p. 110

AC∞ “type-theoretic axiom of choice”, p. 94

acc(a) accessibility predicate, p. 328

P ∧Q logical conjunction (“and”), p. 109

ap f (p) or f (p) application of f : A→ B to p : x =A y, p. 66

apd f (p) application of f : ∏(a:A) B(a) to p : x =A y, p. 69

apd2
f (p) two-dimensional dependent ap, p. 176

x # y apartness of real numbers, p. 351

base basepoint of S1, p. 167

422

base basepoint of S2, p. 168 and p. 175

biinv(f) proposition that f is bi-invertible, p. 128

x ∼ y bisimulation, p. 338

– blank used for implicit λ-abstractions, p. 21

C type of Cauchy approximations, p. 360

Card type of cardinal numbers, p. 325

#A reflector or modality applied to A, p. 230 and p. 232

coconeX(Y) type of cocones, p. 183

code family of codes for paths, p. 86, p. 246, p. 280

A \ B subset complement, p. 109

cons(x, ℓ) concatenation constructor for lists, p. 139 and p. 193

contrx path to the center of contraction, p. 114

F ◁ (J,G) inductive cover, p. 377

isCut(L, U) the property of being a Dedekind cut, p. 349

{ L
∣∣ R } cut defining a surreal number, p. 381

X† morphism reversal in a †-category, p. 302

decode decoding function for paths, p. 86, p. 246, p. 280

encode encoding function for paths, p. 86, p. 246, p. 280

η#
A or ηA the function A→ #A, p. 230 and p. 232

A ↠ B epimorphism or surjection

eqNo(x, y) path constructor of the surreals, p. 380

eqRc
(u, v) path constructor of the Cauchy reals, p. 356

a ∼ b an equivalence relation, p. 188

X ≃ Y type of equivalences, p. 73

Equiv(X, Y) type of equivalences (same as X ≃ Y)

A ≃ B type of equivalences of categories, p. 293

P⇔ Q logical equivalence, p. 109

∃(x : A). B(x) logical notation for mere existential, p. 109

ext(f) extension of f : A→ B along ηA, p. 213

⊥ logical falsity, p. 109

fib f (b) fiber of f : A→ B at b : B, p. 126

Fin(n) standard finite type, p. 24

∀(x : A). B(x) logical notation for dependent function type, p. 109

funext function extensionality, p. 80

A→ B function type, p. 21

BA functor precategory, p. 290

glue path constructor of A ⊔C B, p. 181

happly function making a path of functions into a homotopy, p. 80

homA(a, b) hom-set in a precategory, p. 286

f ∼ g homotopy between functions, p. 71

I the interval type, p. 173

idA the identity function of A, p. 25

INDEX OF SYMBOLS 423

1a identity morphism in a precategory, p. 286

idtoeqv function (A = B)→ (A ≃ B) which univalence inverts, p. 83

idtoiso function (a = b)→ (a ∼= b) in a precategory, p. 287

im(f) image of map f , p. 226

imn(f) n-image of map f , p. 226

P⇒ Q logical implication (“implies”), p. 109

a ∈ P membership in a subset or subtype, p. 106

x ∈ v membership in the cumulative hierarchy, p. 338

x ∈̃ v resized membership, p. 341

ind0 induction for 0, p. 33,

ind1 induction for 1, p. 29,

ind2 induction for 2, p. 34,

indN induction for N, p. 37, and

ind=A path induction for =A, p. 47,

ind′=A
based path induction for =A, p. 48,

indA×B induction for A× B, p. 28,

ind∑(x:A) B(x) induction for ∑(x:A) B, p. 30,

indA+B induction for A + B, p. 33,

indW(x:A)B(x) induction for W(x:A)B, p. 156

A/a initial segment of an ordinal, p. 333

inj(A, B) type of injections, p. 327

inl first injection into a coproduct, p. 32

inr second injection into a coproduct, p. 32

A ∩ B intersection of subsets, p. 109, classes, p. 340, or intervals, p. 376

isContr(A) proposition that A is contractible, p. 114

isequiv(f) proposition that f is an equivalence, p. 73, p. 121, and p. 129

ishae(f) proposition that f is a half-adjoint equivalence, p. 124

a ∼= b type of isomorphisms in a (pre)category, p. 286

A ∼= B type of isomorphisms between precategories, p. 295

A ∼= B type of isomorphisms between sets, p. 73

a ∼=† b type of unitary isomorphisms, p. 302

isotoid inverse of idtoiso in a category, p. 287

is-n-type(X) proposition that X is an n-type, p. 205

isProp(A) proposition that A is a mere proposition, p. 103

isSet(A) proposition that A is a set, p. 99

A ∗ B join of A and B, p. 184

ker(f) kernel of a map of pointed sets, p. 256

λx. b(x) λ-abstraction, p. 25

lcoh f (g, η) type of left adjoint coherence data, p. 127

LEM law of excluded middle, p. 104

LEM∞ inconsistent propositions-as-types LEM, p. 102 and p. 105

x < y strict inequality on natural numbers, p. 43, ordinals, p. 328, Cauchy
reals, p. 368, surreals, p. 380, etc.

424

x ≤ y non-strict inequality on natural numbers, p. 43, Cauchy reals, p. 368,
surreals, p. 380, etc.

⪯, ≺ recursive versions of ≤ and < for surreals, p. 385

P, ◁, ⊑, < orderings on codomain of No-recursion, p. 382

lim(x) limit of a Cauchy approximation, p. 356

linv(f) type of left inverses to f , p. 126

List(X) type of lists of elements of X, p. 139 and p. 193

loop path constructor of S1, p. 167

Map∗(A, B) type of based maps, p. 178

x 7→ b alternative notation for λ-abstraction, p. 21

max(x, y) maximum in some ordering, e.g. p. 352 and p. 368

merid(a) meridian of ΣA at a : A, p. 176

min(x, y) minimum in some ordering, e.g. p. 352 and p. 368

A ↣ B monomorphism or embedding

N type of natural numbers, p. 35

N north pole of ΣA, p. 176

Nw, 0w, succw natural numbers encoded as a W-type, p. 144

NAlg type of N-algebras, p. 147

NHom(C, D) type of N-homomorphisms, p. 147

nil empty list, p. 139 and p. 193

No type of surreal numbers, p. 380

¬P logical negation (“not”), p. 109

n-Type, n-TypeU universe of n-types, p. 208

Ω(A, a), ΩA loop space of a pointed type, p. 66

Ωk(A, a), Ωk A iterated loop space, p. 66

Aop opposite precategory, p. 299

P ∨Q logical disjunction (“or”), p. 109

Ord type of ordinal numbers, p. 333

(a, b) (dependent) pair, p. 26 and p. 29

pair= constructor for =A×B, p. 76

πn(A) nth homotopy group of A, p. 192 and p. 243

P(A) power set, p. 107

P+(A) merely-inhabited power set, p. 335

pred predecessor function Z→ Z, p. 247

A× B cartesian product type, p. 26

∏(x:A) B(x) dependent function type, p. 24

pr1(t) the first projection from a pair, p. 27 and p. 30

pr2(t) the second projection from a pair, p. 27 and p. 30

Prop, PropU universe of mere propositions, p. 106

A×C B pullback of A and B over C, p. 95

A ⊔C B pushout of A and B under C, p. 181

Q type of rational numbers, p. 348

Q+ type of positive rational numbers, p. 348

INDEX OF SYMBOLS 425

qinv(f) type of quasi-inverses to f , p. 72

A/R quotient of a set by an equivalence relation, p. 187

A � R alternative definition of quotient, p. 189

R type of real numbers (either), p. 373

Rc type of Cauchy real numbers, p. 356

Rd type of Dedekind real numbers, p. 349

rat(q) rational number regarded as a Cauchy real, p. 356

rcoh f (g, ϵ) type of right adjoint coherence data, p. 127

rec0 recursor for 0, p. 33

rec1 recursor for 1, p. 28

rec2 recursor for 2, p. 33

recN recursor for N, p. 36

recA×B recursor for A× B, p. 27

rec∑(x:A) B(x) recursor for ∑(x:A) B, p. 30

recA+B recursor for A + B, p. 32

recW(x:A)B(x) recursor for W(x:A)B, p. 146

rinv type of right inverses to f , p. 126

S south pole of ΣA, p. 176

Sn n-dimensional sphere, p. 174

seg path constructor of the interval I, p. 173

Set, SetU universe of sets, p. 106

Set category of sets, p. 287

set(A, f) constructor of the cumulative hierarchy, p. 337

x ∼ϵ y relation of ϵ-closeness for Rc, p. 356

x ≈ϵ y recursive version of ∼ϵ, p. 363

⌢ϵ or ⌣ϵ closeness relations on codomain of Rc-recursion, p. 357

A ∧ B smash product of A and B, p. 184

{ x : A | P(x) } subset type, p. 106

{ f (x) | P(x) } image of a subset, p. 321

B ⊆ C containment of subset types, p. 106

(q, r) ⊆ (s, t) inclusion of intervals, p. 376

succ successor function N→N, p. 35

succ successor function Z→ Z, p. 244

A + B coproduct type, p. 32

∑(x:A) B(x) dependent pair type, p. 29

sup(a, f) constructor for W-type, p. 144

surf 2-path constructor of S2, p. 168 and p. 175

ΣA suspension of A, p. 176

total(f) induced map on total spaces, p. 132

p∗(u) transport of u : P(x) along p : x = y, p. 67

transportP(p, u) transport of u : P(x) along p : x = y, p. 67

transport2(X, Y) two-dimensional transport, p. 175

426

transportconstX
Y (Z) transporting in a constant family, p. 69

∥A∥n n-truncation of A, p. 212

|a|An , |a|n image of a : A in ∥A∥n, p. 212

∥A∥ propositional truncation of A, p. 108 and p. 185

|a| image of a : A in ∥A∥, p. 108 and p. 185

⊤ logical truth, p. 109

an unnamed object or variable

A ∪ B union of subsets, p. 109

uniqA×B uniqueness principle for the product A× B, p. 28

uniq1 uniqueness principle for 1, p. 29

U universe type, p. 23

U# universe of modal types, p. 232

U• universe of pointed types, p. 66

ua inverse to idtoeqv from univalence, p. 83

V cumulative hierarchy, p. 337

WAlg(A, B) type of w-algebras, p. 148

WHomA,B(C, D) type of W-homomorphisms, p. 148

W(x:A)B(x) W-type (inductive type), p. 144

A ∨ B wedge of A and B, p. 184

y Yoneda embedding, p. 299

Z type of integers, p. 189

Index

#-connected function, 233
#-truncated function, 233
†-category, 303
†-precategory, 302

unitary morphism in, 302
∞-connected function, 279
∞-functor, 58
∞-group, 192
∞-groupoid, 3, 56, 58, 96, 147, 160, 168, 241, 243,

244, 277
fundamental, 56
structure of a type, 58–66

∞-truncated type, 279
(∞, 1)-category, 97, 137, 147, 213, 285, 313
(∞, 1)-topos, 11, 134, 198, 233, 234, 241, 274, 277,

280, 311, 313
non-hypercomplete, 277

1-type, 100
2-category, 314
2-dimensional path, see path, 2-
2-out-of-3 property, 131
2-out-of-6 property, 138
2-path, see path, 2-
3-dimensional path, see path, 3-
3-path, see path, 3-

abelian group, see group, abelian
absolute value, 368
Abstract Stone Duality, 390
abstraction, 398

λ-, see λ-abstraction
abuse

of language, 113, 114
of notation, 4, 90

acceptance, 194, 241–284, 295, 377–379, 388–389
accessibility, 328, 329, 342
accessible, see accessibility
Ackermann function, 54
action

of a dependent function on a path, 69
of a function on a path, 66

addition
of cardinal numbers, 326

of Cauchy reals, 368
of Dedekind reals, 350
of natural numbers, 36
of ordinal numbers, 343
of surreal numbers, 387

adjective, 113
adjoining a disjoint basepoint, 178
adjoint

equivalence, 72, 137, 314
of (pre)categories, 293
of types, half, 124–127

functor, 56, 94, 292, 300, 314, 323
functor theorem, 194
linear map, 303

adjunction, see adjoint functor
admissible

ordered field, see ordered field, admissible
rule, see rule, admissible

adverb, 113, 233
AGDA, see proof assistant
algebra

2-cell, 149
colimits of, 195
for a polynomial functor, 148
for an endofunctor, 148
free, 193
initial, 155n, see homotopy-initial
N-, 147
W-, 148

algebraic set theory, 317, 342
algorithm, 5, 7, 8, 19, 42, 57, 193
α-conversion, 22n, 399
amalgamated free product, 195, 276
analysis

classical, 373
constructive, 373

analytic mathematics, 57
anger, 101–103, 210
apartness, 351, 371, 392
application

of dependent function, 25
of dependent function to a path, 69
of function, 21

428

of function to a path, 66
of hypothesis or theorem, 41

approximation, Cauchy, see Cauchy approximation
archimedean property, see ordered field, archimede-

an
arity, 144, 305
arrow, see morphism
associativity, 194

in a group, 192
in a monoid, 192
of addition

of Cauchy reals, 368
of natural numbers, 37

of function composition, 53
of function types, 23
of functor composition, 292

coherence of, 292
of join, 262
of list concatenation, 193
of path concatenation, 61

coherence of, 63
of semigroup operation, 90
of Σ-types, 97

assumption, 19–20
attaching map, 179, 180, 276
AUTOMATH, 412
automorphism

fixed-point-free, 9, 102
of 2, nonidentity, 202, 204
of extensional well-founded relations, 331
of S1, 175
of Z, successor, 244

axiom
double negation, 104
excluded middle, see excluded middle
function extensionality, see function extension-

ality
limited principle of omniscience, see limited

principle of omniscience
Markov’s principle, 392
of ∆0-separation, 341
of choice, 8, 9, 110–111, 118, 285, 315, 325, 327,

335
ACn,m, 235
countable, 347, 355, 372, 390
dependent, 390
n-connected, 235
type-theoretic, 31, 94, 96, 101
unique, see unique choice

of extensionality, 331
of infinity, 339
of reducibility, 117
of replacement, 340

of separation, 340
of set theory, for the cumulative hierarchy, 339
propositional resizing, see propositional resiz-

ing
Streicher’s Axiom K, 52, 209, 233

generalization to n-types, 210
strong collection, 341, 344
subset collection, 341
univalence, see univalence axiom
unstable octahedral, 138
versus rules, 20, 74, 170n
Whitehead’s principle, 279, 277–280

axiomatic freedom, 42

bargaining, 302, 337–342, 355
based map, 178
basepoint, 66, 223

adjoining a disjoint, 178
set of, 273

β-conversion, see β-reduction
β-reduction, 22n, 26n
bi-invertible function, 128
bijection, 73, 130
bimodule, 385
binding structure, 22
bisimulation, 338
bit, 103
bitotal relation, see relation, bitotal
Blakers–Massey theorem, see theorem, Blakers–Massey
Bolzano–Weierstraß, see compactness
boolean

topos, 325
type of, see type of booleans

bound variable, see variable, bound
bounded

quantifier, 341
simulation, 333
totally, see totally bounded

Bourbaki, 96
bracket type, see truncation, propositional

canonicity, 10, 20, 411
Cantor’s theorem, 328
capture, of a variable, 22
cardinal number, 325

addition of, 326
exponentiation of, 326
inequality of, 327
multiplication of, 326

cardinality, 326
carrier, 32, 90
cartesian product, see type, product
case analysis, 32, 140

INDEX 429

category, 287
(∞, 1)-, see (∞, 1)-category
center of, 122
cocomplete, 318
complete, 318
discrete, 288
equivalence of, 293
gaunt, 288, 302
isomorphism of, 295
locally cartesian closed, 323
of functors, 290
of types, 311
opposite, 299
product of, 299
regular, 318
skeletal, 288
slice, 314, 343
strict, 302
well-pointed, 325, 343

Cauchy
approximation, 353, 356, 373

dependent, 358
type of, 360

completeness, 371
completion, see completion, Cauchy
real numbers, see real numbers, Cauchy
sequence, 347, 352, 354, 357, 372, 375, 391

caves, walls of, 142
cell complex, 179–181
center

of a category, 122
of contraction, 114

chaotic precategory, 297
choice operator, 102
circle type, see type,circle
class, 338

separable, 340
small, 338

classical
analysis, 347, 373
category theory, 285, 286, 291, 303, 306, 307
homotopy theory, 55–56, 242–243, 245–246
logic, see logic
mathematics, see mathematics, classical

classifier
object, 134, 137
subobject, 323

closed
interval, 370
modality, 236
term, 410

cocomplete category, 318
cocone, 183, 217

codes, see encode-decode method
codomain, of a function, 21
coequalizer, 197

of sets, see set-coequalizer
coercion, universe-raising, 52
cofiber, 276
cofiber of a function, 184
coherence, 61, 63, 124, 127, 151, 292
cohomology, 242
coincidence

of Cauchy approximations, 360
coincidence, of Cauchy approximations, 355
colimit

of sets, 186, 318
of types, 95, 181, 234, 236

collection
strong, 341, 344
subset, 341

commutative
group, see group, abelian
square, 97

comonad, 234
compactness, 373

Bolzano–Weierstraß, 373, 375
Heine–Borel, 373, 376
Heine-Borel, 378
metric, 347, 373, 374

complement, of a subset, 109
complete

category, 318
metric space, 373
ordered field, Cauchy, 371
ordered field, Dedekind, 354
Segal space, 313

completion
Cauchy, 354–355
Dedekind, 353, 354
exact, 323
of a metric space, 391
Rezk, 285, 309–311, 323, 343
stack, 314

component, of a pair, see projection
composition

of functions, 53
of morphisms in a (pre)category, 286
of paths, 59

horizontal, 65
computation rule, 26, 405

for coproduct type, 33
for dependent function types, 25
for dependent pair type, 30
for function types, 22, 399, 410
for higher inductive types, 169–170

430

for identity types, 47
for inductive types, 155
for natural numbers, 35, 37, 140
for product types, 27
for S1, 169, 171
for type of booleans, 140
for W-types, 146
propositional, 26, 150, 151, 169–170, 181

for identities between functions, 81
for identities between pairs, 76
for univalence, 83

computational effect, 234
computer proof assistant, see proof assistant
concatenation of paths, 59
cone

of a function, 184, 319
of a sphere, 180

confluence, 410
conjunction, 39, 109
connected

categorically, 237
function, see function, n-connected
type, 221

consistency, 10, 44n, 155, 397, 411
of arithmetic, 342

constant
defined, 399
explicit, 399
function, 21
Lipschitz, 361
primitive, 399
type family, 24

constructive
analysis, 373
logic, see logic
mathematics, see mathematics, constructive
set theory, 341

constructivity, 10
constructor, 26, 155

path, 167
point, 167

containment
of intervals, 376
of subsets, 106

context, 19, 398, 403
well-formed, 398

“continuity” of functions in type theory, 3, 66, 68,
71, 80, 99, 102, 115, 210

continuous map, see function, continuous
contractible

function, 128–129
type, 114–116

contradiction, 40

contravariant functor, 154
conversion

α-, see α-conversion
β-, see β-reduction
η-, see η-expansion

convertibility of terms, 399
coproduct, see type, coproduct
COQ, see proof assistant
corollary, 17n
cotransitivity of apartness, 352
counit of an adjunction, 292
countable axiom of choice, see axiom of choice, count-

able
covariant functor, 153
cover

inductive, 377
pointwise, 376
universal, 246–247

covering space, 282
universal, 246–247

cumulative
hierarchy, set-theoretic, 337
universes, 23

currying, 23
cut

Dedekind, 347, 348, 349, 353, 354, 372, 390
of surreal numbers, 380

dependent, 382
CW complex, 5, 179–181, 276
cyclic group, 243

de Morgan’s laws, 40–42
decidable

definitional equality, 19
equality, 43, 106, 195, 210, 284, 348
subset, 35
type, 105
type family, 106

decode, see encode-decode method
Dedekind

completeness, 354
completion, see completion, Dedekind
cut, see cut, Dedekind
real numbers, see real numbers, Dedekind

deductive system, 17
defining equation, 399
definition, 408

by pattern matching, 38–39, 156, 412
by structural recursion, 399
inductive, 139, see type, inductive
of adverbs, 113
of function, direct, 21, 24

definitional equality, see equality, definitional

INDEX 431

denial, 104–106, 110–111, 325, 334–337
dense, 352
dependent

Cauchy approximation, 358
cut, 382
function, see function, dependent
path, see path, dependent
type, see type, family of

dependent eliminator, see induction principle
depression, 372, 376
derivation, 403
descent data, 314
Diaconescu’s theorem, 325
diagram, 71, 97, 234, 236
dimension

of path constructors, 168
of paths, 56

disc, 179, 180
discrete

category, 288
space, 6, 8, 11, 99

disequality, 51
disjoint

basepoint, 178
sum, see type, coproduct
union, see type, coproduct

disjunction, 39, 109
distance, 355, 369, 391
domain

of a constructor, 153
of a function, 21

double negation, law of, 101, 104
dummy variable, see variable, bound
dyadic rational, see rational numbers, dyadic

Eckmann–Hilton argument, 64, 192, 244, 257
effective

equivalence relation, 321, 321–323
procedure, 42
relation, 321

Eilenberg–Mac Lane space, 277, 282
elaboration, in type theory, 409
element, 18
Elementary Theory of the Category of Sets, 6, 317,

325, 342
elimination rule, see eliminator
eliminator, 26, 405

of inductive type
dependent, see induction principle
non-dependent, see recursion principle

embedding, see function, embedding
Yoneda, 299

empty type, see type, empty

encode, see encode-decode method
encode-decode method, 88, 86–90, 247–249, 265–

272, 274–276, 280, 311, 322, 366
end point of a path, 56
endofunctor

algebra for, 163
polynomial, 148, 155n

epi, see epimorphism
epimorphism, 319

regular, 318
ϵ-net, 373
equality

decidable, see decidable equality
definitional, 18, 169
heterogeneous, 170
judgmental, 18, 169, 397
merely decidable, 210
propositional, 18, 45
reflexivity of, 60
symmetry of, 58, 60
transitivity of, 59, 60
type, see type, identity

equals may be substituted for equals, 45
equation, defining, 399
equipped with, 31
equivalence, 72–74, 83–84, 129

as bi-invertible function, 128
as contractible function, 128–129
class, 188
fiberwise, 133
half adjoint, 124–127
induction, 162
logical, 44
of (pre)categories, 293

weak, see weak equivalence
properties of, 129, 131
relation, see relation, equivalence
weak, 279

essentially surjective functor, 295
η-conversion, see η-expansion
η-expansion, 22n, 26n
Euclid of Alexandria, 56
evaluation, see application, of a function
evidence, of the truth of a proposition, 18, 39
evil, 313
ex falso quodlibet, 33
exact sequence, 256, 256
excluded middle, 8, 9, 42, 102, 104, 210, 325, 327,

331, 334, 335, 349, 372, 376
LEMn,m, 235

existential quantifier, see quantifier, existential
expansion, η-, see η-expansion
exponential ideal, 230

432

exponentiation, of cardinal numbers, 326
extended real numbers, 390
extensional

relation, 331
type theory, 51, 95

extensionality, of functions, see function extension-
ality

extraction of algorithms, 7, 8

f -local type, 236
factorization

stability under pullback, 229
system, orthogonal, see orthogonal factoriza-

tion system
faithful functor, 293
false, 39, 40, 109
family

of basic intervals, 376
of types, see type, family of

Feit–Thompson theorem, 6
fiber, 126, 254
fiber sequence, 254, 254–258
fiberwise, 68

equivalence, 133
map, see fiberwise transformation
n-connected family of functions, 223
transformation, 132–133, 224

fibrant replacement, 313, 323
fibration, 67, 78, 132, 245

Hopf, see Hopf fibration
of paths, 245

field
approximate, 348
ordered, see ordered field

finite
-dimensional vector space, 303
lists, type of, 193
sets, family of, 24, 25, 54

first-order
logic, 17, 112
signature, 305

fixed-point property, 164
flattening lemma, 197, 259
formal

topology, 377
type theory, 397–412

formalization of mathematics, see mathematics, for-
malized

formation rule, 26, 405
foundations, 1
foundations, univalent, 1
four-color theorem, 7
free

algebraic structure, 193
complete metric space, 355
generation of an inductive type, 140, 160, 167
group, see group, free
monoid, see monoid, free
product, 196

amalgamated, 195, 276
Frege, 163
Freudenthal suspension theorem, 263–268
Fubini theorem for colimits, 263
full functor, 293
fully faithful functor, 293
function, 21–23, 66–67

#-connected, 233
#-truncated, 233
∞-connected, 279
Ackermann, 54
application, 21
application to a path of, 66
bi-invertible, 121, 128
bijective, see bijection
codomain of, 21
composition, 53
constant, 21
“continuity” of, see “continuity”
continuous, 361, 367

in classical homotopy theory, 2
contractible, 128–129
currying of, 23
dependent, 24–25, 68–70

application, 25
application to a path of, 69

domain of, 21
embedding, 130, 206, 225
fiber of, see fiber
fiberwise, see fiberwise transformation
“functoriality” of, see “functoriality”
idempotent, 189
identity, 25, 72, 83
injective, 130, 225, 318, 327
λ-abstraction, see λ-abstraction
left invertible, 126
linear, 303
Lipschitz, 361
locally uniformly continuous, 392
n-connected, 221, 221
n-image of, 226
n-truncated, 225
non-expanding, 368
pointed, see pointed map
polymorphic, 25
projection, see projection
quasi-inverse of, see quasi-inverse

INDEX 433

retraction, 115, 130
right invertible, 126
section, 115
simulation, see simulation
split surjective, 130
surjective, 130, 221, 318, 327
uniformly continuous, 374
zero, 254

function extensionality, 52, 74, 80, 96, 115, 136, 409
non-dependent, 138
proof from interval type, 174
proof from univalence, 135
weak, 135

function type, see type, function
functional relation, 21
functor, 289

adjoint, 292
category of, 290
contravariant, 154
covariant, 153
equivalence, 293
essentially surjective, 295
faithful, 293
full, 293
fully faithful, 293
loop space, 254
polynomial, see endofunctor, polynomial
representable, 300
split essentially surjective, 294
weak equivalence, see weak equivalence

“functoriality” of functions in type theory, 66, 71,
80, 99, 102, 115, 210

fundamental
∞-groupoid, 56
group, 55, 192, 242, 269, 273, 276–277

of circle, 244–250
groupoid, 311, 314
pregroupoid, 269, 288, 311, 314
theorem of Galois theory, 302

Galois
extension, 302
group, 302

game
Conway, 379, 380
deductive system as, 17

gaunt category, 288, 302
generation

of a type, inductive, 46–49, 139–141, 160, 167–
169

of an ∞-groupoid, 168
generator

of a group, 193, 276, 277

of an inductive type, see constructor
geometric realization, 56, 241, 274
geometry, synthetic, 56
globular operad, 63
graph, 97, 234

with composition, 236
Grothendieck construction, 197
group, 192

abelian, 65, 123, 192, 243, 253, 276, 282, 350
exact sequence of, 257

cyclic, 243
free, 193–195
fundamental, see fundamental group
homomorphism, 194
homotopy, see homotopy group

groupoid, 288
∞-, see ∞-groupoid
fundamental, see fundamental groupoid
higher, 63

h-initial, see homotopy-initial
h-level, see n-type
h-proposition, see mere proposition
H-space, 260
half adjoint equivalence, 124–127
Haskell, 234
Hedberg’s theorem, 117, 210
Heine–Borel, see compactness
helix, 245
heterogeneous equality, 170
hierarchy

cumulative, set-theoretic, 337
of n-types, see n-type
of universes, see type, universe

higher category theory, 55–56
higher groupoid, see ∞-groupoid
higher inductive type, see type, higher inductive
higher topos, see (∞, 1)-topos
hom-functor, 299
hom-set, 286
homology, 242
homomorphism

field, 302, 354
group, 194
monoid, 193
N-, 147
of algebras for a functor, 148
of Ω-structures, 305
of structures, 304
semigroup, 93
W-, 148

homotopy, 70–72, 80–82
(pre)category of types, 288, 311

434

colimit, see colimit of types
equivalence, see equivalence

topological, 2, 242
fiber, see fiber
group, 192, 242, 243

of sphere, 243, 258, 268, 282
hypothesis, 56
induction, 162
limit, see limit of types
n-type, see n-type
theory, classical, see classical homotopy theory
topological, 2, 55
type, 3

homotopy-inductive type, 150
homotopy-initial

algebra for a functor, 149
N-algebra, 147
W-algebra, 149

Hopf
construction, 261
fibration, 258

junior, 284
Hopf fibration, 261–263
horizontal composition

of natural transformations, 291
of paths, 65

hub and spoke, 180–181, 212, 276
hypercomplete type, 279
hypothesis, 20, 41, 42

homotopy, 56
inductive, 37

idempotent
function, 189
modality, 233

identification, 45
identity, 4

function, 25, 72, 83
modality, 233
morphism in a (pre)category, 286
system, 161–162

at a point, 160–161
triangle, 292
type, see type, identity
zigzag, 292

image, 226, 256, 318
n-image, 226
of a subset, 321
stability under pullback, 229

implementation, see proof assistant
implication, 39, 40, 109
implicit argument, 409
impredicative

encoding of a W-type, 165
quotient, 188, 322
truncation, 117

impredicativity, see mathematics, predicative
for mere propositions, see propositional resiz-

ing
inaccessible cardinal, 10
inclusion

of intervals, 376
of subsets, 106

index of an inductive definition, 157
indiscernibility of identicals, 45, 67
indiscrete precategory, 297
induction principle, 29, 140, 405

for a modality, 232
for accessibility, 329
for an inductive type, 156
for Cauchy reals, 358
for connected maps, 222
for coproduct, 33
for cumulative hierarchy, 337
for dependent pair type, 30
for empty type, 33
for equivalences, 162
for homotopies, 162
for identity type, 46–49, 57

based, 47
for integers, 190
for interval type, 173
for natural numbers, 36
for product, 29
for S1, 170, 174
for S2, 176
for surreal numbers, 382
for suspension, 176
for torus, 180
for truncation, 118, 185, 212
for type of booleans, 34
for type of vectors, 157
for W-types, 145

inductive
cover, 377
definition, 139, see type, inductive
hypothesis, 37
predicate, 157
type, see type, inductive

higher, see type, higher inductive
type family, 157

inductive-inductive type, 158
higher, 356

inductive-recursive type, 159
inequality, see order

triangle, see triangle inequality

INDEX 435

inference rule, see rule
infinitary

algebraic theory, 196
infix notation, 399
informal type theory, 6–7
inhabited type, 44, 103, 105

merely, 113
initial

algebra characterization of inductive types, see
homotopy-initial

field, 196
ordered field, 348
segment, 332, 333
set, 323
σ-frame, 349, 372
type, see type, empty

injection, see function, injective
injective function, see function, injective
integers, 189, 243, 245, 246

induction principle for, 190
intensional type theory, 51, 95
interchange law, 65, 291
intersection

of intervals, 376
of subsets, 109

interval
arithmetic, 350, 391
domain, 391
family of basic, 376
open and closed, 370, 374, 378
pointwise cover, 376
topological unit, 3
type, see type, interval

introduction rule, 26, 405
intuitionistic logic, see logic
inverse

approximate, 348
in a (pre)category, 287
in a group, 192
left, 126
of path, 58
right, 126

irreflexivity
of < for reals, 351
of < in a field, 352
of apartness, 352
of well-founded relation, 335

isometry, 303
isomorphism

in a (pre)category, 286
invariance under, 313
natural, 71, 290
of (pre)categories, 295

of sets, 73, 130
semigroup, 93
transfer across, 143
unitary, 302

iterated loop space, 64
iterator

for natural numbers, 53

J, see induction principle for identity type
join

in a lattice, 349
of types, 184, 262

judgment, 17, 18, 397
judgmental equality, 18, 74, 141, 169, 397

k-morphism, 56
Kan complex, 4, 10, 241, 242, 411
kernel, 256

pair, 274, 318, 321, 360
simplicial, 274

Klein bottle, 180

λ-abstraction, 21, 23, 25, 38, 43, 399
λ-calculus, 2
language, abuse of, see abuse of language
lattice, 349
law

de Morgan’s, 40–42
of double negation, 104
of excluded middle, see excluded middle

Lawvere, 6, 8, 51, 163, 164, 233, 317, 325, 342, 391
lax colimit, 197, 198
least upper bound, see supremum
Lebesgue number, 378, 392
left

adjoint, 292
inverse, 126
invertible function, 126

lemma, 17n
flattening, 197

level, see universe level or n-type
lifting

equivalences, 91
path, 68

limit
of a Cauchy approximation, 353, 356, 371, 373
of sets, 186, 318
of types, 95, 97, 181

limited principle of omniscience, 343, 375, 391
linear map, see function, linear
linear order, 351
Lipschitz

constant, 361
function, 361

436

list, see type of lists
list type, see type, of lists
locale, 377
localization of inductive cover, 377
locally cartesian closed category, 323
locally uniformly continuous map, 392
locatedness, 349, 350
location, 391
logic

classical vs constructive, 41–42
constructive, 9
constructive vs classical, 9, 40, 101–106
intuitionistic, 9
of mere propositions, 103–104, 107–109, 112–

114
predicate, 42
propositional, 39
propositions as types, 39–44
truncated, 112

logical equivalence, 44
logical notation, traditional, 109
loop, 55, 64, 66

constant, see path, constant
dependent n-, 176, 203, 204
n-, 66, 176, 205, 243, 280
n-dimensional, see loop, n-

loop space, 64, 66, 178, 192, 210, 244, 245, 254, 278,
281

functoriality of, 254
iterated, 64, 66, 176, 179, 192, 211, 212, 243, 255
n-fold, see loop space, iterated

lower Dedekind reals, 390

magma, 31, 43
map, see function

fiberwise, see fiberwise transformation
of spans, 218

mapping, see function
mapping cone, see cone of a function
Markov’s principle, 392
Martin-Löf, 163, 412
matching, see pattern matching
mathematics

classical, 7, 8, 35, 41, 51, 94, 101, 103–105, 107,
110, 285, 288, 289, 303, 306, 307, 323, 324,
331, 334, 335, 347, 349, 350, 373–379

constructive, 7–10, 36, 192, 242, 282, 317, 323,
347, 348, 351, 355, 373–379

formalized, 2, 6, 6–7, 11, 19n, 60, 129, 158, 242,
282, 388

predicative, 107, 155, 317, 323, 342, 377
proof-relevant, 20, 31, 44, 60, 72, 73, 198

membership, 18

membership, for cumulative hierarchy, 338
mere proposition, 103–104, 106–109, 112–114
mere relation, 187
merely, 113, 233

decidable equality, 210
inhabited, 113

meridian, 176, 180
metatheory, 410–411
metric space, 373, 373–392

complete, 373
totally bounded, 373

metrically compact, 347, 373
mistaken identity type, 413
modal

logic, 233
operator, 233, 234, 236
type, 232

modality, 232, 230–234
closed, 236
identity, 233
open, 236

model category, 4
modulus

of convergence, 352
of uniform continuity, 374

monad, 203, 234
monic, see monomorphism
mono, see monomorphism
monoid, 192, 192–195

free, 193, 204
homomorphism, 193

monomorphism, 302, 319, 319, 324
monotonicity, 363

of inductive cover, 377
morphism

in a (pre)category, 286
in an ∞-groupoid, 56
unitary, 302

multiplication
in a group, 192
in a monoid, 192
of cardinal numbers, 326
of Cauchy reals, 370
of Dedekind reals, 350
of natural numbers, 54
of ordinal numbers, 343

mutual inductive type, 158

N-algebra, 147
homotopy-initial (h-initial), 147

n-connected
axiom of choice, 235
function, see function, n-connected

INDEX 437

type, see type, n-connected
n-dimensional loop, see loop, n-
n-dimensional path, see path, n-
N-homomorphism, 147
n-image, 226
n-loop, see loop, n-
n-path, see path, n-
n-sphere, see type, n-sphere
n-truncated

function, 225
type, see n-type

n-truncation, see truncation
n-type, 8, 100–101, 205, 205–229

definable in type theory, 117
natural

isomorphism, 290
transformation, 122, 289, 305

natural numbers, 35–37, 88–90, 140, 190, 408
as homotopy-initial algebra, 147
encoded as a W-type, 144, 152
encoded as List(1), 143
isomorphic definition of, 141

“naturality” of homotopies, 71
negation, 40, 105
negative

type, 86
non-dependent eliminator, see recursion principle
non-expanding function, 368
non-strict order, 368, 380
nonempty subset, 331, 335
normal form, 410
normalizable term, 410
normalization, 410

strong, 410
notation, abuse of, see abuse of notation
noun, 113
nullary

coproduct, see type, empty
product, see type, unit

number
cardinal, see cardinal number
integers, 189
natural, see natural numbers
ordinal, see ordinal
rational, see rational numbers
real, see real numbers
surreal, see surreal numbers

NUPRL, see proof assistant

object
classifier, 134, 137
in a (pre)category, 286
subterminal, see mere proposition

octahedral axiom, unstable, 138
odd-order theorem, 6
Ω-structure, see structure
open

cut, 349
interval, 370
modality, 236
problem, 10–12, 97, 235, 236, 284, 390, 410, 411
relation, 363

operad, 63
operator

choice, see choice operator
induction, see induction principle
modal, see modality

opposite of a (pre)category, 299
option of a surreal number, 380
order

linear, 351
non-strict, 327, 368, 380
strict, 352, 368, 380
weakly linear, 351, 352

order-dense, see dense
ordered field, 347, 352, 371

admissible, 353, 372
archimedean, 352, 352, 368, 391

ordinal, 333, 328–337, 381
plump, 344, 393
pseudo-, 393
trichotomy of, 334

orthogonal factorization system, 205, 225–229, 233,
321

pair
dependent, 29
ordered, 26
unordered, 340

paradox, 23, 107, 154
parallel paths, 56
parameter

of an inductive definition, 157
space, 19

parentheses, 21, 23
partial order, 288, 351
path, 45, 56, 58–66

2-, 55, 56, 64
2-dimensional, see path, 2-
3-, 56, 56, 64
3-dimensional, see path, 3-
application of a dependent function to, 69
application of a function to, 66
composite, 59
concatenation, 59

n-fold, 191

438

constant, 45, 48
constructor, 167
dependent, 69, 170

in dependent function types, 82
in function types, 82
in identity types, 86

end point of, 56
fibration, 245
induction, 46–49
induction based, 47
inverse, 58
lifting, 68
n-, 64, 97, 176, 203
n-dimensional, see path, n-
parallel, 56
start point of, 56
topological, 3, 55

pattern matching, 38–39, 52, 156, 412
Peano, 163
pentagon, Mac Lane, 56, 292
(P, H)-structure, see structure
Π-type, see type, dependent function
ΠW-pretopos, 323
plump

ordinal, 344, 393
successor, 344

point
constructor, 167
of a type, 18

pointed
map, 254

kernel of, 256
predicate, 160
type, see type, pointed

pointfree topology, 377
pointwise

cover, 376
equality of functions, 80
functionality, 53
operations on functions, 81

polarity, 86
pole, 176
polymorphic function, 25
polynomial functor, see endofunctor, polynomial
poset, 288
positive

rational numbers, 348
type, 86

positivity, strict, see strict positivity
Postnikov tower, 8, 212
power set, 35, 107, 154, 188, 322, 323, 330, 342, 377
pre-2-category, 314
pre-bicategory, 314

precategory, 286
†-, 302
equivalence of, 293
isomorphism of, 295
of functors, 290
of (P, H)-structures, 304
of types, 288
opposite, 299
product of, 299
slice, see category, slice

predecessor, 140, 145
function, truncated, 170
isomorphism on Z, 246

predicate
inductive, 157
logic, 42
pointed, 160

predicative mathematics, see mathematics, pred-
icative

pregroupoid, fundamental, see fundamental pre-
groupoid

preorder, 288
of cardinal numbers, 327

presentation
of a group, 196, 277
of a positive type by its constructors, 86
of a space as a CW complex, 5
of an ∞-groupoid, 168, 244

prestack, 315
pretopos, see ΠW-pretopos
prime number, 112
primitive

constant, 399
recursion, 35

principle, see axiom
uniqueness, see uniqueness principle

product
of (pre)categories, 299
of types, see type, product

programming, 2, 9, 23, 142, 234
projection

from cartesian product type, 27
from dependent pair type, 30

projective plane, 180
proof, 18, 39–44

assistant, 2, 7, 51, 203, 242, 309, 397
NUPRL, 117
AGDA, 52
COQ, 52, 96, 117

by contradiction, 40, 42, 105
proof-relevant mathematics, see mathematics, proof-

relevant
proposition

INDEX 439

as types, 7, 39–44, 101–103
mere, see mere proposition

propositional
equality, 18, 45
logic, 39
resizing, 107, 117, 118, 155, 317, 324, 338, 349,

377, 379
truncation, see truncation
uniqueness principle, see uniqueness princi-

ple, propositional
propositional resizing, 322
pseudo-ordinal, 393
pullback, 95, 97, 134, 182, 207, 318
purely, 113, 233, 234
pushout, 182–185, 259, 282

in n-types, 218
of sets, 187

quantifier, 42, 109
bounded, 341
existential, 42, 108, 109, 349
universal, 42, 108, 109

quasi-inverse, 72, 122–124
Quillen model category, 4, 241
quotient of sets, see set-quotient

rational numbers, 348
as Cauchy real numbers, 356
dyadic, 348, 381
positive, 348

real numbers, 347–393
agree, 372
Cauchy, 356, 354–372
Dedekind, 350, 348–354, 372

lower, 390
upper, 390

Escardó-Simpson, 390
extended, 390
homotopical, 250

recurrence, 35, 140, 163
recursion

primitive, 35
structural, 399

recursion principle, 140
for a modality, 232
for an inductive type, 155
for cartesian product, 28
for Cauchy reals, 360
for coproduct, 32
for dependent pair type, 30
for empty type, 33
for interval type, 173
for natural numbers, 35

for S1, 169, 171
for S2, 175
for suspension, 176
for truncation, 108, 185, 213
for type of booleans, 33

recursive call, 35
recursor, see recursion principle
red herring principle, 302
reduced word in a free group, 195
reduction

β-, see β-reduction
of a word in a free group, 195

reflection rule, 95
reflective

subcategory, 213
subuniverse, 230

reflexivity
of a relation, 188, 209
of equality, 45
of inductive cover, 377

regular
category, 318
epimorphism, 318

relation
antisymmetric, 288, 384
bitotal, 343, 344
cotransitive, 352
effective equivalence, 321, 321–323
equivalence, 188
extensional, 331
irreflexive, 335, 351, 352
mere, 187
monotonic, 363
open, 363
reflexive, 188, 209
rounded, see rounded relation
separated family of, 361
symmetric, 188
transitive, 188
well-founded, 329

representable functor, 300, 301
resizing, 117, 322, 338

propositional, see propositional resizing
retract

of a function, 131–132, 221
of a type, 115, 137, 206

retraction, 115, 130, 206
rewriting rule, 410
Rezk completion, see completion, Rezk
right

adjoint, 292
inverse, 126
invertible function, 126

440

ring, 348, 350–352
rounded

Dedekind cut, 348, 349, 391
relation, 363, 366

rule, 17, 403
admissible, 404
computation, see computation rule
elimination, see eliminator
formation, 26, 405
introduction, 26, 405
of substitution, 404
of weakening, 404
rewriting, 410
structural, 404–405
versus axioms, 20, 170n

rules of type theory, 397–410
Russell, Bertrand, 2, 117

Schroeder–Bernstein theorem, 328
scope, 21, 25, 29, 399
Scott, 164
section, 115

of a type family, 68
Segal

category, 313
space, 313

segment, initial, see initial segment
semigroup, 43, 91

structure, 90
semiring, 54, 326
separable class, 340
separated family of relations, 361
separation

∆0, 341
full, 342

sequence, 57, 155, 372, 373, 375
Cauchy, see Cauchy sequence
exact, 256, 258, 279
fiber, 254, 254–258

set, 6, 99–101, 130, 186–187, 206, 208–210, 287, 317–
345

in the cumulative hierarchy, 338
set theory

algebraic, 317, 342
Zermelo–Fraenkel, 6, 17, 196, 317, 342

set-coequalizer, 318, 319
set-pushout, 187
set-quotient, 187–191, 203, 321–323
setoid, 117, 203, 323
σ-frame

initial, 349, 372
Σ-type, see type, dependent pair
signature

first-order, 305
of an algebraic theory, 196

simplicial
kernel, 274
sets, 4, 241, 313

simplicity theorem, 382
simply connected type, 221
simulation, 332

bounded, 333
singleton type, see type, singleton
skeletal category, 288
skeleton

of a CW-complex, 179, 274, 276
slice (pre)category, see category, slice
small

class, 338
set, 287
type, 4, 24

smash product, 184
source

of a function, see domain
of a path constructor, 167, 179, 202

space
metric, see metric space
topological, see topological space

span, 182, 187, 217, 259
sphere type, see type, sphere
split

essentially surjective functor, 294
surjection, see function, split surjective

spoke, see hub and spoke
squaring function, 370
squash type, see truncation, propositional
stability

and descent, 198
of homotopy groups of spheres, 268
of images under pullback, 229

stack, 311, 313, 315
completion, 314

stages, five, of accepting constructive mathemat-
ics, 413

start point of a path, 56
strict

category, 285, 302, 314, 315
order, 352, 368, 380
positivity, 155, 201, 379

strong
collection, 341, 344
induction, 330
normalization, 410

structural
recursion, 399
rules, 404–405

INDEX 441

set theory, 323–324
structure

homomorphism of, 304
homomorphism of Ω-, 305
identity principle, 304, 303–306
notion of, 303
Ω-, 305
(P, H)-, 304
precategory of (P, H)-, 304
semigroup, 90
standard notion of, 304

subfamily, finite, of intervals, 376
subobject classifier, 323
subset, 106

collection, 341
relation on the cumulative hierarchy, 338

subsingleton, see mere proposition
substitution, 20, 22, 398
subterminal object, see mere proposition
subtype, 43, 106
subuniverse, reflective, 230
successor, 35, 90, 140, 144, 145

isomorphism on Z, 245, 246
of an ordinal, 334, 345
plump, 344

sum
dependent, see type, dependent pair
disjoint, see type, coproduct
of numbers, see addition

supremum
constructor of a W-type, 144
of uniformly continuous function, 374

surjection, see function, surjective
split, see function, split surjective

surjective
function, see function, surjective

split, see function, split surjective
surreal numbers, 380, 379–389
suspension, 176–179, 184
symmetry

of a relation, 188
of equality, 58

synthetic mathematics, 56, 241
system, identity, see identity system

target
of a function, see codomain
of a path constructor, 167, 179, 202

term, 18
closed, 410
convertibility of, 399
normal form of, 410
normalizable, 410

strongly normalizable, 410
terminal

type, see type, unit
theorem, 17n

Blakers–Massey, 282
Cantor’s, 328
Conway’s 0, 383
Conway’s simplicity, 382
Diaconescu’s, 325
Feit–Thompson, 6
four-color, 7
Freudenthal suspension, 263–268
Hedberg’s, 117, 210
odd-order, 6
Schroeder–Bernstein, 328
van Kampen, 269–277, 314
Whitehead’s, 277

theory
algebraic, 196
essentially algebraic, 196

Tierney, 233
together with, 31
topological

path, 3, 55
space, 2, 3, 55, 241

topology
formal, 378
Lawvere-Tierney, 233
pointfree, 377

topos, 9, 117, 233, 234, 313, 317, 323–325, 342
boolean, 325
higher, see (∞, 1)-topos

torus, 179, 181, 204, 276
induction principle for, 180

total
recursive definition, 399
relation, 390
space, 67, 78, 132, 245, 250, 255, 263

totally bounded metric space, 373
traditional logical notation, 109
transformation

fiberwise, see fiberwise transformation
natural, see natural transformation

transitivity
of < for reals, 351
of ≤ for reals, 351
of < for surreals, 387
of ≤ for surreals, 387
of < in a field, 352
of a relation, 188
of equality, 59
of inductive cover, 377

transport, 67–70, 78, 83

442

in coproduct types, 88
in dependent function types, 81
in dependent pair types, 79
in function types, 81
in identity types, 85
in product types, 77
in unit type, 80

tree, well-founded, 144
triangle

identity, 292
inequality for Rc, 366

trichotomy of ordinals, 334
true, 39, 109
truncation

n-truncation, 187, 212–217
propositional, 108–109, 185–186
set, 186–187

type
∞-truncated, 279
2-sphere, 168, 175–176
bracket, see truncation, propositional
cartesian product, see type, product
circle, 167, 169–175, 177, 409
coequalizer, 197
colimit, 95, 181
connected, 221
contractible, 114–116
coproduct, 32–33, 33, 34, 53, 86–88, 407
decidable, 105
dependent, see type, family of
dependent function, 24–25, 80–82, 405
dependent pair, 29–32, 77–79, 93, 406
dependent sum, see type, dependent pair
empty, 32–33, 95, 144, 407
equality, see type, identity
f -local, 236
family of, 24, 34, 67–70

constant, 24
decidable, 106
inductive, 157

function, 21–23, 80–82, 405
higher inductive, 5, 167–204
homotopy-inductive, 150
hypercomplete, 279
identity, 45–51, 58–66, 84–86, 94, 408

as inductive, 159
inductive, 139–141, 153–159

generalizations, 156
inductive-inductive, 158
inductive-recursive, 159
inhabited, see inhabited type
interval, 173–174
limit, 95, 181

mistaken identity, 413
modal, 232
mutual inductive, 158
n-connected, 221
n-sphere, 176, 178, 179, 268
n-truncated, see n-type
n-type, see n-type
negative, 86
of booleans, 33–35
of cardinal numbers, 325
of lists, 139, 142, 144, 157, 163, 193, 374
of members, 339
of natural numbers, see natural numbers
of vectors, 157
Π-, see type, dependent function
pointed, 66, 176
positive, 86
product, 26–29, 53, 75–77, 93, 406
pushout of, see pushout
quotient, see set-quotient
Σ-, see type, dependent pair
simply connected, 221
singleton, 48, 114
small, 4, 24
squash, see truncation, propositional
subset, 106
suspension of, see suspension
truncation of, see truncation
unit, 26–29, 33, 80, 95, 114, 143, 144, 407
universe, 23–24, 83–84, 101, 400, 405

cumulative, 23
level, see universe level
Russell-style, 52
Tarski-style, 52
univalent, 83

W-, see W-type
type theory, 2, 17

extensional, 51, 95
formal, 6–7, 397–412
informal, 6–7, 20
intensional, 51, 95
unintentional, 413

typical ambiguity, 24, 334, 349, 400, 409

UIP, see uniqueness of identity proofs
unequal, 51
uniformly continuous function, 374
unintentional type theory, 413
union

disjoint, see type, coproduct
of subsets, 109

unique
choice, 111–112

INDEX 443

factorization system, 225–229, 233
uniqueness

of identity proofs, 52, 208
of identity types, 141
principle, 26, 52, 406

for dependent function types, 25
for function types, 22, 52
for identities between functions, 81
for product types, 52

principle, propositional, 26
for a modality, 232
for dependent pair types, 79
for functions on a pushout, 183
for functions on a truncation, 213
for functions on N, 141
for functions on the circle, 172
for functions on W-types, 146
for homotopy W-types, 151
for identities between pairs, 76
for product types, 28, 76
for univalence, 84

unit
interval, 3
law for path concatenation, 61
of a group, 192
of a monoid, 192
of a ring, 350, 352
of an adjunction, 292
type, see type, unit

unitary morphism, 302
univalence axiom, 1, 4, 8, 74, 83, 91, 96, 101, 135,

143, 162, 244, 287, 409
constructivity of, 10

univalent universe, 83
universal

cover, 246–247
property, 93–95

of W-type, 148
of a modality, 232
of cartesian product, 93
of coproduct, 97
of dependent pair type, 94, 198
of free group, 194
of identity type, 94
of metric completion, 392
of natural numbers, 147
of pushout, 183, 187, 219
of Rezk completion, 309
of S1, 172
of set-coequalizer, 319
of Sn, 179
of suspension, 178
of truncation, 186, 213

quantifier, see quantifier, universal
universal property, 144
universe, see type, universe
universe level, 24, 286, 333, 336, 349
upper Dedekind reals, 390

value
of a function, 21
truth, 35

van Kampen theorem, 269–277, 314
variable, 19, 21, 24, 38, 41, 43, 145, 156, 398, 399,

403
and substitution, 398
bound, 22, 398, 406
captured, 22
dummy, 22
in context, 398
scope of, 21, 399
type, 153, 157

vary along a path constructor, 171
vector, 157

induction principle for, 157
space, 303, 370

vertex of a cocone, 183

W-algebra, 148
W-homomorphism, 148
W-type, 144

as homotopy-initial algebra, 148
impredicative encoding of, 165

weak equivalence
of precategories, 295, 307–312, 336
of types, 279

weakly linear order, 351, 352
wedge, 184, 264
well-founded

induction, 330
relation, 329

whiskering, 65, 211
Whitehead’s

principle, 277–280
theorem, 277

winding
map, 245
number, 248

witness
to the truth of a proposition, 18, 39

Yoneda
embedding, 299
lemma, 160, 299, 299–301

Zermelo-Fraenkel set theory, see set theory
zero, 35, 140, 144, 145

444

map, 254
ZF, see set theory
ZF-algebra, 344
ZFC, see set theory
zigzag identity, 292

From the Introduction:

Homotopy type theory is a new branch of mathematics that combines aspects of several
different fields in a surprising way. It is based on a recently discovered connection be-
tween homotopy theory and type theory. It touches on topics as seemingly distant as the
homotopy groups of spheres, the algorithms for type checking, and the definition of
weak ∞-groupoids.

Homotopy type theory brings new ideas into the very foundation of mathematics. On
the one hand, there is Voevodsky’s subtle and beautiful univalence axiom. The univalence
axiom implies, in particular, that isomorphic structures can be identified, a principle that
mathematicians have been happily using on workdays, despite its incompatibility with
the “official” doctrines of conventional foundations. On the other hand, we have higher
inductive types, which provide direct, logical descriptions of some of the basic spaces
and constructions of homotopy theory: spheres, cylinders, truncations, localizations,
etc. Both ideas are impossible to capture directly in classical set-theoretic foundations,
but when combined in homotopy type theory, they permit an entirely new kind of “logic
of homotopy types”.

This suggests a new conception of foundations of mathematics, with intrinsic homotopi-
cal content, an “invariant” conception of the objects of mathematics — and convenient
machine implementations, which can serve as a practical aid to the working mathemati-
cian. This is the Univalent Foundations program.

The present book is intended as a first systematic exposition of the basics of univalent
foundations, and a collection of examples of this new style of reasoning — but without
requiring the reader to know or learn any formal logic, or to use any computer proof
assistant. We believe that univalent foundations will eventually become a viable alter-
native to set theory as the “implicit foundation” for the unformalized mathematics done
by most mathematicians.

Get a free copy of the book at HomotopyTypeTheory.org.

	Preface
	Table of Contents
	Introduction
	I Foundations
	1 Type theory
	1.1 Type theory versus set theory
	1.2 Function types
	1.3 Universes and families
	1.4 Dependent function types (Π-types)
	1.5 Product types
	1.6 Dependent pair types (Σ-types)
	1.7 Coproduct types
	1.8 The type of booleans
	1.9 The natural numbers
	1.10 Pattern matching and recursion
	1.11 Propositions as types
	1.12 Identity types
	1.12.1 Path induction
	1.12.2 Equivalence of path induction and based path induction
	1.12.3 Disequality

	Notes
	Exercises

	2 Homotopy type theory
	2.1 Types are higher groupoids
	2.2 Functions are functors
	2.3 Type families are fibrations
	2.4 Homotopies and equivalences
	2.5 The higher groupoid structure of type formers
	2.6 Cartesian product types
	2.7 Σ-types
	2.8 The unit type
	2.9 Π-types and the function extensionality axiom
	2.10 Universes and the univalence axiom
	2.11 Identity type
	2.12 Coproducts
	2.13 Natural numbers
	2.14 Example: equality of structures
	2.14.1 Lifting equivalences
	2.14.2 Equality of semigroups

	2.15 Universal properties
	Notes
	Exercises

	3 Sets and logic
	3.1 Sets and n-types
	3.2 Propositions as types?
	3.3 Mere propositions
	3.4 Classical vs. intuitionistic logic
	3.5 Subsets and propositional resizing
	3.6 The logic of mere propositions
	3.7 Propositional truncation
	3.8 The axiom of choice
	3.9 The principle of unique choice
	3.10 When are propositions truncated?
	3.11 Contractibility
	Notes
	Exercises

	4 Equivalences
	4.1 Quasi-inverses
	4.2 Half adjoint equivalences
	4.3 Bi-invertible maps
	4.4 Contractible fibers
	4.5 On the definition of equivalences
	4.6 Surjections and embeddings
	4.7 Closure properties of equivalences
	4.8 The object classifier
	4.9 Univalence implies function extensionality
	Notes
	Exercises

	5 Induction
	5.1 Introduction to inductive types
	5.2 Uniqueness of inductive types
	5.3 W-types
	5.4 Inductive types are initial algebras
	5.5 Homotopy-inductive types
	5.6 The general syntax of inductive definitions
	5.7 Generalizations of inductive types
	5.8 Identity types and identity systems
	Notes
	Exercises

	6 Higher inductive types
	6.1 Introduction
	6.2 Induction principles and dependent paths
	6.3 The interval
	6.4 Circles and spheres
	6.5 Suspensions
	6.6 Cell complexes
	6.7 Hubs and spokes
	6.8 Pushouts
	6.9 Truncations
	6.10 Quotients
	6.11 Algebra
	6.12 The flattening lemma
	6.13 The general syntax of higher inductive definitions
	Notes
	Exercises

	7 Homotopy n-types
	7.1 Definition of n-types
	7.2 Uniqueness of identity proofs and Hedberg's theorem
	7.3 Truncations
	7.4 Colimits of n-types
	7.5 Connectedness
	7.6 Orthogonal factorization
	7.7 Modalities
	Notes
	Exercises

	II Mathematics
	8 Homotopy theory
	8.1 π₁(S¹)
	8.1.1 Getting started
	8.1.2 The classical proof
	8.1.3 The universal cover in type theory
	8.1.4 The encode-decode proof
	8.1.5 The homotopy-theoretic proof
	8.1.6 The universal cover as an identity system

	8.2 Connectedness of suspensions
	8.3 π_(k≤n) of an n-connected space and π_(k<n)(Sⁿ)
	8.4 Fiber sequences and the long exact sequence
	8.5 The Hopf fibration
	8.5.1 Fibrations over pushouts
	8.5.2 The Hopf construction
	8.5.3 The Hopf fibration

	8.6 The Freudenthal suspension theorem
	8.7 The van Kampen theorem
	8.7.1 Naive van Kampen
	8.7.2 The van Kampen theorem with a set of basepoints

	8.8 Whitehead's theorem and Whitehead's principle
	8.9 A general statement of the encode-decode method
	8.10 Additional Results
	Notes
	Exercises

	9 Category theory
	9.1 Categories and precategories
	9.2 Functors and transformations
	9.3 Adjunctions
	9.4 Equivalences
	9.5 The Yoneda lemma
	9.6 Strict categories
	9.7 †-categories
	9.8 The structure identity principle
	9.9 The Rezk completion
	Notes
	Exercises

	10 Set theory
	10.1 The category of sets
	10.1.1 Limits and colimits
	10.1.2 Images
	10.1.3 Quotients
	10.1.4 Set is a ΠW-pretopos
	10.1.5 The axiom of choice implies excluded middle

	10.2 Cardinal numbers
	10.3 Ordinal numbers
	10.4 Classical well-orderings
	10.5 The cumulative hierarchy
	Notes
	Exercises

	11 Real numbers
	11.1 The field of rational numbers
	11.2 Dedekind reals
	11.2.1 The algebraic structure of Dedekind reals
	11.2.2 Dedekind reals are Cauchy complete
	11.2.3 Dedekind reals are Dedekind complete

	11.3 Cauchy reals
	11.3.1 Construction of Cauchy reals
	11.3.2 Induction and recursion on Cauchy reals
	11.3.3 The algebraic structure of Cauchy reals
	11.3.4 Cauchy reals are Cauchy complete

	11.4 Comparison of Cauchy and Dedekind reals
	11.5 Compactness of the interval
	11.6 The surreal numbers
	Notes
	Exercises

	Appendix
	A Formal type theory
	A.1 The first presentation
	A.1.1 Type universes
	A.1.2 Dependent function types (Π-types)
	A.1.3 Dependent pair types (Σ-types)
	A.1.4 Coproduct types
	A.1.5 The finite types
	A.1.6 Natural numbers
	A.1.7 W-types
	A.1.8 Identity types

	A.2 The second presentation
	A.2.1 Contexts
	A.2.2 Structural rules
	A.2.3 Type universes
	A.2.4 Dependent function types (Π-types)
	A.2.5 Dependent pair types (Σ-types)
	A.2.6 Coproduct types
	A.2.7 The empty type 0
	A.2.8 The unit type 1
	A.2.9 The natural number type
	A.2.10 Identity types
	A.2.11 Definitions

	A.3 Homotopy type theory
	A.3.1 Function extensionality and univalence
	A.3.2 The circle

	A.4 Basic metatheory
	Notes

	Bibliography
	Index of symbols
	Index

