Library HoTT.WildCat.Opposite
This stops typeclass search from trying to unfold op.
#[global] Typeclasses Opaque op.
Instance isgraph_op {A : Type} `{IsGraph A}
: IsGraph A^op.
Proof.
apply Build_IsGraph; cbv.
intros a b; exact (Hom b a).
Defined.
Instance is01cat_op {A : Type} `{Is01Cat A} : Is01Cat A^op.
Proof.
apply Build_Is01Cat; cbv.
+ exact Id.
+ intros a b c f g; exact (cat_comp g f).
Defined.
Instance isgraph_op {A : Type} `{IsGraph A}
: IsGraph A^op.
Proof.
apply Build_IsGraph; cbv.
intros a b; exact (Hom b a).
Defined.
Instance is01cat_op {A : Type} `{Is01Cat A} : Is01Cat A^op.
Proof.
apply Build_Is01Cat; cbv.
+ exact Id.
+ intros a b c f g; exact (cat_comp g f).
Defined.
We don't invert 2-cells as this is op on the first level.
Instance is2graph_op {A : Type} `{Is2Graph A} : Is2Graph A^op.
Proof.
cbv.
intros a b; exact (isgraph_hom b a).
Defined.
Instance is1cat_op {A : Type} `{Is1Cat A} : Is1Cat A^op.
Proof.
snapply Build_Is1Cat; cbv.
- intros a b; exact (is01cat_hom b a).
- intros a b; exact (is0gpd_hom b a).
- intros a b c; exact (is0functor_precomp c b a).
- intros a b c; exact (is0functor_postcomp c b a).
- intros a b c d f g h; exact (cat_assoc_opp h g f).
- intros a b c d f g h; exact (cat_assoc h g f).
- intros a b; exact cat_idr.
- intros a b; exact cat_idl.
Defined.
Instance is1cat_strong_op A `{Is1Cat_Strong A}
: Is1Cat_Strong (A ^op).
Proof.
snapply Build_Is1Cat_Strong; cbv.
- intros a b; exact (is01cat_hom_strong b a).
- intros a b; exact (is0gpd_hom_strong b a).
- intros a b c; exact (is0functor_precomp_strong c b a).
- intros a b c; exact (is0functor_postcomp_strong c b a).
- intros a b c d f g h; exact (cat_assoc_opp_strong h g f).
- intros a b c d f g h; exact (cat_assoc_strong h g f).
- intros a b; exact cat_idr_strong.
- intros a b; exact cat_idl_strong.
Defined.
Proof.
cbv.
intros a b; exact (isgraph_hom b a).
Defined.
Instance is1cat_op {A : Type} `{Is1Cat A} : Is1Cat A^op.
Proof.
snapply Build_Is1Cat; cbv.
- intros a b; exact (is01cat_hom b a).
- intros a b; exact (is0gpd_hom b a).
- intros a b c; exact (is0functor_precomp c b a).
- intros a b c; exact (is0functor_postcomp c b a).
- intros a b c d f g h; exact (cat_assoc_opp h g f).
- intros a b c d f g h; exact (cat_assoc h g f).
- intros a b; exact cat_idr.
- intros a b; exact cat_idl.
Defined.
Instance is1cat_strong_op A `{Is1Cat_Strong A}
: Is1Cat_Strong (A ^op).
Proof.
snapply Build_Is1Cat_Strong; cbv.
- intros a b; exact (is01cat_hom_strong b a).
- intros a b; exact (is0gpd_hom_strong b a).
- intros a b c; exact (is0functor_precomp_strong c b a).
- intros a b c; exact (is0functor_postcomp_strong c b a).
- intros a b c d f g h; exact (cat_assoc_opp_strong h g f).
- intros a b c d f g h; exact (cat_assoc_strong h g f).
- intros a b; exact cat_idr_strong.
- intros a b; exact cat_idl_strong.
Defined.
Opposite groupoids
Instance is0gpd_op A `{Is0Gpd A} : Is0Gpd (A^op).
Proof.
srapply Build_Is0Gpd; cbv.
intros a b.
exact gpd_rev.
Defined.
Instance op0gpd_fun A `{Is0Gpd A} :
Is0Functor((fun x ⇒ x) : A^op → A).
Proof.
srapply Build_Is0Functor; cbv.
intros a b.
exact (fun f ⇒ f^$).
Defined.
Instance is0functor_op A B (F : A → B)
`{IsGraph A, IsGraph B, x : !Is0Functor F}
: Is0Functor (F : A^op → B^op).
Proof.
apply Build_Is0Functor; cbv.
intros a b; exact (fmap F).
Defined.
Instance is1functor_op A B (F : A → B)
`{Is1Cat A, Is1Cat B, !Is0Functor F, !Is1Functor F}
: Is1Functor (F : A^op → B^op).
Proof.
apply Build_Is1Functor; cbv.
- intros a b f g; exact (fmap2 F).
- exact (fmap_id F).
- intros a b c f g; exact (fmap_comp F g f).
Defined.
Since Is01Cat structures are definitionally involutive (see test/WildCat/Opposite.v), we can use is0functor_op to transform in the reverse direction as well. This result makes that much easier to use in practice.
Instance is0functor_op' A B (F : A^op → B^op)
`{IsGraph A, IsGraph B, Fop : !Is0Functor (F : A^op → B^op)}
: Is0Functor (F : A → B)
:= is0functor_op A^op B^op F.
`{IsGraph A, IsGraph B, Fop : !Is0Functor (F : A^op → B^op)}
: Is0Functor (F : A → B)
:= is0functor_op A^op B^op F.
Is1Cat structures are also definitionally involutive.
Instance is1functor_op' A B (F : A^op → B^op)
`{Is1Cat A, Is1Cat B, !Is0Functor (F : A^op → B^op), Fop2 : !Is1Functor (F : A^op → B^op)}
: Is1Functor (F : A → B)
:= is1functor_op A^op B^op F.
Instance hasmorext_op {A : Type} `{H0 : HasMorExt A}
: HasMorExt A^op.
Proof.
unfold op.
intros a b; exact (isequiv_Htpy_path b a).
Defined.
Instance isinitial_op_isterminal {A : Type} `{Is1Cat A} (x : A)
{t : IsTerminal x} : IsInitial (A := A^op) x
:= t.
Instance isterminal_op_isinitial {A : Type} `{Is1Cat A} (x : A)
{i : IsInitial x} : IsTerminal (A := A^op) x
:= i.
`{Is1Cat A, Is1Cat B, !Is0Functor (F : A^op → B^op), Fop2 : !Is1Functor (F : A^op → B^op)}
: Is1Functor (F : A → B)
:= is1functor_op A^op B^op F.
Instance hasmorext_op {A : Type} `{H0 : HasMorExt A}
: HasMorExt A^op.
Proof.
unfold op.
intros a b; exact (isequiv_Htpy_path b a).
Defined.
Instance isinitial_op_isterminal {A : Type} `{Is1Cat A} (x : A)
{t : IsTerminal x} : IsInitial (A := A^op) x
:= t.
Instance isterminal_op_isinitial {A : Type} `{Is1Cat A} (x : A)
{i : IsInitial x} : IsTerminal (A := A^op) x
:= i.