Library HoTT.Basics.Numerals.Hexadecimal
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(* This file has been modified for use in the HoTT library *)
(************************************************************************)
Require Import Basics.Overture Basics.Numerals.Decimal.
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(* This file has been modified for use in the HoTT library *)
(************************************************************************)
Require Import Basics.Overture Basics.Numerals.Decimal.
Hexadecimal numbers
Inductive uint : Type0 :=
| Nil
| D0 (_:uint)
| D1 (_:uint)
| D2 (_:uint)
| D3 (_:uint)
| D4 (_:uint)
| D5 (_:uint)
| D6 (_:uint)
| D7 (_:uint)
| D8 (_:uint)
| D9 (_:uint)
| Da (_:uint)
| Db (_:uint)
| Dc (_:uint)
| Dd (_:uint)
| De (_:uint)
| Df (_:uint).
Nil is the number terminator. Taken alone, it behaves as zero,
but rather use D0 Nil instead, since this form will be denoted
as 0, while Nil will be printed as Nil.
For decimal numbers, we use two constructors Hexadecimal and
HexadecimalExp, depending on whether or not they are given with an
exponent (e.g., 0x1.a2p+01). i is the integral part while f is
the fractional part (beware that leading zeroes do matter).
Variant hexadecimal : Type0 :=
| Hexadecimal (i:int) (f:uint)
| HexadecimalExp (i:int) (f:uint) (e:Decimal.int).
Declare Scope hex_uint_scope.
Delimit Scope hex_uint_scope with huint.
Bind Scope hex_uint_scope with uint.
Declare Scope hex_int_scope.
Delimit Scope hex_int_scope with hint.
Bind Scope hex_int_scope with int.
Register uint as num.hexadecimal_uint.type.
Register int as num.hexadecimal_int.type.
Register hexadecimal as num.hexadecimal.type.
Fixpoint nb_digits d :=
match d with
| Nil ⇒ O
| D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d
| Da d | Db d | Dc d | Dd d | De d | Df d ⇒
S (nb_digits d)
end.
This representation favors simplicity over canonicity.
For normalizing numbers, we need to remove head zero digits,
and choose our canonical representation of 0 (here D0 Nil
for unsigned numbers and Pos (D0 Nil) for signed numbers).
nzhead removes all head zero digits
unorm : normalization of unsigned integers
norm : normalization of signed integers
Definition norm d :=
match d with
| Pos d ⇒ Pos (unorm d)
| Neg d ⇒
match nzhead d with
| Nil ⇒ Pos zero
| d ⇒ Neg d
end
end.
A few easy operations. For more advanced computations, use the conversions
with other Coq numeral datatypes (e.g. Z) and the operations on them.
For conversions with binary numbers, it is easier to operate
on little-endian numbers.
Fixpoint revapp (d d' : uint) :=
match d with
| Nil ⇒ d'
| D0 d ⇒ revapp d (D0 d')
| D1 d ⇒ revapp d (D1 d')
| D2 d ⇒ revapp d (D2 d')
| D3 d ⇒ revapp d (D3 d')
| D4 d ⇒ revapp d (D4 d')
| D5 d ⇒ revapp d (D5 d')
| D6 d ⇒ revapp d (D6 d')
| D7 d ⇒ revapp d (D7 d')
| D8 d ⇒ revapp d (D8 d')
| D9 d ⇒ revapp d (D9 d')
| Da d ⇒ revapp d (Da d')
| Db d ⇒ revapp d (Db d')
| Dc d ⇒ revapp d (Dc d')
| Dd d ⇒ revapp d (Dd d')
| De d ⇒ revapp d (De d')
| Df d ⇒ revapp d (Df d')
end.
Definition rev d := revapp d Nil.
Definition app d d' := revapp (rev d) d'.
Definition app_int d1 d2 :=
match d1 with Pos d1 ⇒ Pos (app d1 d2) | Neg d1 ⇒ Neg (app d1 d2) end.
nztail removes all trailing zero digits and return both the
result and the number of removed digits.
Definition nztail d :=
let fix aux d_rev :=
match d_rev with
| D0 d_rev ⇒ let (r, n) := aux d_rev in pair r (S n)
| _ ⇒ pair d_rev O
end in
let (r, n) := aux (rev d) in pair (rev r) n.
Definition nztail_int d :=
match d with
| Pos d ⇒ let (r, n) := nztail d in pair (Pos r) n
| Neg d ⇒ let (r, n) := nztail d in pair (Neg r) n
end.
Module Little.
Successor of little-endian numbers
Fixpoint succ d :=
match d with
| Nil ⇒ D1 Nil
| D0 d ⇒ D1 d
| D1 d ⇒ D2 d
| D2 d ⇒ D3 d
| D3 d ⇒ D4 d
| D4 d ⇒ D5 d
| D5 d ⇒ D6 d
| D6 d ⇒ D7 d
| D7 d ⇒ D8 d
| D8 d ⇒ D9 d
| D9 d ⇒ Da d
| Da d ⇒ Db d
| Db d ⇒ Dc d
| Dc d ⇒ Dd d
| Dd d ⇒ De d
| De d ⇒ Df d
| Df d ⇒ D0 (succ d)
end.
Doubling little-endian numbers
Fixpoint double d :=
match d with
| Nil ⇒ Nil
| D0 d ⇒ D0 (double d)
| D1 d ⇒ D2 (double d)
| D2 d ⇒ D4 (double d)
| D3 d ⇒ D6 (double d)
| D4 d ⇒ D8 (double d)
| D5 d ⇒ Da (double d)
| D6 d ⇒ Dc (double d)
| D7 d ⇒ De (double d)
| D8 d ⇒ D0 (succ_double d)
| D9 d ⇒ D2 (succ_double d)
| Da d ⇒ D4 (succ_double d)
| Db d ⇒ D6 (succ_double d)
| Dc d ⇒ D8 (succ_double d)
| Dd d ⇒ Da (succ_double d)
| De d ⇒ Dc (succ_double d)
| Df d ⇒ De (succ_double d)
end
with succ_double d :=
match d with
| Nil ⇒ D1 Nil
| D0 d ⇒ D1 (double d)
| D1 d ⇒ D3 (double d)
| D2 d ⇒ D5 (double d)
| D3 d ⇒ D7 (double d)
| D4 d ⇒ D9 (double d)
| D5 d ⇒ Db (double d)
| D6 d ⇒ Dd (double d)
| D7 d ⇒ Df (double d)
| D8 d ⇒ D1 (succ_double d)
| D9 d ⇒ D3 (succ_double d)
| Da d ⇒ D5 (succ_double d)
| Db d ⇒ D7 (succ_double d)
| Dc d ⇒ D9 (succ_double d)
| Dd d ⇒ Db (succ_double d)
| De d ⇒ Dd (succ_double d)
| Df d ⇒ Df (succ_double d)
end.
End Little.