Library HoTT.Homotopy.CayleyDickson

Require Import Classes.interfaces.abstract_algebra.
Require Import Cubical.DPath Cubical.PathSquare.
Require Import Pointed.Core Pointed.pSusp.
Require Import Homotopy.HSpace.Core.
Require Import Homotopy.Suspension.
Require Import Homotopy.Join.Core.

Local Open Scope pointed_scope.
Local Open Scope mc_mult_scope.

A Cayley-Dickson Spheroid is a pointed type X which is an H-space, with two operations called negation and conjugation, satisfying the seven following laws. x=x x**=x 1*=1 (-x)*=-x* x(-y)=-(xy) (xy)* = y* x* x* x=1
Class CayleyDicksonSpheroid (X : pType) := {
  cds_hspace : IsHSpace X;
  cds_negate : Negate X;
  cds_conjug : Conjugate X;
  cds_negate_inv : Involutive cds_negate;
  cds_conjug_inv : Involutive cds_conjug;
  cds_conjug_unit_pres : IsUnitPreserving cds_conjug;
  cds_conjug_left_inv : LeftInverse (.*.) cds_conjug mon_unit;
  cds_conjug_distr : DistrOpp (.*.) cds_conjug;
  cds_swapop : SwapOp (-) cds_conjug;
  cds_factorneg_r : FactorNegRight (-) (.*.);
}.
#[export] Existing Instances
  cds_hspace
  cds_negate
  cds_conjug
  cds_negate_inv
  cds_conjug_inv
  cds_conjug_unit_pres
  cds_conjug_left_inv
  cds_conjug_distr
  cds_swapop
  cds_factorneg_r.

Section CayleyDicksonSpheroid_Properties.

  Context {X : pType} `(CayleyDicksonSpheroid X).

  Global Instance cds_factorneg_l : FactorNegLeft (-) (.*.).
  Proof.
    intros x y.
    transitivity (conj (conj (-x × y))).
    1: symmetry; apply involutive.
    rewrite distropp.
    rewrite swapop.
    rewrite factorneg_r.
    rewrite swapop.
    rewrite <- distropp.
    rewrite involutive.
    reflexivity.
  Defined.

  Global Instance cds_conjug_right_inv
    : RightInverse (.*.) cds_conjug mon_unit.
  Proof.
    intro x.
    set (p := cds_conjug x).
    rewrite <- (involutive x).
    apply left_inverse.
  Defined.

End CayleyDicksonSpheroid_Properties.

Global Instance conjugate_susp (A : Type) `(Negate A)
  : Conjugate (Susp A).
Proof.
  srapply Susp_rec.
  + exact North.
  + exact South.
  + intro a.
    exact (merid a).
Defined.

Global Instance negate_susp (A : Type) `(Negate A)
  : Negate (Susp A).
Proof.
  srapply Susp_rec.
  + exact South.
  + exact North.
  + intro a.
    exact (merid (-a))^.
Defined.

Class CayleyDicksonImaginaroid (A : Type) := {
  cdi_negate : Negate A;
  cdi_negate_involutive : Involutive cdi_negate;
  cdi_susp_hspace : IsHSpace (psusp A);
  cdi_susp_factorneg_r : FactorNegRight (negate_susp A cdi_negate) hspace_op;
  cdi_susp_conjug_left_inv : LeftInverse hspace_op (conjugate_susp A cdi_negate) mon_unit;
  cdi_susp_conjug_distr : DistrOpp hspace_op (conjugate_susp A cdi_negate);
}.
#[export] Existing Instances
  cdi_negate
  cdi_negate_involutive
  cdi_susp_hspace
  cdi_susp_factorneg_r
  cdi_susp_conjug_left_inv
  cdi_susp_conjug_distr.

Global Instance involutive_negate_susp {A} `(CayleyDicksonImaginaroid A)
  : Involutive (negate_susp A cdi_negate).
Proof.
  srapply Susp_ind; try reflexivity.
  intro x.
  apply dp_paths_FFlr.
  rewrite concat_p1.
  rewrite Susp_rec_beta_merid.
  rewrite ap_V.
  rewrite Susp_rec_beta_merid.
  rewrite inv_V.
  rewrite (involutive x).
  apply concat_Vp.
Defined.

Global Instance involutive_conjugate_susp {A} `(CayleyDicksonImaginaroid A)
  : Involutive (conjugate_susp A cdi_negate).
Proof.
  srapply Susp_ind; try reflexivity.
  intro x.
  apply dp_paths_FFlr.
  rewrite concat_p1.
  rewrite 2 Susp_rec_beta_merid.
  apply concat_Vp.
Defined.

Global Instance isunitpreserving_conjugate_susp {A} `(CayleyDicksonImaginaroid A)
  : @IsUnitPreserving _ _ pt pt (conjugate_susp A cdi_negate).
Proof.
  reflexivity.
Defined.

Global Instance swapop_conjugate_susp {A} `(CayleyDicksonImaginaroid A)
  : SwapOp negate (conjugate_susp A cdi_negate).
Proof.
  srapply Susp_ind; try reflexivity.
  intro x.
  apply dp_paths_FlFr.
  rewrite concat_p1.
  rewrite ap_compose.
  rewrite (ap_compose negate).
  rewrite Susp_rec_beta_merid.
  rewrite ap_V.
  rewrite inv_V.
  rewrite 3 Susp_rec_beta_merid.
  apply concat_pV.
Defined.

Every suspension of a Cayley-Dickson imaginaroid gives a Cayley-Dickson spheroid.
A Cayley-Dickson imaginaroid A whose multiplciation on the suspension is associative gives rise to a H-space structure on the join of the suspension of A with itself.
Section ImaginaroidHSpace.

  (* Let A be a Cayley-Dickson imaginaroid with associative H-space multiplication on Susp A *)
  Context {A} `(CayleyDicksonImaginaroid A)
    `(!Associative hspace_op).

Declaring these as local instances so that they can be found
  Local Instance hspace_op' : SgOp (Susp A) := hspace_op.
  Local Instance hspace_unit' : MonUnit (Susp A) := hspace_mon_unit.

First we make some observations with the context we have.
  Section Lemmata.

    Context (a b c d : Susp A).

    Local Definition f := (fun xa × (c × -x)).
    Local Definition g := (fun yc × (y × b)).

    Lemma lemma1 : f (- mon_unit) = a × c.
    Proof.
      unfold f; apply ap.
      exact (hspace_right_identity c).
    Defined.

    Lemma lemma2 : f (conj c × conj a × d × conj b) = (-d) × conj b.
    Proof.
      unfold f.
      rewrite 2 factorneg_r.
      rewrite 3 simple_associativity.
      rewrite <- distropp.
      rewrite (right_inverse (a × c)).
      rewrite (left_identity d).
      symmetry.
      apply factorneg_l.
    Defined.

    Lemma lemma3 : g mon_unit = c × b.
    Proof.
      unfold g; apply ap.
      apply left_identity.
    Defined.

    Lemma lemma4 : g (conj c × conj a × d × conj b) = conj a × d.
    Proof.
      unfold g.
      rewrite 2 simple_associativity.
      rewrite <- simple_associativity.
      rewrite left_inverse.
      rewrite right_identity.
      rewrite 2 simple_associativity.
      rewrite right_inverse.
      rewrite <- simple_associativity.
      apply left_identity.
    Defined.

  End Lemmata.

  Arguments f {_ _}.
  Arguments g {_ _}.

Here is the multiplication map in algebraic form: (a,b) * (c,d) = (a * c - d * b*, a* * d + c * b) the following is the spherical form.
  Global Instance cd_op
    : SgOp (pjoin (psusp A) (psusp A)).
  Proof.
    unfold psusp, pjoin; cbn.
    intros x y; revert x.
    srapply Join_rec; hnf.
    { intro a.
      revert y.
      srapply Join_rec; hnf.
      - intro c.
        exact (joinl (a × c)).
      - intro d.
        exact (joinr (conj a × d)).
      - intros x y.
        apply jglue. }
    { intro b.
      revert y.
      srapply Join_rec; hnf.
      - intro c.
        exact (joinr (c × b)).
      - intro d.
        exact (joinl ((-d) × conj b)).
      - intros x y.
        symmetry.
        apply jglue. }
    intros a b.
    revert y.
    srapply Join_ind.
    1: intro; apply jglue.
    1: intro; cbn; symmetry; apply jglue.
    intros c d.
    apply sq_dp^-1.
    refine (sq_ccGG _^ _^ _).
    1,2: apply Join_rec_beta_jglue.
    change (PathSquare (jglue (a × c) (c × b)) (jglue ((- d) × conj b) (conj a × d))^
      (jglue (a × c) (conj a × d)) (jglue ((- d) × conj b) (c × b))^).
    rewrite <- (lemma1 a c), <- (lemma2 a b c d),
       <- (lemma3 b c), <- (lemma4 a b c d).
    refine (sq_GGGG _ _ _ _ _).
    2,4: apply ap.
    1,2,3,4: srapply (Join_rec_beta_jglue _ _ (fun a bjglue (f a) (g b))).
    refine (sq_cGcG _ _ _).
    1,2: exact (ap_V _ (jglue _ _ )).
    refine (@sq_ap _ _ _ _ _ _ _ (jglue _ _) (jglue _ _)^
      (jglue _ _) (jglue _ _)^ _).
    generalize (conj c × conj a × d × conj b).
    clear a b c d.
    change ( s : Susp A,
      Diamond (-mon_unit) s (mon_unit) s).
    srapply Susp_ind; hnf.
    1: by apply diamond_v_sq.
    1: by apply diamond_h_sq.
    intro a.
    apply diamond_twist.
  Defined.

  Global Instance cd_op_left_identity
    : LeftIdentity cd_op pt.
  Proof.
    snrapply Join_ind_FFlr.
    1,2: exact (fun _ap _ (hspace_left_identity _)).
    intros a b.
    lhs nrapply whiskerR.
    { lhs refine (ap _ (ap_idmap _)).
      exact (Join_rec_beta_jglue
        (fun cjoinl (pt × c))
        (fun djoinr (conj pt × d))
        (fun x yjglue (pt × x) (conj pt × y))
        a b). }
    symmetry.
    apply join_natsq.
  Defined.

  Global Instance cd_op_right_identity
    : RightIdentity cd_op pt.
  Proof.
    snrapply Join_ind_FFlr.
    1: exact (fun _ap joinl (hspace_right_identity _)).
    1: exact (fun _ap joinr (hspace_left_identity _)).
    intros a b.
    refine (whiskerR _ _ @ _).
    { refine (ap _ (ap_idmap _) @ _).
      simpl; rapply Join_rec_beta_jglue. }
    symmetry.
    apply join_natsq.
  Defined.

  Global Instance hspace_cdi_susp_assoc
    : IsHSpace (pjoin (psusp A) (psusp A))
    := {}.

End ImaginaroidHSpace.